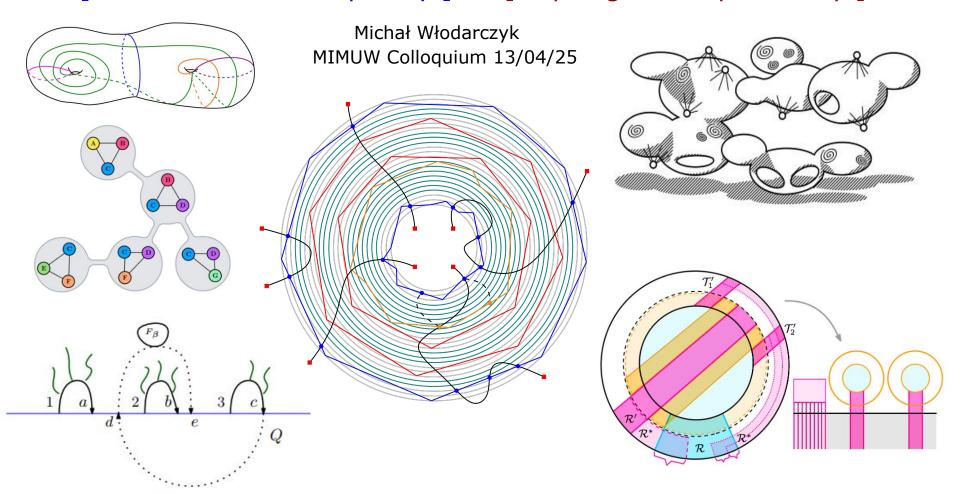
[Parameterized Complexity] x [Topological Graph Theory]



Vertex Cover

Given: n-vertex graph G, integer k

- NP-hard so no hope for even $\mathcal{O}(n^{100})$ -time algorithm
- There is a 2-approximation algorithm
- VERTEX COVER can be solved exactly in time $\mathcal{O}(2^k \cdot n^2)$
- Running time $f(k) \cdot poly(n)$: fixed parameter tractable (FPT)
- General question: which problems are FPT?
- Next question: what is the best running time in terms of the function f?
- VERTEX COVER is solvable in time $\mathcal{O}(1.26^k \cdot n)$

Vertex Cover

Given: n-vertex graph G, integer k

- NP-hard so no hope for even $\mathcal{O}(n^{100})$ -time algorithm
- There is a 2-approximation algorithm
- VERTEX COVER can be solved exactly in time $\mathcal{O}(2^k \cdot n^2)$
- Running time f(k) · poly(n): fixed parameter tractable (FPT)
- General question: which problems are FPT?
- Next question: what is the best running time in terms of the function f?
- VERTEX COVER is solvable in time $\mathcal{O}(1.26^k \cdot n)$

Vertex Cover

Given: n-vertex graph G, integer k

- NP-hard so no hope for even $\mathcal{O}(n^{100})$ -time algorithm
- There is a 2-approximation algorithm
- Vertex Cover can be solved exactly in time $\mathcal{O}(2^k \cdot n^2)$
- Running time f(k) · poly(n): fixed parameter tractable (FPT)
- General question: which problems are FPT?
- Next question: what is the best running time in terms of the function f?
- VERTEX COVER is solvable in time $\mathcal{O}(1.26^k \cdot n)$

Vertex Cover

Given: n-vertex graph G, integer k

- NP-hard so no hope for even $\mathcal{O}(n^{100})$ -time algorithm
- There is a 2-approximation algorithm
- Vertex Cover can be solved exactly in time $\mathcal{O}(2^k \cdot n^2)$
- Running time $f(k) \cdot poly(n)$: fixed parameter tractable (FPT)
- General question: which problems are FPT?
- Next question: what is the best running time in terms of the function f?
- VERTEX COVER is solvable in time $\mathcal{O}(1.26^k \cdot n)$

Vertex Cover

Given: n-vertex graph G, integer k

- NP-hard so no hope for even $\mathcal{O}(n^{100})$ -time algorithm
- There is a 2-approximation algorithm
- Vertex Cover can be solved exactly in time $\mathcal{O}(2^k \cdot n^2)$
- Running time $f(k) \cdot poly(n)$: fixed parameter tractable (FPT)
- General question: which problems are FPT?
- Next question: what is the best running time in terms of the function f?
- Vertex Cover is solvable in time $\mathcal{O}(1.26^k \cdot n)$

<u>Def:</u> a graph is called *planar* if it can be drawn on the plane without edge crossings.

VERTEX PLANARIZATION

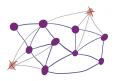
Given: n-vertex graph G, integer k

- At least as hard as VERTEX COVER
- Constant-factor approximation is a major open problem
- VERTEX PLANARIZATION is FPT: solvable in time $2^{O(k \log k)} \cdot n$
- Shaving off $(\log k)$ in another big open problem
- Another variant: find a drawing of G with the smallest number of crossings;
 also not well understood

<u>Def:</u> a graph is called *planar* if it can be drawn on the plane without edge crossings.

VERTEX PLANARIZATION

Given: n-vertex graph G, integer k

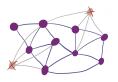


- At least as hard as VERTEX COVER
- Constant-factor approximation is a major open problem
- VERTEX PLANARIZATION is FPT: solvable in time $2^{O(k \log k)} \cdot n$
- Shaving off $(\log k)$ in another big open problem
- Another variant: find a drawing of G with the smallest number of crossings;
 also not well understood

<u>Def:</u> a graph is called *planar* if it can be drawn on the plane without edge crossings.

VERTEX PLANARIZATION

Given: n-vertex graph G, integer k



- At least as hard as VERTEX COVER
- Constant-factor approximation is a major open problem
- VERTEX PLANARIZATION is FPT: solvable in time $2^{O(k \log k)} \cdot n$
- Shaving off $(\log k)$ in another big open problem
- Another variant: find a drawing of G with the smallest number of crossings;
 also not well understood

<u>Def:</u> a graph is called *planar* if it can be drawn on the plane without edge crossings.

VERTEX PLANARIZATION

Given: n-vertex graph G, integer k

- At least as hard as VERTEX COVER
- Constant-factor approximation is a major open problem
- VERTEX PLANARIZATION is FPT: solvable in time $2^{O(k \log k)} \cdot n$
- Shaving off (log k) in another big open problem
- Another variant: find a drawing of G with the smallest number of crossings;
 also not well understood

<u>Def:</u> a graph is called *planar* if it can be drawn on the plane without edge crossings.

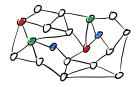
VERTEX PLANARIZATION

Given: n-vertex graph G, integer k

- At least as hard as VERTEX COVER
- Constant-factor approximation is a major open problem
- VERTEX PLANARIZATION is FPT: solvable in time $2^{O(k \log k)} \cdot n$
- Shaving off (log k) in another big open problem
- Another variant: find a drawing of G with the smallest number of crossings;
 also not well understood

DISJOINT PATHS

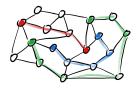
Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$ **Question:** is there a family (P_1, \ldots, P_k) of vertex-disjoint paths s.t. P_i is a (s_i, t_i) -path?



- Famously FPT due to the Graph Minors Project
- Running time $f(k) \cdot poly(n)$ but the function f is "galactic"
- When G is planar, solvable in time $2^{\mathcal{O}(k^2)} \cdot n$
- The DISJOINT SHORTEST PATHS problem is unlikely to be FPT
- Our recent theorem [G. Stamoulis, Mi. Pilipczuk, W.]:
 DISJOINT SHORTEST PATHS is FPT when G is planar

DISJOINT PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$ **Question:** is there a family (P_1, \ldots, P_k) of vertex-disjoint paths s.t. P_i is a (s_i, t_i) -path?

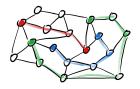


- Famously FPT due to the Graph Minors Project
- Running time $f(k) \cdot poly(n)$ but the function f is "galactic"
- When G is planar, solvable in time $2^{\mathcal{O}(k^2)} \cdot n$
- The DISJOINT SHORTEST PATHS problem is unlikely to be FPT
- Our recent theorem [G. Stamoulis, Mi. Pilipczuk, W.]:
 DISJOINT SHORTEST PATHS is FPT when G is planar

DISJOINT SHORTEST PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$

Question: is there a family (P_1, \ldots, P_k) of vertex-disjoint paths

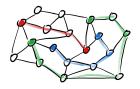


- Famously FPT due to the Graph Minors Project
- Running time $f(k) \cdot poly(n)$ but the function f is "galactic"
- When G is planar, solvable in time $2^{\mathcal{O}(k^2)} \cdot n$
- The DISJOINT SHORTEST PATHS problem is unlikely to be FPT
- Our recent theorem [G. Stamoulis, Mi. Pilipczuk, W.]:
 DISJOINT SHORTEST PATHS is FPT when G is planar

DISJOINT SHORTEST PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$

Question: is there a family (P_1, \ldots, P_k) of vertex-disjoint paths

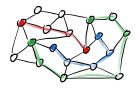


- Famously FPT due to the Graph Minors Project
- Running time $f(k) \cdot poly(n)$ but the function f is "galactic"
- When G is planar, solvable in time $2^{\mathcal{O}(k^2)} \cdot n$
- The DISJOINT SHORTEST PATHS problem is unlikely to be FPT
- Our recent theorem [G. Stamoulis, Mi. Pilipczuk, W.]:
 DISJOINT SHORTEST PATHS is FPT when G is planar

DISJOINT SHORTEST PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$

Question: is there a family (P_1, \ldots, P_k) of vertex-disjoint paths



- Famously FPT due to the Graph Minors Project
- Running time $f(k) \cdot poly(n)$ but the function f is "galactic"
- When G is planar, solvable in time $2^{\mathcal{O}(k^2)} \cdot n$
- The DISJOINT SHORTEST PATHS problem is unlikely to be FPT
- Our recent theorem [G. Stamoulis, Mi. Pilipczuk, W.]:
 DISJOINT SHORTEST PATHS is FPT when G is planar

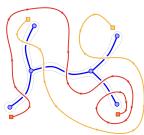
Homotopy

DISJOINT SHORTEST PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$

Question: is there a family (P_1, \ldots, P_k) of vertex-disjoint paths

- ullet Consider a plane embedding of G
- The problem is polynomial solvable when we fix the homotopy class of a solution
- A homotopy class can be encoded using the free non-abelian group F_k
- A priori the number of homotopy classes is $n^{\mathcal{O}(k)}$
- Main challenge: find a solution by inspecting only f(k) homotopy classes



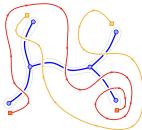
Homotopy

DISJOINT SHORTEST PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$

Question: is there a family (P_1, \ldots, P_k) of vertex-disjoint paths

- ullet Consider a plane embedding of G
- The problem is polynomial solvable when we fix the homotopy class of a solution
- ullet A homotopy class can be encoded using the free non-abelian group F_k
- A priori the number of homotopy classes is $n^{\mathcal{O}(k)}$
- ullet Main challenge: find a solution by inspecting only f(k) homotopy classes



Homotopy

DISJOINT SHORTEST PATHS

Given: *n*-vertex graph G, collection \mathcal{T} of k pairs $(s_i, t_i) \in V(G) \times V(G)$ **Question:** is there a family (P_1, \ldots, P_k) of vertex-disjoint paths s.t. P_i is a shortest (s_i, t_i) -path?

- ullet Consider a plane embedding of G
- The problem is polynomial solvable when we fix the homotopy class of a solution
- ullet A homotopy class can be encoded using the free non-abelian group F_k
- A priori the number of homotopy classes is $n^{\mathcal{O}(k)}$
- Main challenge: find a solution by inspecting only f(k) homotopy classes

