Probabilistic poyyamining semantics for name generation
J/w S. Station. D. Stein, M. Wolman

A syntax for "pworbilustic programming" (actually "name generation"
The following is the grammar for v-calculus terms

$$
M=x|\lambda x \cdot M| M M
$$

It we | false| if M then M else M

$$
|M=M \quad| \quad \nu n M
$$

types ground geverate "random" name n

$1^{\text {st }}$ order types $\quad G_{1} \rightarrow\left(G_{2} \rightarrow \ldots G_{n}\right)$
$2^{\text {nd }}$ outer $\quad(B \rightarrow B) \rightarrow N$
Examples

1) $\quad \nu n \nu m \quad n=m$
2) $\nu n \lambda x \quad x=n$

B
3) λx false
$N \rightarrow B$
$N \rightarrow B$
operational sumautics expresses iterated evaluation of terms
$M \Downarrow C$ steads for
M evaluates to C

Examples 1) $(\lambda x$ fall $)(n) \Perp f$ false
2) $\vee n \nu m n=m$ false

Def (Observation equivalence)
If M_{1} and M_{2} are v-terms, of the same type,
$M_{1} \approx M_{2}$ if for carey context
$P[-]$ we hove
$P\left[M_{1}\right] \Downarrow b \quad$ ff $\quad \rho\left[M_{2}\right] \Downarrow b$ whenever $P\left[M_{i}\right]$ are well-formed expressions.

For $1^{\text {st }}$ outer types there is a pruct system chliel logical relations that determes \approx

$$
M_{1} \approx M_{2} \quad \text { of } \quad M_{1} R M_{2}
$$

defied inductively and resembles a proof system
Examples i) $\mathrm{n} \nu \mathrm{om} n=m \approx$ false
2) λx false $\approx \nu n \lambda x x=n$ (this is celled the privacy equation)

Semantics
In semantics of programming languages, we often need function spaces: to end type σ we associate a set X_{σ} (es. $\sigma=B \quad X_{\sigma}=2=\{0,1\}$.

$$
\left.\sigma=N \quad X_{\sigma}=\mathbb{R}\right)
$$

for type $\sigma \rightarrow \tau$ re whute b hale $x_{\tau}^{x_{\sigma}}$
In probalalistic programming ve want is hae
\mathbb{R} as the space associaled 6 type N we warbs theat it cs a spece inth a σ-algetic (mecasurable space)
The poblem aprears at the conctuchion of function space).
Theovem (Aumann 169) Thee is no o-algetre on $2^{\mathbb{R}}$ sith

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{R}^{\mathbb{R}} \rightarrow \mathbb{R} \\
& (r, f) \mapsto f(\gamma)
\end{aligned}
$$

is mecsurable
DeF (Heunen-Kammawi Staton - Yang 117)
A Quasi-Boel space is a set X to getter with a ect M_{x} of functions $~ f: \mathbb{R} \rightarrow X$ schistying
7) all wosstant functions are in M_{x}
2) if $f \in M_{x}, \alpha: \mathbb{R} \rightarrow R$ is Boel

$$
\text { the } \quad f_{\alpha} \in M_{x}
$$

3) if $\mathbb{R}=\bigcup_{n \in \mathbb{N}}^{\cup} B_{n} \quad B_{n}$ - Bocel

Thus forms a cklegory $f_{n} \in M_{x}$, then $\bigcup_{n \in \mathbb{N}} f_{n} \mid B_{n} \in M_{x}$
Remarks in Evey stemndard Bocel spuce ${ }^{\frac{x}{x}}$ is a quariBoid spece (Mx - all Boel wans)
2) the caleyoy alloms for function spaces and proints and $x \mapsto P(X)$

If $x, Y \cdot Q B S$
Y^{X} is QBS wh thase
$f: \mathbb{R} \rightarrow Y^{x}$
s.t $f^{\prime}: \mathbb{R} \times X \rightarrow Y$ is measurable

$$
f^{\prime}(r, x)=f(r)(x)
$$

On $Z^{\mathbb{R}}$ (ths is the set of Boel subseb of \mathbb{R})

$$
f: \mathbb{R} \rightarrow 2^{\mathbb{R}}
$$

is in the QBJ stuchre
if the exists

$$
B \leq \mathbb{R} \times \mathbb{R}
$$

Bocel r.h

$$
f(x)=B_{x}
$$

Fact Eerey $f: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ measmable in $Q B S$
w (Bovel-on-Bovel) - mecsurable

Int erpiet ation
we can interptet r-calculus in QBS

$$
\begin{array}{ll}
N \leadsto \mathbb{R} & B \sim 2=\{0, M \\
\llbracket \lambda x M \rrbracket & " \in x_{\tau}^{x_{\sigma} "}=\delta_{\pi f} \\
x: \sigma & \\
\llbracket \vee n M= & \int_{\mathbb{R}} \llbracket M \rrbracket d v \\
& v \text {-Ganssian }
\end{array}
$$

Examples

1) $\llbracket \lambda x$ fase $\rrbracket=\delta_{\phi}$
2) $\llbracket \nu n \lambda x x=n \rrbracket=\int_{\mathbb{R}} \delta_{\{n\}} d \nu$
both we measures on Bouct-on-Bocel sett

$$
\begin{aligned}
& \delta_{\phi}(\mathcal{A})=\left\{\begin{array}{lll}
1 & \text { if } \phi \in \mathcal{A} \\
0 & \text { if } \phi \notin A t
\end{array}\right. \\
& \int_{\mathbb{R}} \delta_{(u)} d v=\int_{\mathbb{R}}\left\{\begin{array}{lll}
1 & \text { if } & \text { in } \\
0 & \text { if } & \text { in } \in \mathcal{A}
\end{array}\right\} d v(n)
\end{aligned}
$$

Theorem (SSSW) if M_{1} and M_{2} de $1^{\text {st }}$ onder v-terms, the

$$
M_{1} \approx M_{2} \quad \text { iff } \quad\left[M_{1}\right]=\left[M_{2} \rrbracket\right.
$$

ne will loote of the spenial case of

$$
\begin{aligned}
& M_{1}=\lambda x \text { falle } \\
& M_{2}=\sqrt{n} \lambda x \quad x
\end{aligned}
$$

Lemma if $\mathcal{F} \in$ Boel on Boal, then

$$
\phi \in \mathbb{F} \text { iff }\{x \in \mathbb{R}:\{x\} \in \mathcal{F}\}
$$

co-conutable
pif sketch
spre $\phi \in \mathcal{F}$ but $\{x \in \mathbb{R}:\{x\} \notin F\}$ is undble

$$
\text { WLOG } \quad \neq \mathbb{R}
$$

Recall Becker's Heener
WF, UB are Boul insejarable
ie.
the exits a Boiel set $B \subseteq \mathbb{R} \times \mathbb{R}$
s.h $W F=\left\{x \in \mathbb{R}:\left|B_{x}\right|=0\right\}$
$U B=\left\{x \subset \mathbb{R}:\left|B_{x}\right|=1\right\}$ de Boel ineparable
If $\left\{x: B_{x} \in \mathcal{F}\right\}$ is Boed b/c Fures
Bocel-on-Bouel
but it separates WF for UB.
Tho Lemna anglies that

$$
\delta_{\phi}(F)=\int_{\mathbb{R}} \delta_{\{n\}}(F F) d v(n)
$$

For evey forebr-or-Bol.

In genera, we introduce and use a "normed Fun"

$$
M \longmapsto\langle M\rangle
$$

sh $M_{1} \approx M_{2}$ if $\left\langle M_{1}\right\rangle=\left\langle M_{2}\right\rangle$

