Products of Hurewicz, Menger and Lindelöf spaces

Piotr Szewczak www.piotrszewczak.pl

Cardinal Stefan Wyszyński University in Warsaw

2021

joint work with Boaz Tsaban

Combinatorial covering properties

Menger: for every sequence of open covers U_1, U_2, \ldots of X there are finite families $\mathcal{F}_1 \subseteq U_1, \mathcal{F}_2 \subseteq U_2, \ldots$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ covers X

Hurewicz: for every sequence of open covers U_1, U_2, \ldots of X there are finite families $\mathcal{F}_1 \subseteq \mathcal{U}_1, \mathcal{F}_2 \subseteq \mathcal{U}_2, \ldots$ such that $\{n : x \notin \bigcup \mathcal{F}_n\}$ is finite for all $x \in X$

 $\sigma\text{-compact} \to \mathsf{Hurewicz} \to \mathsf{Menger} \to \mathsf{Lindel\"of}$

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional

- X is Menger \leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is nondominating
- X is Hurewicz \leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is bounded

Previously

Theorem $(\mathfrak{d} = \aleph_1)$

Every productively Lindelöf space is productively Menger.

Lemma

Assume that $X = \{ x_{\alpha} : \alpha < \omega_1 \}$ is a dominating scale in $[\mathbb{N}]^{\infty}$, i.e.,

- $x_{\alpha} \leq^* x_{\beta}$ for $\alpha < \beta$,
- for each $a \in [\mathbb{N}]^{\infty}$ there is α with $a \leq^* x_{\alpha}$.

A space $X \cup Fin$, where

- points from X are isolated,
- points from Fin have the same neighborhoods as in $P(\mathbb{N})$,

is productively Menger but not productively Lindeöf.

In today's episode

Theorem $(\mathfrak{d} = \aleph_1)$

Every productively Menger space is productively Hurewicz.

X is concentrated: there is a countable $D \subseteq X$ such that every closed $A \subseteq X \setminus D$ is countable

Lemma (Miller, Tsaban, Zdomskyy)

If X is concentrated and Y is Hurewicz, then $X \times Y$ is Menger.

Menger: for every sequence of open covers U_1, U_2, \ldots of X there are finite families $\mathcal{F}_1 \subseteq U_1$, $\mathcal{F}_2 \subseteq U_2, \ldots$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ covers X

Hurewicz: for every sequence of open covers U_1, U_2, \ldots of X there are finite families $\mathcal{F}_1 \subseteq U_1, \mathcal{F}_2 \subseteq U_2, \ldots$ such that $\{n : x \notin \bigcup J\mathcal{F}_n\}$ is finite for all $x \in X$

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional

- X is Menger \leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is nondominating
- X is Hurewicz \leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is unbounded

In today's episode

 $[\mathbb{N}]^{\infty} \supseteq X$ is a cFin-scale: $|X| \ge \mathfrak{b}$ and for each function $b \in [\mathbb{N}]^{\infty}$, there is $c \in [\mathbb{N}]^{\infty}$ such that

$$b\leq^{\infty} c\leq^* x$$

for all but less than \mathfrak{b} functions $x \in X$,

e.g., unbounded $X = \{ x_{\alpha} : \alpha < \mathfrak{b} \}$ with $x_{\alpha} \leq^* x_{\beta}$ for $\alpha < \beta$.

Lemma $(\mathfrak{b} = \aleph_1)$

Let $X \subseteq [\mathbb{N}]^{\infty}$ be a cFin-scale. A space $X \cup Fin$, where

- points from X are isolated,
- points from Fin have the same neighborhoods as in $P(\mathbb{N})$,

is productively Hurewicz.

Lemma (Miller)

It is consistent with CH that there is a cFin-scale that is Menger.

Theorem

It is consistent with CH that there is a productively Hurewicz space that is not productively Menger.

Main results

Theorem $(\mathfrak{d} = \aleph_1)$

 $\blacksquare \textit{ productively Lindelöf} \rightarrow \textit{ productively Menger} \rightarrow \textit{ productively Hurewicz}$

None of these implications is reversible.

Lemma $(\mathfrak{d} = \aleph_1)$

Assume that $X \subseteq [\mathbb{N}]^{\infty}$ is a dominating scale. A space $X \cup \mathrm{Fin}$, where

- points from X are isolated,
- points from Fin have the same neighborhoods as in P(N),

is productively Menger but not productively Lindeöf.

Lemma $(\mathfrak{b} = \aleph_1)$

Let $X \subseteq [\mathbb{N}]^{\infty}$ be a cFin-scale. A space $X \cup$ Fin, where

- points from X are isolated,
- points from Fin have the same neighborhoods as in $P(\mathbb{N})$,

is productively Hurewicz.

Corollary $(\mathfrak{b} = \aleph_1 < \mathfrak{d})$

There is a productively Hurewicz space that is not productively Menger.

References

P. Szewczak, B. Tsaban, *Products of general Menger spaces*, Topology and its Applications 255 (2019), 41–55.