# Compressible fluids and related models

#### Nilasis Chaudhuri

Colloquium: MIMUW, November 06, 2025



Institute of Applied Mathematics and Mechanics

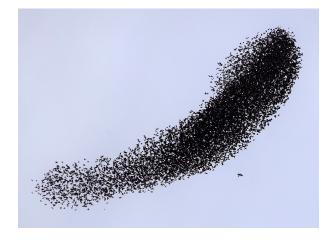
## Real life: Examples



Cyclone



Traffic



Flock of Birds

These systems – fluids, vehicles, and animals – can all be described by Partial Differential Equations (PDEs) that express how density and velocity evolve in time.

<sup>&</sup>lt;sup>1</sup>Source: wikipedia.org, phys.org

# Different descriptions



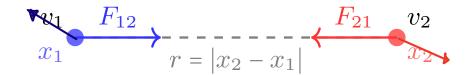
Traffic (as Continuum)



Traffic (as Particle)

<sup>&</sup>lt;sup>2</sup>Source: isarsoft.com, wikipedia.org

### From Particles to the Continuum



### Two particles Motivation: Newton's Law

Each particle has position  $x_i(t) \in \mathbb{R}^d$  and velocity  $v_i(t) \in \mathbb{R}^d$  for i = 1, 2:

$$\dot{x}_1 = v_1, \qquad \dot{x}_2 = v_2,$$

$$\dot{v}_1 = F_{12}(x_1, x_2, v_1, v_2), \qquad \dot{v}_2 = F_{21}(x_1, x_2, v_1, v_2),$$

where  $\dot{X} \equiv \frac{dX}{dt}$  and  $F_i(\cdot)$  represents the force encoding the interaction between the two particles. The space  $\mathbb{R}^d$  denotes the *spatial domain* (or physical space).

## From Particles to the Continuum

## N particles Motivation: Newton's Law

Each particle has position  $x_i(t) \in \mathbb{R}^d$  and velocity  $v_i(t) \in \mathbb{R}^d$  for i = 1, 2, ..., N:

$$\dot{x}_i = v_i, \qquad \dot{v}_i = F_i(x_1, \dots, x_N, v_1, \dots, v_N), \quad i = 1, \dots, N.$$

Here  $F_i(\cdot)$  encodes the interaction among all particles.

#### "The continuum is the infinite limit of the discrete"

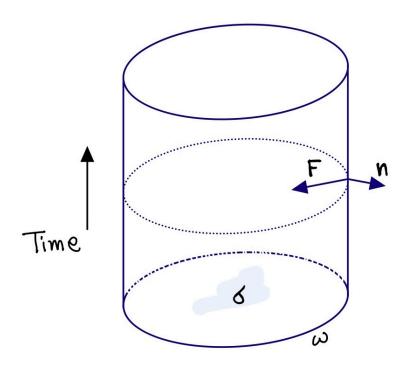
Number of particles N grow **very large** – in the ideal limit,  $N \to \infty$ .

Instead of describing each particle, the goal is to describe the *collective motion* of the medium.

 $\sim$  System of ODEs 2dN equations  $\longrightarrow$  System of PDEs d+1 equations

→ PDEs of the conservation / balance law type.

## A general conservation/balance law



- 1. Evolution of the quantity 'd';
- 2. Flux F, acting through boundary;
- 3. External force

## Equation for macroscopic quantity d

$$\left[\int_{\omega} \mathsf{d}(t,x) dx\right]_{t=t_1}^{t=t_2} = -\int_{t_1}^{t_2} \int_{\partial \omega} \mathbf{F}(t,x) \cdot \mathbf{n} \ dS_x dt + \int_{t_1}^{t_2} \int_{\omega} \sigma(t,x) dx dt,$$

An application of Gauss-Green theorem gives

$$\partial_t \mathsf{d} + \operatorname{div} \mathbf{F} = \sigma$$
.

# Compressible barotropic fluids

## Continuity equation:

$$\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0$$

### Momentum equation:

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\varrho) = \operatorname{div} \mathbb{S}$$

- Time-space domain  $(0,T) \times \Omega$ ,  $\Omega$ : Bounded domain,  $\mathbb{R}^d$  or  $\mathbb{T}^d$ ;
- Density  $\varrho = \varrho(t, x)$ , Velocity  $\mathbf{u} = \mathbf{u}(t, x)$ ;
- Pressure  $p(\varrho) (\approx \varrho^{\gamma} \text{ with } \gamma > 1)$  and Viscous stress tensor  $\mathbb{S}$ ;
- Initial and boundary condition;
- Navier-Stokes system :  $\mathbb{S} \approx \nabla \mathbf{u}$ ;
- Euler system : S = 0;

# Compressible Navier–Stokes–Fourier system in $(0,T) \times \Omega$

### Continuity equation:

$$\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0$$

### Momentum equation:

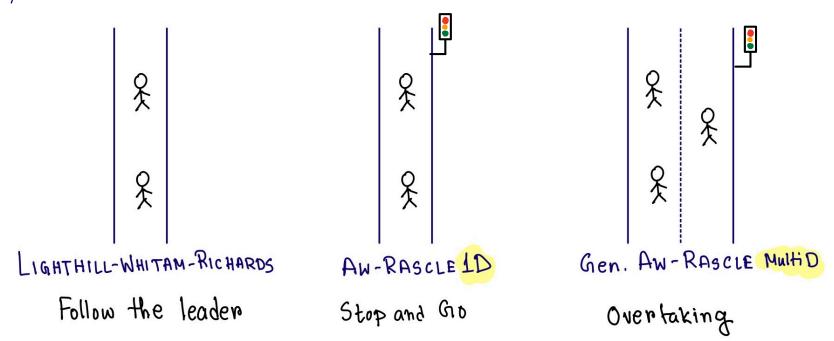
$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\varrho, \vartheta) = \operatorname{div} \mathbb{S}$$

## Internal energy balance:

$$\partial_t(\varrho e(\varrho,\vartheta)) + \operatorname{div}(\varrho e(\varrho,\vartheta)\mathbf{u}) + \operatorname{div}\mathbf{q} = \mathbb{S} : \mathbb{D}_x\mathbf{u} - p(\varrho,\vartheta)\operatorname{div}\mathbf{u}$$

- Absolute temperature  $\vartheta = \vartheta(t, x)$ ;
- Pressure  $p(\varrho, \vartheta)$ , Internal energy  $e(\varrho, \vartheta)$  and Heat flux  $\mathbf{q}$ ;

## Traffic/Pedestrian flows



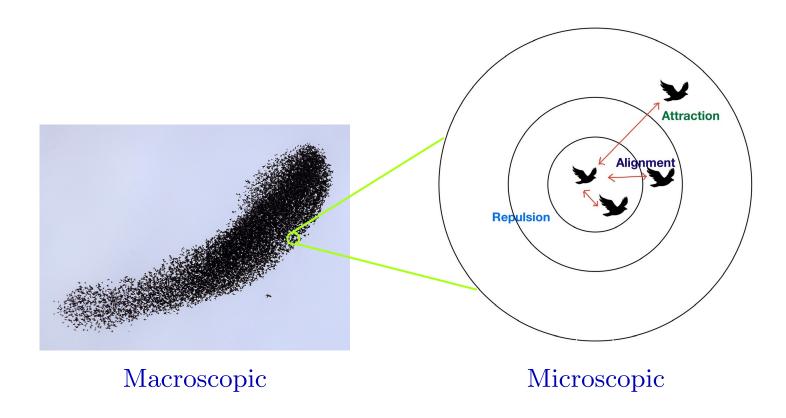
## Generalized (Dissipative) Aw-Rascle model: Degond et al.

$$\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0,$$
  
 $\partial_t (\varrho \mathbf{w}) + \operatorname{div}(\varrho \mathbf{w} \otimes \mathbf{u}) = 0.$ 

- $\varrho$  is number of vehicles per unit length, i.e. density, **u** is the velocity for the cars, **w** is the preferred velocity,
- Additional relation  $\mathbf{w} = \mathbf{u} + \nabla p(\varrho)$  with

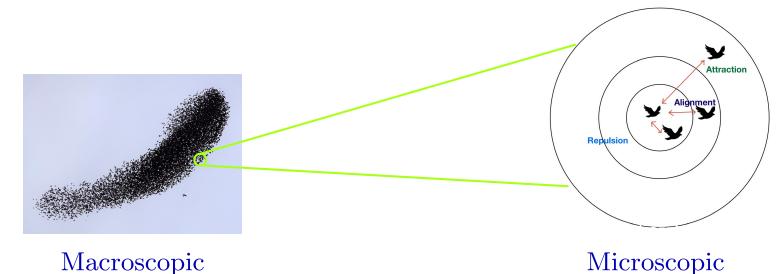
$$p(\varrho) = a\varrho^{\gamma}$$
 with  $a > 0$ ,  $\gamma \ge 1$  or  $p(\varrho) = K * \varrho$ .

## Swarming models



- ▶ Attraction-Repulsion interactions:
  - $\rightarrow$  Due to the presence of an individual in the sensitivity region ;
- ► Alignment interactions:
  - → Locally averaging the relative velocity with respect to neighbors with weights depending on the inter-particle distances;

# Swarming models



NAD

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0;$$

$$\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) = F(\rho, \mathbf{u});$$

Microscopic

$$\frac{d}{dt}\mathbf{x}_i = \mathbf{v}_i,$$

$$m_i \frac{d}{dt}\mathbf{v}_i = F_i$$

Attraction / Repulsion force

$$F(\rho, \mathbf{u}) = -\rho \nabla W * \rho$$

Macroscopic Alignment

$$F(\rho, \mathbf{u}) = \rho(x) \int_{\mathbb{R}} \phi(x - y) (\mathbf{u}(y) - \mathbf{u}(x)) \rho(y) dy$$

Attraction / Repulsion force

$$F_i = -\frac{1}{N} \sum_{i \neq j} \nabla W(\mathbf{x}_j - \mathbf{x}_i)$$

Microscopic Alignment

$$F_i = \frac{1}{N} \sum_{i \neq j} \phi(\mathbf{x}_j - \mathbf{x}_i) (\mathbf{v}_j - \mathbf{v}_i)$$

Solution Concepts: A closer look into the comp. Navier–Stokes system

### Continuity equation:

$$\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0$$

- The uniqueness and strict positivity of solution depends on the regularity of **u**; DI PERNA-LIONS' 1989

-  $\varrho(t,x) > 0$  provided  $\varrho_0(= \varrho(0,x)) > 0$  and  $\operatorname{div} \mathbf{u} \in L^1(0,T; L^\infty(\Omega))$ .

Momentum equation:  $\mathbb{S} \approx \nabla \mathbf{u}$ 

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\varrho) = \Delta \mathbf{u}$$

$$\Rightarrow \left[ \varrho \left( \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla_x \mathbf{u} \right) + \nabla p(\varrho) = \Delta \mathbf{u} \right]$$

- Semi-linear parabolic PDE, provided  $\varrho > 0$ ;

#### An overview

## $\sim$ Strong solution

A regular(smooth) pointwise solution (Hölder or Soblolev spaces);

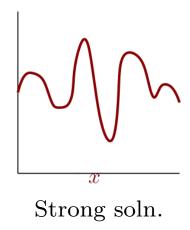
#### $\sim$ Weak Solution

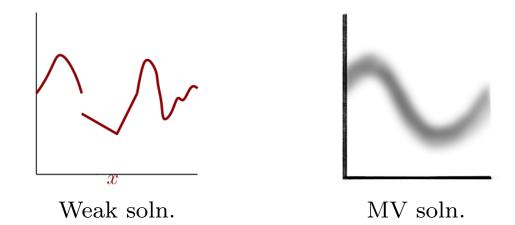
- By weak solution we roughly replace the pointwise equations with the help of integral identities (Integration by parts);
- The main difficulty is the analysis of weak limit of a sequence and its non-linear composition Concentration and Oscillation;

#### → Measure valued solution

Analyse the lack of compactness due to non-linearity and allowing certain oscillations in the definition;

# An overview





Generalized Solution

#### Generalized solutions

### → A Compatibility principle

A smooth generalized solution will be a strong solution.

## $\sim$ A weak(measure-valued)-strong uniqueness principle

The principle asserts that a weak(measure-valued) solution and the strong solution emanating from the same initial data coincide as long as the strong solution exists.

#### $\sim$ Limit of numerical schemes

Comparatively easier to prove the convergence of numerical schemes to a generalized (measure-valued) solution.

#### Selected results

### Compressible Navier–Stokes / Navier–Stokes–Fourier system

- Existence and Construction of weak solution: C. and Feireisl (App. Anal., 2022), C., Mucha and Zatorska (Math. Ann. 2024), C., Mucha and Pokorný (J. Differential Equations, 2025);
- Weak-Strong Uniqueness: C. (Non. Anal. RWA, 2019; J. Math. Fluid Mech., 2020; Nonlinearity 2024)

#### Generalized Aw-Rascle system

- ▶ Strong solution: C., Piasecki and Zatorska (Proc. Roy. Soc. Edinburgh Sect. A. 2025)
- Existence of Measure valued solution with weak(mv)—Strong uniqueness: C. Gwiazda and Zatorska (Comm. PDE., 2023)

#### Swarming models

Existence of weak solution and long time asymptotics: C., Choi, Tse, Zatorska (J. Lond. Math. Soc. (2), 2025)

Details: https://sites.google.com/view/nilasischaudhuri/home

Thank you for your attention!