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Short overview of the
quantum photonic platform



Quantum technologies

Technology Application
Quantum Key Distribution (QKD) Ultimately safe generation of random 

cryptographic keys
Quantum Metrology Performing enhanced-precision measurements 

(e.g. microscopy, detection of gravitational 
waves)

Quantum Computing (QC) Decreasing the complexity of computations, 
performing simulations of quantum materials; 
machine learning

Quantum Random Number Generation 
(QRNG)

Generating the entropy for cryptographic 
purposes

Second quantum revolution: utilizing quantum technologies for practical 
applications. It is happening just now!



Quantum Integrated photonics

Quantum chip
(quantum 

interference)
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Lasers, crystals and detectors

Coherent Advr Single Quantum



Quantum photonic chips

Laser micromachining Lithography



Quantum Communication (Quantum Key Distribution)

A source produces quantum 
entangled photons

Photons are transmitted to 
Alice and Bob e.g. via an 

optical fiber

The state of the photons is used to 
create a random secret key

Any „eavesdropping” of a quantum state destroys quantum entanglement
and Alice and Bob can detect that.

For this reason, quantum key distribution is ultimately secure.

2022 Nobel Prize for 
experimental 

demonstrations of 
quantum entanglement



Fiber-based Quantum Communication

• Several companies have developed quantum key distribution systems that could 
enable mass manufacturing of quantum security technology

• Target audiences: governments, banking, companies

• ranges up to 800 km

• Basis of so-called “Quantum Internet”



Quantum communication in space

• In 2017 China built a satellite for long-
distance quantum communication

• The distance between ground stations:
between 1600 and 2400 km

• Speed: 1 photon pair every 2 seconds

• A few new EU and non-EU projects have 
recently emerged, and we will see more 
satellite-based quantum solutions



Quantum metrology

• Quantum metrology allows to bypass limits of optical resolution
(Standard Quantum Limit)

• Applications: new microscopy solutions (replacing cryogenic devices in biology 
and medicine), enhanced precision sensing, observing gravitational waves



Quantum (photonic) computing

• Quantum computing is nothing more than gathering statistics from the measurements of the 
system state. Each program must be run thousands of times.

• Quantum processor is controlled by a classical system. At each run it starts from a ground state 
and applies a series of operations (described as quantum gates) which evolve it. 

1. A user prepares a program 2. Classical computer controls 
the computations

3. Quantum processor runs the 
program thousands of times

4. Classical computer gathers 
measurements

5. Probability distributions are 
the results of the computations



Photonic Quantum Machine Learning

• Quantum Machine Learning (QML) merges classical and quantum computing 
techniques to achieve faster learning and lower energy consumption

• Applications: robotics, classification of data, computer vision

Xanadu’s 
photonic 
processor



Quantum Kravchuk Transform
and its applications



Publication: the Quantum Kravchuk Transform

Quantum interference enables constant-time quantum 
information processing

Science Advances 5, eaau9674 (2019)

M. Stobinska1, A. Buraczewski1, M. Moore2, W. R. Clements2, J. J. Renema3,
S. W. Nam4, T. Gerrits4, A. Lita4, W. S. Kolthammer2, A. Eckstein2 & I. A. Walmsley2

1 University of Warsaw

2 University of Oxford (now: Imperial College), UK

3 University of Twente, The Netherlands

4 National Institute of Standards and Technology, Boulder, Colorado, USA



Publication: Quantum simulations

Quantum simulations with multiphoton Fock states
npj Quantum Information 7, 91 (2021)

T. Sturges1,*, T. McDermott1,*, A. Buraczewski1, W. R. Clements2, J. J. Renema3, 
S. W. Nam4, T. Gerrits4, A. Lita4, W. S. Kolthammer2, A. Eckstein2,

I. A. Walmsley2, M. Stobińska1

1 University of Warsaw

2 University of Oxford (now: Imperial College), UK

3 University of Twente, The Netherlands

4 National Institute of Standards and Technology, Boulder, Colorado, USA



Key motivation: help improving medical diagnostics

[OASIS]

• Images of 512 x 512 pixels 
were transformed to the 
frequency domain

• 1% additive Gaussian noise 
was added

• Inverse transforms were 
applied

• Effective size of voxels is 
several millimetres!

• Neuroscience requires 
micrometers…



General motivation

𝓕{𝒇 𝒕 }Medicine

Engineering

Science Efficient
data

processing
For a string of 2! values:
DFT – 𝑂(2"!)
FFT – 𝑂 𝑛2!
QFT – 𝑂(𝑛 log 𝑛)

Fourier Transform
approximations

Lower bound on the complexity
of the Fourier transform

computation is unknown!
[openclipart.org]



Motivation for performing quantum simulations

• Essential tool for studying complex phenomena:
quantum topology, quantum information transfer,
relativistic wave equations.

• Primary resources used so far: collections of qubits, 
coherent states, multiple single-particle Fock states.

• Quantum simulations have never seriously profited from 
interference of multiparticle Fock states.
[F. Flamini et al. Rep. Prog. Phys. 82, 016001 (2019).]



Our achievements (theory + experiment)

Multiphoton Fock state interference 

• computes the fractional Kravchuk transform in a single step

• has provided a resource-efficient basic demonstration that 
has revealed a topological matter not known before, 

• can simulate non-linear systems,

• has elucidated the perfect quantum wave packet transfer 
mechanism and transport of Majorana fermions

We work within the quantum photonics framework, 
but we generalize our results beyond it.



Fourier Transform (FT)
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Discrete Fourier Transform (DFT)
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Plane waves

A discrete approximation of the FT (discretization):

• DFT          FT for large 𝑆
• Number of operations: 𝑂(𝑛!), 𝑛 = 𝑆 + 1
• Fractional DFT do not reproduce fractional FT
• FFT computes DFT in 𝑂 𝑛 log 𝑛 for periodic data with period 𝑛 = 2"

𝑥!, 𝑥", … , 𝑥# → 𝑋!, 𝑋", … , 𝑋#



Fast Fourier Transform (FFT)

• Computes the DFT with a “divide & conquer” method

• Operates on sequences of 𝑆 = 2# length (zero padding introduces errors)

• Lowers the number of operations from 𝑂(2!#) to 𝑂 𝑛2#
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[J. W. Cooley et al., IEEE Trans. on Audio and Electroacoustics 15, 76 (1967)]



Fractional FT
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0 ≤ 𝛼 ≤ 1

[P.-Y. Lin, The Fractional Fourier Transform and Its 
Applications, National Taiwan University, Taipei, Taiwan (1999)]

ℱ% 𝑓 𝑡 = 𝑓(𝑡)

α-power of FT, ℱ& 𝑓 𝑡 , corresponds to 
a rotation by '&

"
in the phase space

Tomography of quantum states: fractional FT 
is the Radon transform of the Wigner distribution

ℛ2#/"{𝑊} = ℱ2 𝜓 𝑡 "



Fractional FT – the main applications

• Processing of noisy data

• Exploring a specific region of interest

• Optical signal processing

• Phase retrieval

• Tomography

• Data compression
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[A. Camara et al., J. Opt. Soc. Am. A 26, 1301 (2009)]



Quantum Fourier Transform (QFT)

• Performs the DFT on quantum amplitudes with quantum gates
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• Lowers the number of operations from 𝑂(𝑛2#) to 𝑂 𝑛 log 𝑛

H – Hadamard gate
R – controlled

phase gate



Kravchuk Transform (KT)
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Alternative discrete approximation of the FT

• Works for non-periodic data of arbitrary length 
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Kravchuk functions 𝝓𝒏
𝒑 (𝒏′, 𝑵)

• Physically meaningful: they describe eigenstates of a finite harmonic oscillator

• For 𝑁 → ∞ they tend to Hermite-Gauss polynomials (quantum harmonic oscillator)
• They are discrete orthogonal polynomials associated with the binomial distribution 

[N. M. Atakishiev, K. B. Wolf, J. Opt. Soc. Am. A 7, 1467 (1997)]

𝑝 =
1
2

𝑁 = 10

𝑝 =
1
4

𝑁 = 10



Kravchuk functions 𝝓𝒏
𝒑 (𝒏′, 𝑵) (cont’d)

Kravchuk functions obey the following difference equation

1
2𝑁 − 𝑛 𝜙,

⁄" ( 𝑛., 𝑁 =
1
2 𝛼 𝑛. 𝜙,

⁄" ( 𝑛. − 1,𝑁 + 𝛼 𝑛. + 1 𝜙,
⁄" ( 𝑛. + 1,𝑁

𝛼 𝑛. = "
(
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−
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⁄" ( 𝑛., 𝑁 = 𝑛 +
1
2 𝜙,

⁄" ( 𝑛., 𝑁

exp 𝑥𝜕,% 𝑓 𝑛. = 𝑓(𝑛. + 𝑥) – a finite-shift operator

[N. M. Atakishiev, K. B. Wolf, J. Opt. Soc. Am. A 7, 1467 (1997)]



Kravchuk functions 𝝓𝒏
𝒑 (𝒏′, 𝑵) (cont’d)

The eigenequation possesses a real, equally-spaced spectrum characteristics
of the harmonic oscillator

𝑯 / 𝑠 𝜙,
⁄" ( 𝑠, 𝑁 = 𝑛 +

1
2 𝜙,

⁄" ( 𝑠, 𝑁 , 𝑛 = 0,1, … , 𝑁

where 

𝑯 / 𝑠 = −
1
2 𝛼 𝑠 exp −𝜕0 + 𝛼 −𝑠 exp 𝜕0 +

1
2 𝑁 + 1 .

One may identify 𝑯 / 𝑠 as the Hamiltonian of a finite quantum harmonic oscillator.

This Hamiltonian is related to the Lie algebra of the rotation group SO(3).

[N. M. Atakishiev, K. B. Wolf, J. Opt. Soc. Am. A 7, 1467 (1997)]



Fractional Fourier-Kravchuk Transformations

We define the 𝛼th power of the one-dimensional finite Fourier–Kravchuk transform D𝑭 by a 
linear operator that maps the Kravchuk basis functions onto themselves:

D𝑭1 𝜙, 𝑠, 𝑁 = exp
𝑖𝛼𝜋
4

exp −
𝑖𝜋
2
𝛼 𝑯 / 𝑠 𝜙, 𝑠, 𝑁

= exp −
𝑖𝛼𝜋𝑛
2 𝜙,(𝑠, 𝑁)

Properties:
• 𝑭! = 𝟏, 
• 𝑭2 = 𝟏, 
• its square is the inversion matrix: 𝑭( = 𝑰, 
• 𝑭1 are unitary: 𝑭1 3 = 𝑭*1.

[N. M. Atakishiev, K. B. Wolf, J. Opt. Soc. Am. A 7, 1467 (1997)]



The Fourier-Kravchuk Rotations
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2
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/
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2 𝑁 + 1 .

.
[N. M. Atakishiev, K. B. Wolf, J. Opt. Soc. Am. A 7, 1467 (1997)]



Finite signal processing – DFT vs. KT

KT

DFT



KT – exemplary applications 

• Image analysis with the Kravchuk moments – transform coefficients are used 
as data vectors for shape recognition

[P. T. Yap et al., IEEE Transactions on image processing 12, 1367 (2003)]

• Reconstruction of medical images (MRI, ultrasound), especially for high 
resolution data

• Automatic identification of tumors in computer tomography scans

• Character recognition (e.g. Chinese)

• Error-correcting codes

• Digital watermarking, anti-fraud techniques (fractional KT)

KT features a prohibitive runtime



Photonic waveguide realization of the QKT

• Optical chip with parallel planar waveguides

• The fractionality is set by the chip length

• The input and output sequence length is limited 
by the number of waveguides

• Requires 𝑆 photon sources and detectors

[N. M. Atakishiev, K. B. Wolf, J. Opt. Soc. Am. A 7, 1467 (1997), 
S. Weimann et al., Nature Commun. 7, 11027 (2016),

A. Crespi et al., Nature Commun. 7, 10469 (2016)]
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Our result: QKT in a single step

Multiphoton Hong-Ou-Mandel interference computes the QKT in O(1)
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Two-photon HOM effect

• Two-photon bunching

• Changing the BS reflectivity alters the output distribution

𝜓&, = |1,1⟩

𝑟 = 0.5

𝑟 = 0.1 𝑟 = 0.2

[C.-K. Hong, Z.-Y. Ou, L. Mandel. PRL 59, 2044 (1987)]



• Photon number (Fock) states:
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𝑟 = 0.5

Multiphoton generalized HOM effect

𝑟 = 0.2



Practical steps 1

Let’s send a superposition to a BS

𝜓 =Q
):!

#
𝑥)|𝑙, 𝑆 − 𝑙⟩

BS interaction is photon number conserving 

𝑈;#(𝜃, 𝜑) = exp
𝜃
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is the BS reflectivity (we take 𝜑 = '
(
).

Let’s use photon-number-resolved measurements (TESs) – projective measurement
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Practical steps 2

Probability of measuring 𝑘 and 𝑆 − 𝑘 at outputs is equal to 

gives the absolute square of the QKT of input probability amplitudes
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Generalization to qudits

• Dual Fock states with S photons (blue)
map onto spin-S/2 Dicke states (black) 
– qudit encoding

• BS interaction models exchange 
interaction

• This coincides with a qudit rotation 

𝑅=,<:'/( = exp{−𝑖𝜃𝑆+} = 𝑈;# 𝜃, 𝜑 =
𝜋
2

in the Dicke state basis

Multiphoton HOM interference realizes a single-qudit rotation



QKT as a single-qudit rotation

Bloch sphere:

the QKT transfers the input –
a position eigenstate – into the 
same state but in 𝑆. basis –
a momentum eigenstate



Experimental setup (University of Oxford)

• SPDC – spontaneous 
parametric down-conversion  
waveguides in PP-KTP 
crystal.

• WP – Wollaston prism.
• VC – variable-ratio fiber 

coupler.
• TES – transition-edge 

sensors with efficiency 
exceeding 90% →
photon-number resolved 
measurement.

• DAQ – data acquisition unit.

775 nm

1554 nm



Experimental setup (University of Oxford)

Optical table with lasers, 
crystals, chips, and bulk optics

SPDC source

Detectors



|𝟎, 𝑺⟩ interference – (𝒙𝟎 = 𝟏, 𝒙𝟐 = 𝟎,… , 𝒙𝑺 = 𝟎)
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|𝒍, 𝑺 − 𝒍⟩ interference – (𝒙𝟎 = 𝟎,… , 𝒙𝒍 = 𝟏,… , 𝒙𝑺 = 𝟎)
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Conclusions

• Realization of the fractional QKT with qudit systems shows that  
transformation of large data sequences in 𝑂(1) is possible

• Since a BS sees orthogonal spectral or polarization modes 
independently, one can extend the transform to higher dimensions

• The photonic proof of concept is currently limited by the range of input 
states that can be prepared

• New applications: studying non-crystalline topological materials, 
beyond the recently challenged bulk-edge correspondence theorem.
[C. Downing et al., Phys. Rev. Lett. 123, 217401 (2019)].

• Qudit-based algorithms exhibit significantly lower complexity than 
qubit-based ones



Patent

• Patent Office of the Republic of Poland (2018) - PL426228

• World Intellectual Property Organization (WIPO) (2019) - WO/2020/008409

• US Patent Office (2021) - US20210271731

• China Patent Office (2021) - CN113692593

A Method of Performing Quantum Fourier-Kravchuk Transform (QKT)
and a Device Configured to Implement Said Method



Lecture of Prof. Philip Walther

• All interested in the topic are kindly invited to a 
seminar, which will be given by Prof. Philip Walther
– a renowned quantum physicist from the University of 
Vienna.

• Title: Quantum Photonics – from quantum computing 
to quantum foundations exploring the quantum-gravity 
interface

• Place: Room 2180, MIM UW building (Banacha 2)

• Date/time: Thursday, 3 November 2022, 14:30 hours



Thank you! 

Please visit the webpage of our group:

www.stobinska-group.eu


