On singular limits arising in mechanical models of tumour growth

Tomasz Dębiec University of Warsaw

Kolokwium MIM 14 listopada 2024

Connecting modelling paradigms

Three scales to address the same phenomenon, hence the questions:

*What is the connection between these di*ff*erent modelling choices?* and

How can they be linked?

Macroscopic models of tissue growth

- Dynamics of cell density $n(t, x)$ governed by 2 effects:
	- \blacktriangleright Movement with velocity $v(t, x)$
	- ► Cell division and cell death (growth rate *G*)

 $\partial_t n(t, x) + \text{div}(n(t, x)v(t, x)) = n(t, x)G(p(t, x)).$ $(e.g. G(p) = p_H - p.$

- **Connection** between velocity and pressure via:
	- **Darcy's law:** $v = -\nabla p$ (local; porous medium)
	- **Brinkman's law:** $-\nu\Delta v + v = -\nabla p$ (nonlocal; viscoelastic medium)
- Constitutive law: assume pressure is an increasing function of the density. Archetypal example:

$$
p=\frac{\gamma}{\gamma-1}n^{\gamma-1}, \quad \gamma>1.
$$

Example: Cauchy problem for the Porous Medium Equation

Consider the problem

$$
\begin{cases}\n\partial_t n_\gamma(t,x) = \Delta n_\gamma^\gamma(t,x), & x \in \mathbb{R}^d, t > 0, \\
n_\gamma(0,x) = n^0(x), & n^0 \in L^1 \cap L^\infty(\mathbb{R}^d).\n\end{cases}
$$

The porous medium equation can be rewritten as a *di*ff*usion equation*:

$$
\partial_t n_\gamma(t,x)=\mathrm{div}(n_\gamma \nabla p_\gamma)=\mathrm{div}(D(n_\gamma)\nabla n_\gamma),\quad D(n_\gamma)=\gamma n_\gamma^{\gamma-1}.
$$

In the limit $\gamma \to \infty$, the diffusivity coefficient behaves like

$$
D(n) \approx \left\{ \begin{array}{ll} 0, & \text{when } n \in [0,1), \\ +\infty, & \text{when } n \geq 1. \end{array} \right.
$$

Example: Cauchy problem for the Porous Medium Equation

Thus, formally, we expect the solution to the Cauchy problem to converge, as $\gamma \to \infty$, to a *stationary* profile $n_{\infty} = n_{\infty}(x)$ with $0 \le n_{\infty} \le 1$.

This can be proved using: the Aronson-Bénilan estimate $(\partial_t n_{\infty} > 0)$ and conservation of mass [Caffarelli-Friedman, 1987].

Non-trivial limit evolution: source at the boundary of the domain.

The graph relation

Since
$$
p_{\gamma} = \frac{\gamma}{\gamma - 1} n_{\gamma}^{\gamma - 1}
$$
, we have
\n
$$
\left(\frac{\gamma - 1}{\gamma} p_{\gamma}\right)^{\frac{\gamma}{\gamma - 1}} = n_{\gamma}^{\gamma} = \frac{\gamma}{\gamma - 1} n_{\gamma} p_{\gamma}.
$$

We thus formally deduce $p_{\infty} = n_{\infty}p_{\infty}$, or $p_{\infty}(1 - n_{\infty}) = 0$.

Equivalently, $p_{\infty} \in P_{\infty}(n_{\infty})$, where P_{∞} is the monotone graph

$$
P_{\infty}(n) = \begin{cases} \{0\}, & \text{when } n < 1, \\ [0, \infty), & \text{when } n = 1, \\ \emptyset, & \text{when } n > 1. \end{cases}
$$

Saturation constraint: we have the inclusion $\{p_{\infty} > 0\} \subset \{n_{\infty} = 1\}$.

Including cell proliferation

Now consider the equation

$$
\partial_t n_\gamma - \mathrm{div}(n_\gamma \nabla p_\gamma) = n_\gamma G(p_\gamma), \quad p_\gamma = \frac{\gamma}{\gamma - 1} n_\gamma^{\gamma - 1}.
$$

The pressure satisfies

$$
\partial_t p_\gamma - |\nabla p_\gamma|^2 = (\gamma - 1) p_\gamma (\Delta p_\gamma + G(p_\gamma)),
$$

and in the limit $\gamma \to \infty$ we have [Perthame, Quirós, Vázquez, 2014]:

$$
\partial_t n_{\infty} - \Delta p_{\infty} = n_{\infty} G(p_{\infty}),
$$

$$
p_{\infty}(1 - n_{\infty}) = 0 \text{ and } p_{\infty}(\Delta p_{\infty} + G(p_{\infty})) = 0.
$$

Note: In this case ${p_{\infty} > 0} = {n_{\infty} = 1}$.

The Hele-Shaw problem

Thus, the limiting pressure solves the following elliptic problem:

$$
\begin{cases}\n-\Delta p_{\infty} = G(p_{\infty}), & \text{in } \Omega(t) := \{p_{\infty} > 0\}, \\
p_{\infty} = 0, & \text{on } \partial\Omega(t).\n\end{cases}
$$

Other problems / My work

- Include heterogeneity: systems of equations
- Rate of convergence for the incompressible limit $\gamma \to \infty$
- Well-posedness of the model with Brinkman's law $(-\nu \Delta v + v = -\nabla p$ instead of $v = -\nabla p$) and its incompressible limit
- The nonlocal-to-local limit $\nu \rightarrow 0$
- Continuous phenotype limit: from *N* species to a continuously structured equation

More details:

https://www.mimuw.edu.pl/~tdebiec/publications.html

Other problems / My work

- Include heterogeneity: systems of equations
- Rate of convergence for the incompressible limit $\gamma \to \infty$
- Well-posedness of the model with Brinkman's law $(-\nu \Delta v + v = -\nabla p$ instead of $v = -\nabla p$) and its incompressible limit
- The nonlocal-to-local limit $\nu \rightarrow 0$
- Continuous phenotype limit: from *N* species to a continuously structured equation

More details:

https://www.mimuw.edu.pl/~tdebiec/publications.html

Thank you for your attention!