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Combinatorial covering properties
Menger: for every sequence of open covers U1,U2, . . . of X there are finite families
F1 ⊆ U1,F2 ⊆ U2, . . . such that

⋃
n∈N Fn covers X

Hurewicz: for every sequence of open covers U1,U2, . . . of X there are finite families
F1 ⊆ U1,F2 ⊆ U2, . . . such that { n : x /∈

⋃
Fn } is finite for all x ∈ X
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σ-compact → Hurewicz → Menger → Lindelöf

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional
X is Menger ↔ continuous image of X into [N]∞ is nondominating
X is Hurewicz ↔ continuous image of X into [N]∞ is bounded



Previously

Theorem (d = ℵ1)

Every productively Lindelöf space is productively Menger.

Lemma
Assume that X = { xα : α < ω1 } is a dominating scale in [N]∞, i.e.,

xα ≤∗ xβ for α < β,
for each a ∈ [N]∞ there is α with a ≤∗ xα.

A space X ∪ Fin, where
points from X are isolated,
points from Fin have the same neighborhoods as in P(N),

is productively Menger but not productively Lindeöf.



In today’s episode
Theorem (d = ℵ1)

Every productively Menger space is productively Hurewicz.

X is concentrated: there is a countable D ⊆ X such that every closed A ⊆ X \ D is
countable

Lemma (Miller, Tsaban, Zdomskyy)

If X is concentrated and Y is Hurewicz, then X × Y is Menger.

Menger: for every sequence of open covers U1,U2, . . . of X there are finite families F1 ⊆ U1,
F2 ⊆ U2, . . . such that

⋃
n∈N Fn covers X

Hurewicz: for every sequence of open covers U1,U2, . . . of X there are finite families
F1 ⊆ U1,F2 ⊆ U2, . . . such that { n : x /∈

⋃
Fn } is finite for all x ∈ X

Theorem (Hurewicz)
Assume that X is Lindelöf and zero-dimensional

X is Menger ↔ continuous image of X into [N]∞ is nondominating
X is Hurewicz ↔ continuous image of X into [N]∞ is unbounded



In today’s episode
[N]∞ ⊇ X is a cFin-scale: |X | ≥ b and for each function b ∈ [N]∞, there is c ∈ [N]∞

such that
b ≤∞ c ≤∗ x

for all but less than b functions x ∈ X ,
e.g., unbounded X = { xα : α < b } with xα ≤∗ xβ for α < β.

Lemma (b = ℵ1)

Let X ⊆ [N]∞ be a cFin-scale. A space X ∪ Fin, where
points from X are isolated,
points from Fin have the same neighborhoods as in P(N),

is productively Hurewicz.

Lemma (Miller)

It is consistent with CH that there is a cFin-scale that is Menger.

Theorem
It is consistent with CH that there is a productively Hurewicz space that is not
productively Menger.



Main results
Theorem (d = ℵ1)

productively Lindelöf → productively Menger → productively Hurewicz
None of these implications is reversible.

Lemma (d = ℵ1)
Assume that X ⊆ [N]∞ is a dominating scale. A space X ∪ Fin, where

points from X are isolated,
points from Fin have the same neighborhoods as in P(N),

is productively Menger but not productively Lindeöf.

Lemma (b = ℵ1)
Let X ⊆ [N]∞ be a cFin-scale. A space X ∪ Fin, where

points from X are isolated,
points from Fin have the same neighborhoods as in P(N),

is productively Hurewicz.

Corollary (b = ℵ1 < d)
There is a productively Hurewicz space that is not productively Menger.
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