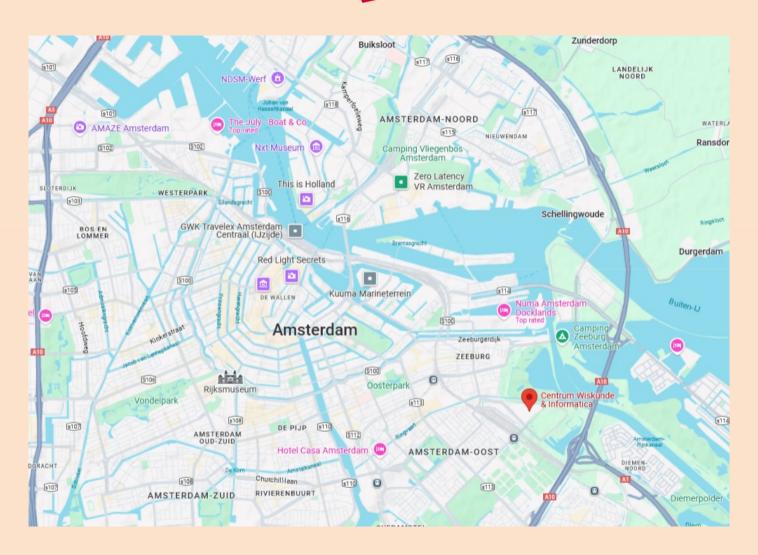
Wiktor Zuba

MIMUW Colloquium

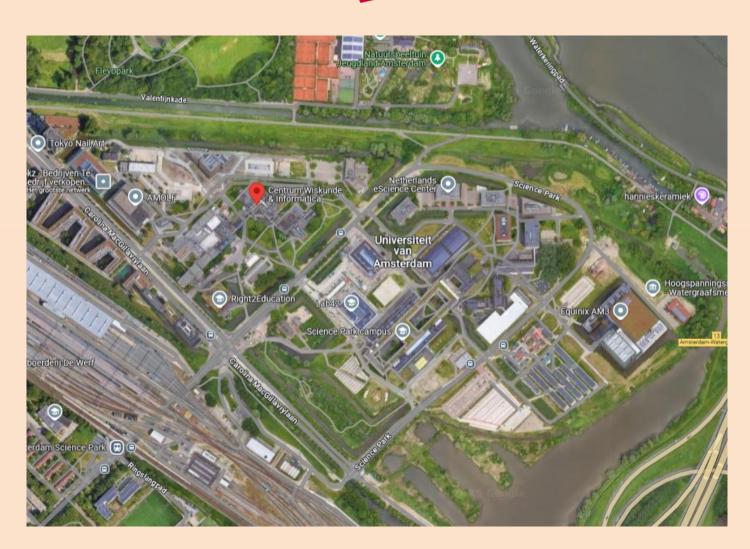
13.03.2025

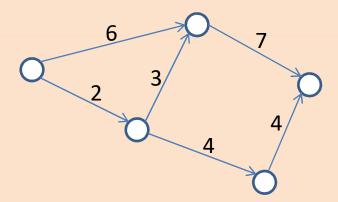
Background

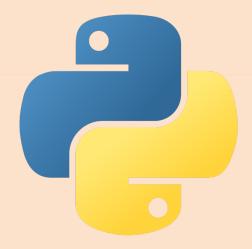
- 2011-2021: Studies at MIMUW


2022-2024: PostDoc at CWI

- 2024-present: Assistant Professor at MIMUW







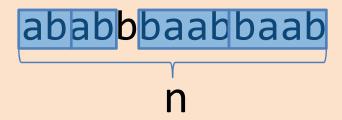
Dijkstra Algorithm 1956

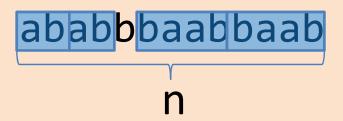
Python 1980s

Text Algorithms Team

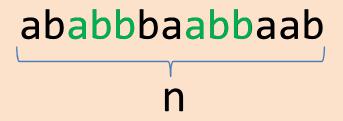
Text Algorithms Team

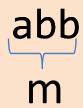
Wojciech Rytter


Jakub Radoszewski


Tomasz Waleń

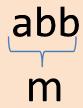
ababbbaabbaab n


(Check / find all / count all) regular parts



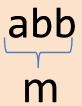
(Check / find all / count all) regular parts

(Check / find all / count all) regular parts (in a substring)



(Check / find all / count all) regular parts (in a substring)

Pattern matching

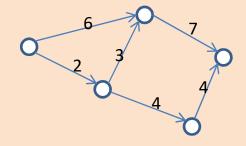

```
abbabbabb abb
ababbbaabbaab
n
```


(Check / find all / count all) regular parts (in a substring)

(Approximate = up to k errors)
Pattern matching

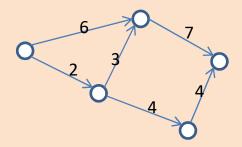
```
abbabbabb abb
ababbbaabbaab
n
```


(Check / find all / count all) regular parts (in a substring)

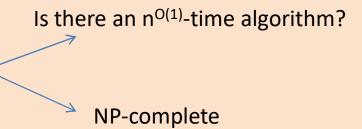

(Approximate = up to k errors)
Pattern matching

String similarities (common substrings, ...)

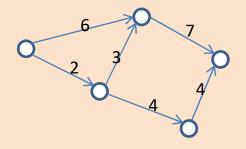
Applications of regularities and similarities of strings

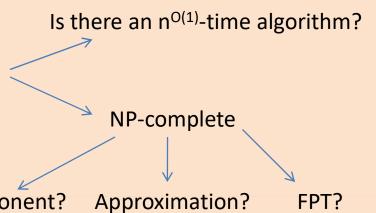

- Bioinformatics tandem repeats are associated to genetic diseases,
 similarities between DNA sequences~ close relationship between organisms
- Compression high regularity = better compression rate
- Data analisys plagiarism detection

Graph algorithms

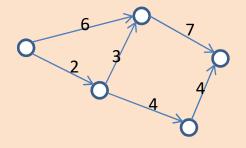


brute force: usually exponential


Graph algorithms


brute force: usually exponential

Graph algorithms

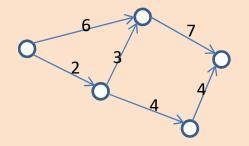


brute force: usually exponential

Smaller exponent? Approximation?

Graph algorithms

brute force: usually exponential


Is there an n^{O(1)}-time algorithm? NP-complete Smaller exponent? Approximation? FPT?

Text algorithms

ababbbaabbaab

brute force: usually O(n³) or O(n²) time.

Graph algorithms

brute force: usually exponential

Is there an n^{O(1)}-time algorithm?

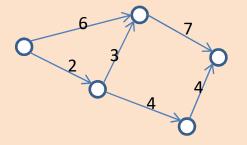
NP-complete

Smaller exponent?

Approximation?

FPT?

Text algorithms


Try to reach O(n) or at least O(n polylog n).

ababbbaabbaab

brute force: usually O(n³) or O(n²) time.

No $O(n^{2-\epsilon})$ time algorithm (by e.g. SETH)

Graph algorithms

brute force: usually exponential

Is there an n^{O(1)}-time algorithm?

NP-complete

Smaller exponent?

Approximation?

FPT?

Text algorithms

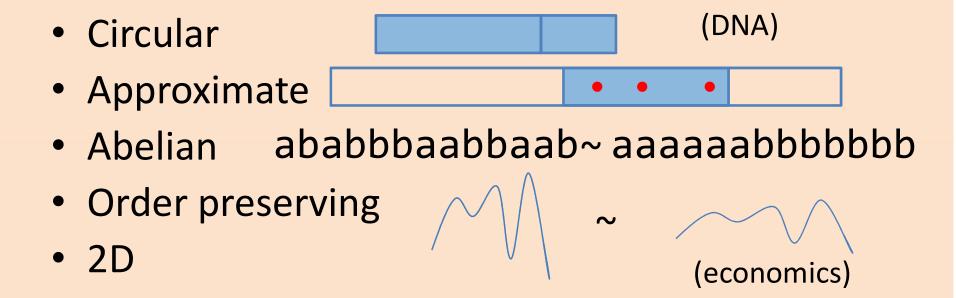
Try to reach O(n) or at least O(n polylog n).

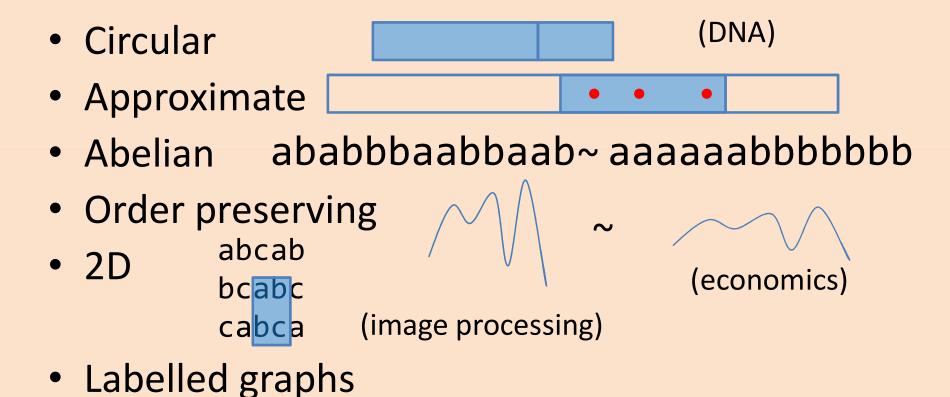
ababbbaabbaab

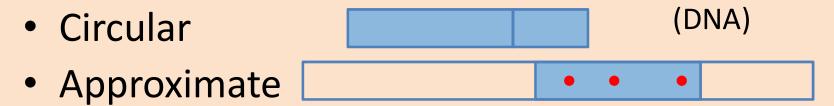
brute force:

usually $O(n^3)$ or $O(n^2)$ time. Sometimes even $O(n/\log n)$.

No $O(n^{2-\epsilon})$ time algorithm (by e.g. SETH)

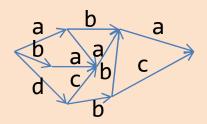

- Circular
- Approximate
- Abelian
- Order preserving
- 2D




- Approximate
- Abelian
- Order preserving
- 2D

- CircularApproximate(DNA)
- Abelian
- Order preserving
- 2D

- CircularApproximate(DNA)
- Abelian ababbbaabbaab~ aaaaaabbbbbbbb
- Order preserving
- 2D



- Abelian ababbbaabbaab~ aaaaabbbbbbbb
- Order preserving
- 2D abcab bcabc cabca

(image processing)

Labelled graphs

(representation of pangenomes)

(economics)

RECENT EXAMPLES

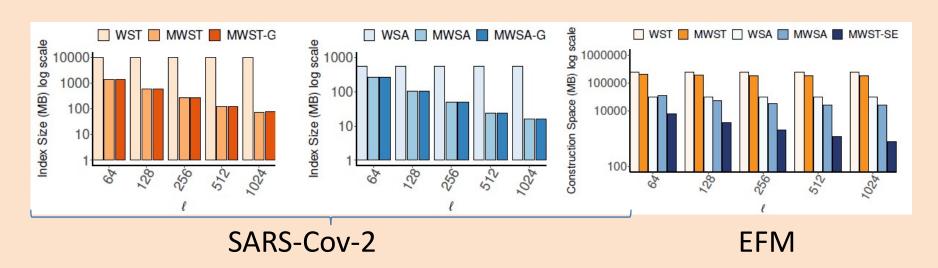
(IN MY PUBLICATIONS)

			3			
A	1	1/2	3/4	4/5	1/2	1/4
В	0	1/2	1/4	1/5	1/2	3/4

			3			La contraction of the contractio
A	1	1/2	3/4	4/5	1/2	1/4
В	0	1/2	1/4	1/5	1/2	3/4

$$P(X[3..5] = ABA) = 3/40$$

	6	5	4	3	2	1	X
P(X[35] = ABA) = 3/40	1/4	1/2	4/5	3/4	1/2	1	A
$P(X[35] = ABA) = 3/40$ Occurrence if probablity $\geq 1/2$	3/4	1/2	1/5	1/4	1/2	0	В


O(nz) size indexes are too large to be useful.

Our result: O(nz/I) size indexes for patterns of length $\geq I$.

	6	5	4	3	2	1	X
P(X[35] = ABA) = 3/40	1/4	1/2	4/5	3/4	1/2	1	A
P(X[35] = ABA) = 3/40 Occurrence if probablity $\geq 1/z$	3/4	1/2	1/5	1/4	1/2	0	В

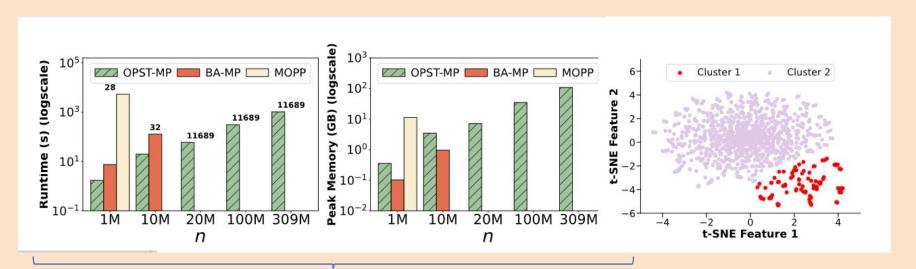
O(nz) size indexes are too large to be useful.

Our result: O(nz/I) size indexes for patterns of length $\geq I$.

Scalable Order-Preserving Pattern Mining (ICDM 2024)

Pattern mining in time series (IEEE Trans. Cybern. 2023) Their algorithm finds frequent patterns, but it takes $\Omega(n^3)$ time.

Scalable Order-Preserving Pattern Mining (ICDM 2024)


Pattern mining in time series (IEEE Trans. Cybern. 2023) Their algorithm finds frequent patterns, but it takes $\Omega(n^3)$ time.

Our result: Structure that mines frequent patterns in O(n) time after O(n log σ)-time construction, where σ is the alphabet size.

Scalable Order-Preserving Pattern Mining (ICDM 2024)

Pattern mining in time series (IEEE Trans. Cybern. 2023) Their algorithm finds frequent patterns, but it takes $\Omega(n^3)$ time.

Our result: Structure that mines frequent patterns in O(n) time after O(n log σ)-time construction, where σ is the alphabet size.

Thank you for your attention!