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Connecting modelling paradigms

Three scales to address the same phenomenon, hence the questions:

What is the connection between these different modelling choices?

and

How can they be linked?



Macroscopic models of tissue growth
Dynamics of cell density n(t, x) governed by 2 effects:

I Movement with velocity v(t, x)

I Cell division and cell death (growth rate G )

@tn(t, x) + div(n(t, x)v(t, x)) = n(t, x)G (p(t, x)).

(e.g. G(p) = pH � p.)

Connection between velocity and pressure via:
I Darcy’s law: v = �rp (local; porous medium)

I Brinkman’s law: �⌫�v + v = �rp (nonlocal; viscoelastic medium)

Constitutive law: assume pressure is an increasing function of the
density. Archetypal example:

p =
�

� � 1
n��1, � > 1.



Example: Cauchy problem for the Porous Medium Equation

Consider the problem
⇢

@tn�(t, x) = �n��(t, x), x 2 Rd , t > 0,
n�(0, x) = n0(x), n0 2 L1 \ L1(Rd).

The porous medium equation can be rewritten as a diffusion equation:

@tn�(t, x) = div(n�rp�) = div(D(n�)rn�), D(n�) = �n��1
� .

In the limit � ! 1, the diffusivity coefficient behaves like

D(n) ⇡
⇢

0, when n 2 [0, 1),
+1, when n � 1.



Example: Cauchy problem for the Porous Medium Equation

Thus, formally, we expect the solution to the Cauchy problem to converge,
as � ! 1, to a stationary profile n1 = n1(x) with 0  n1  1.

This can be proved using: the Aronson-Bénilan estimate (@tn1 � 0) and
conservation of mass [Caffarelli-Friedman, 1987].

Non-trivial limit evolution: source at the boundary of the domain.



The graph relation

Since p� = �
��1n

��1
� , we have

✓
� � 1
�

p�

◆ �
��1

= n�� =
�

� � 1
n�p� .

We thus formally deduce p1 = n1p1, or p1(1 � n1) = 0.

Equivalently, p1 2 P1(n1), where P1 is the monotone graph

P1(n) =

8
<

:

{0}, when n < 1,
[0,1), when n = 1,
;, when n > 1.

Saturation constraint: we have the inclusion {p1 > 0} ⇢ {n1 = 1}.



Including cell proliferation
Now consider the equation

@tn� � div(n�rp�) = n�G (p�), p� =
�

� � 1
n��1
� .

The pressure satisfies

@tp� � |rp� |2 = (� � 1)p�(�p� + G (p�)),

and in the limit � ! 1 we have [Perthame, Quirós, Vázquez, 2014]:

@tn1��p1 = n1G (p1),

p1(1 � n1) = 0 and p1(�p1 + G (p1)) = 0.

Note: In this case {p1 > 0} = {n1 = 1}.



The Hele-Shaw problem

Thus, the limiting pressure solves the following elliptic problem:
⇢

��p1 = G (p1), in ⌦(t) := {p1 > 0},
p1 = 0, on @⌦(t).



Other problems / My work

Include heterogeneity: systems of equations

Rate of convergence for the incompressible limit � ! 1

Well-posedness of the model with Brinkman’s law
(�⌫�v + v = �rp instead of v = �rp) and its incompressible limit

The nonlocal-to-local limit ⌫ ! 0

Continuous phenotype limit: from N species to a continuously
structured equation

More details:
https://www.mimuw.edu.pl/~tdebiec/publications.html

Thank you for your attention!



Other problems / My work

Include heterogeneity: systems of equations

Rate of convergence for the incompressible limit � ! 1

Well-posedness of the model with Brinkman’s law
(�⌫�v + v = �rp instead of v = �rp) and its incompressible limit

The nonlocal-to-local limit ⌫ ! 0

Continuous phenotype limit: from N species to a continuously
structured equation

More details:
https://www.mimuw.edu.pl/~tdebiec/publications.html

Thank you for your attention!


