Set-theoretic methods in functional analysis

Damian Głodkowski

MIM Faculty Colloquium

14 XI 2024

4 D F

Functional analysis:

- Banach spaces and algebras
- Spaces of continuous functions
- **•** Operator algebras

←□

Þ

э \rightarrow \rightarrow ÷ **D** Functional analysis:

- Banach spaces and algebras
- Spaces of continuous functions
- Operator algebras

Tools from set theory:

- Families of sets with special combinatorial properties
- Methods of proving unprovability

Example: almost disjoint families

Fact: there is an uncountable family $(A_i)_{i\in I}$ of infinite subsets of N such that $A_i ∩ A_j$ is finite for $i \neq j$ (so called **almost disjoint family**).

- 4 国家 4 国家

Example: almost disjoint families

Fact: there is an uncountable family $(A_i)_{i\in I}$ of infinite subsets of N such that $A_i ∩ A_j$ is finite for $i \neq j$ (so called **almost disjoint family**).

Fact: there is an uncountable family $(A_i)_{i\in I}$ of infinite subsets of N such that $A_i ∩ A_j$ is finite for $i \neq j$ (so called **almost disjoint family**).

Moreover, every countable almost disjoint family may be extended to a bigger one.

- 御 ▶ ((重) ((重))

Fact: there is an uncountable family $(A_i)_{i\in I}$ of infinite subsets of N such that $A_i ∩ A_j$ is finite for $i \neq j$ (so called **almost disjoint family**).

Moreover, every countable almost disjoint family may be extended to a bigger one.

Almost disjoint families may be used in constructions of some infinite-dimensional spaces with some special properties.

For example, Johnson and Lindenstrauss used them to show that there is a Banach space X that is not weakly compactly generated, but X^* is weakly compactly generated.

←何 ▶ イヨ ▶ イヨ ▶ │

- H infinite-dimensional complex vector (Hilbert) space.
- $T: H \rightarrow H$ a linear operator.

 T may be represented as an infinite matrix

$$
\mathcal{T} = \begin{bmatrix} 1 & 0 & -1 & \cdots \\ 0 & 1 & 1 & \cdots \\ 1 & 2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}
$$

 \blacksquare

3 로 - 3 로 - 파

We say that a matrix P is a **projection**, if $P=P^2=P^*$, where P^* denotes the Hermitian conjugate of P.

€⊡

We say that a matrix P is a **projection**, if $P=P^2=P^*$, where P^* denotes the Hermitian conjugate of P.

Projections P and Q are **orthogonal**, if $PQ = 0$.

We say that a matrix P is a **projection**, if $P=P^2=P^*$, where P^* denotes the Hermitian conjugate of P.

Projections P and Q are **orthogonal**, if $PQ = 0$.

Fact: every family of pairwise orthogonal projections is countable.

We say that a matrix P is a **projection**, if $P=P^2=P^*$, where P^* denotes the Hermitian conjugate of P.

Projections P and Q are **orthogonal**, if $PQ = 0$.

Fact: every family of pairwise orthogonal projections is countable.

Definition

Projections P and Q are **almost orthogonal**, if PQ is compact, that is, it can be approximated by finite matrices.

We say that a matrix P is a **projection**, if $P=P^2=P^*$, where P^* denotes the Hermitian conjugate of P.

Projections P and Q are **orthogonal**, if $PQ = 0$.

Fact: every family of pairwise orthogonal projections is countable.

Definition

Projections P and Q are **almost orthogonal**, if PQ is compact, that is, it can be approximated by finite matrices.

Fact: There are uncountable families of pairwise almost orthogonal projections. Moreover, every countable family of pairwise almost orthogonal projections may be extended to a bigger one.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

The Calkin algebra

- \bullet β the algebra of matrices that define continuous linear operators
- \bullet K the algebra of matrices that may be approximated by finite matrices
- $\Omega = \mathcal{B}/\mathcal{K}$ the Calkin algebra

÷. -> - + 3 + +

- \bullet β the algebra of matrices that define continuous linear operators
- \bullet K the algebra of matrices that may be approximated by finite matrices
- \odot $\mathcal{Q} = \mathcal{B}/\mathcal{K}$ the Calkin algebra

An automorphism $T: Q \to Q$ is **inner** if it is of the form $T(X) = AXA^*$ for some $A \in \mathcal{Q}$. An automorphism that is not inner is called **outer**.

- \bullet β the algebra of matrices that define continuous linear operators
- \bullet K the algebra of matrices that may be approximated by finite matrices
- $\Omega = \mathcal{B}/\mathcal{K}$ the Calkin algebra

An automorphism $T: Q \to Q$ is **inner** if it is of the form $T(X) = AXA^*$ for some $A \in \mathcal{Q}$. An automorphism that is not inner is called **outer**.

(Phillips & Weaver, 2007) "The Calkin algebra has outer automorphisms"

御 ▶ イ君 ▶ イ君 ▶

- \bullet β the algebra of matrices that define continuous linear operators
- \bullet K the algebra of matrices that may be approximated by finite matrices
- $\Omega = \mathcal{B}/\mathcal{K}$ the Calkin algebra

An automorphism $T: Q \to Q$ is **inner** if it is of the form $T(X) = AXA^*$ for some $A \in \mathcal{Q}$. An automorphism that is not inner is called **outer**.

(Phillips & Weaver, 2007) "The Calkin algebra has outer automorphisms"

(Farah, 2011) "All automorphisms of the Calkin algebra are inner"

AD > 3 D + 3 D + 3

Thank you for your attention!

∍

4 E X 4 E X