Graph Width Parameters. Dependencies, Algorithms and Decompositions.

Wojciech Nadara

University of Warsaw, Poland

14th November 2024, University of Warsaw

Plan

1 Introduction and discerning the title

Selected results

Discerning the title

Graph width parameters

Discerning the title

Graph width parameters

What are graphs?

Graphs are...

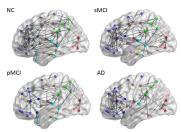
What are graphs?

Graphs are... dots and segments

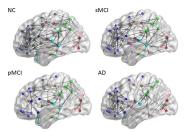
Modelling:

Modelling:

road networks


Modelling:

- road networks
- social networks


Modelling:

- road networks
- social networks
- neural connections

Modelling:

- road networks
- social networks
- neural connections

and many many more...

Problems examples:

• Getting from point A to point B

- Getting from point A to point B
- Maximum flow problem

- Getting from point A to point B
- Maximum flow problem
- Travelling salesman problem

- Getting from point A to point B
- Maximum flow problem
- Travelling salesman problem
- Minimum balanced cut

EASY

- Getting from point A to point B
- Maximum flow problem

HARD

- Travelling salesman problem
- Minimum balanced cut

How do we deal with hard problems?

How do we deal with hard problems?

How do we deal with hard problems?

A few directions:

How do we deal with hard problems?

A few directions:

Approximation

How do we deal with hard problems?

A few directions:

- Approximation
- Heuristics

How do we deal with hard problems?

A few directions:

- Approximation
- Heuristics
- Exact solutions on easy instances

Discerning the title

Graph width parameters
Dependencies, Algorithms
and Decompositions.

Decompositions ⇔ ways of capturing the structure of a graph

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

Various graph width parameters:

treewidth

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

- treewidth
- treedepth

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

- treewidth
- treedepth
- pathwidth

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

- treewidth
- treedepth
- pathwidth
- clique-width

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

- treewidth
- treedepth
- pathwidth
- clique-width
- twin-width

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

- treewidth
- treedepth
- pathwidth
- clique-width
- twin-width
- shrub-depth

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

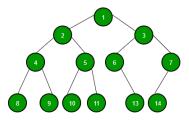
- treewidth
- treedepth
- pathwidth
- clique-width
- twin-width
- shrub-depth
- mim-width

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

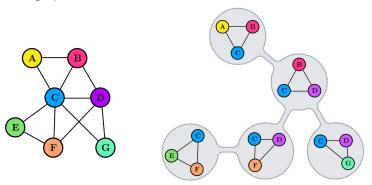
- treewidth
- treedepth
- pathwidth
- clique-width
- twin-width
- shrub-depth
- mim-width
- ..

Decompositions \Leftrightarrow ways of capturing the structure of a graph Low-width decompositions \Leftrightarrow easy graphs

- treewidth
- treedepth
- pathwidth
- clique-width
- twin-width
- shrub-depth
- mim-width
- ..

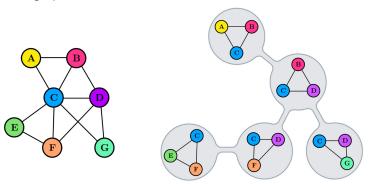

Trees

Trees for normal people:


Trees are easy to process!

Trees for computer scientists:

Beyond trees - treewidth


Some graphs can be viewed as "fat trees"

The thinner the decomposition - the better

Beyond trees - treewidth

Some graphs can be viewed as "fat trees"

The thinner the decomposition - the better Pathwidth is a similar concept, where we view a graph as a fat path instead of a fat tree.

Plan

Introduction and discerning the title

Selected results

Structural treedepth results

Excluded-minor characterization of treedepth

If the treedepth of a graph G is big, then either:

- treewidth of *G* is big
- G "contains" a high complete binary tree or
- G contains a long path

The dependencies are polynomial.

Structural treedepth results

Excluded-minor characterization of treedepth

If the treedepth of a graph G is big, then either:

- treewidth of *G* is big
- G "contains" a high complete binary tree or
- G contains a long path

The dependencies are polynomial.

Treedepth obstructions

Every graph of a *small* treedepth contains a *small* subgraph of the same treedepth

Decomposition results

Approximate treedepth decomposition

Polynomial time approximate treedepth decomposition off by a factor of roughly tw(G)

Decomposition results

Approximate treedepth decomposition

Polynomial time approximate treedepth decomposition off by a factor of roughly tw(G)

Optimum treedepth decomposition

Polynomial **space** optimum treedepth decomposition with the time matching the best one of exact algorithms for that problem

Pathwidth results

Excluded-minor characterization of pathwidth

If the pathwidth of a graph G is big, then either:

- treewidth of G is big or
- G "contains" a high complete binary tree

The dependencies are polynomial.

Pathwidth results

Excluded-minor characterization of pathwidth

If the pathwidth of a graph G is big, then either:

- treewidth of G is big or
- G "contains" a high complete binary tree

The dependencies are polynomial.

Approximate treedepth decomposition

Polynomial time approximate pathwidth decomposition off by a factor of roughly tw(G).

Thank you!