p-adic Geometry: Peter Scholze's 2018 Fields Medal

MIM UW Department Colloquium, Jan 17, 2019

Piotr Achinger

Institute of Mathematics of the Polish Academy of Sciences

PETER SCHOLZE'S 2018 FIELDS MEDAL CITATION

«For transforming arithmetic algebraic geometry over p-adic fields through his introduction of perfectoid spaces, with application to Galois representations, and for the development of new cohomology theories.»

PETER SCHOLZE'S 2018 FIELDS MEDAL CITATION

«For transforming arithmetic algebraic geometry over p-adic fields through his introduction of perfectoid spaces, with application to Galois representations, and for the development of new cohomology theories.»

? arithmetic algebraic geometry

p-adic numbers

Galois representations

perfectoid spaces

Arithmetic Algebraic Geometry

Arithmetic Algebraic Geometry

Example. Fermat curves $X_n: x^n + y^n = 1$

p-adic numbers

"numbers are like functions": compare

$$3x^{2} - 7x + 2 = 5(x - 2) + 3(x - 2)^{2} \quad \text{with} \quad 182 = 5 \cdot 7 + 3 \cdot 7^{2}$$

$$\frac{1}{3 - x} = \sum_{n \ge 0} (x - 2)^{n} \quad \text{with} \quad -\frac{1}{6} = \sum_{n \ge 0} 7^{n} ?$$
power series in $(x - 2)^{n}$ with power series in 7 ??

p-adic numbers

"numbers are like functions": compare

$$3x^{2} - 7x + 2 = 5(x - 2) + 3(x - 2)^{2} \quad \text{with} \quad 182 = 5 \cdot 7 + 3 \cdot 7^{2}$$

$$\frac{1}{3 - x} = \sum_{n \ge 0} (x - 2)^{n} \quad \text{with} \quad -\frac{1}{6} = \sum_{n \ge 0} 7^{n} ?$$
power series in $(x - 2)^{n}$ with power series in 7 ??

$$\mathbf{Z}_p = \varprojlim \left(\mathbf{Z}/p\mathbf{Z} \leftarrow \mathbf{Z}/p^2\mathbf{Z} \leftarrow \cdots \right)$$
= sequences $a_n \in \mathbf{Z}/p^n\mathbf{Z}$ s.t $a_{n+1} \mod p^n = a_n$
= 'power series' $\sum_{n \geq 0} a_n p^n$ with $a_n \in \mathbf{F}_p$

$$\mathbf{Q}_p = \mathbf{Z}_p[\frac{1}{p}]$$
 = field of fractions of \mathbf{Z}_p

p-adic metric:
$$d_p(x, y) = p^{-k}$$
 if $x = y \mod p^k$

Characteristic zero and characteristic *p*

The field
$$\mathbf{F}_p = \{0, \dots p-1\}$$
 has **characteristic** p , i.e. $\underbrace{1+\dots+1}_p = 0$

Frobenius map:

ring
$$R \supseteq \mathbf{F}_p \quad \leadsto \quad \varphi \colon R \to R \quad \varphi(x) = x^p$$

Need to check:
$$\varphi(x+y) = (x+y)^p = x^p + \sum_{i=1}^{p-1} \frac{p!}{i!(p-i)!} x^i y^{p-i} + y^p = \varphi(x) + \varphi(y)$$

The Frobenius map makes many problems easier in characteristic *p*!

Characteristic zero and characteristic *p*

Fontaine-Wintenberger theorem

Theorem (Fontaine-Wintenberger 1979)

The fields K and K^{\flat} have the same Galois groups. In other words, finite extensions of K correspond bijectively to finite extensions of K^{\flat} .

Prototype of a perfectoid space: the solenoid

Circle solenoid

$$\widetilde{\mathbf{S}}_{p}^{1} = \varprojlim \left(\mathbf{S}^{1} \stackrel{\varphi}{\leftarrow} \mathbf{S}^{1} \stackrel{\varphi}{\leftarrow} \cdots \right)$$

$$= \text{sequences } z_{n} \in \mathbf{S}^{1} \text{ s.t. } z_{n+1}^{p} = z_{n}$$

S

 S^1

 $\varphi(z) = z^p \colon \mathbf{S}^1 \to \mathbf{S}^1 \quad p$ -fold covering

$$\mathbf{S}^1 = \{|z| = 1\}$$

unit circle

Prototype of a perfectoid space: the solenoid

$$\widetilde{\mathbf{S}}_{p}^{1} = \underline{\lim} \left(\mathbf{S}^{1} \xleftarrow{\varphi} \mathbf{S}^{1} \xleftarrow{\varphi} \cdots \right)$$

Circle solenoid

= sequences $z_n \in \mathbf{S}^1$ s.t. $z_{n+1}^p = z_n$

 $\supseteq \mathbf{Z}_p$

 S^1

 $\supseteq \mathbf{Z}/p\mathbf{Z}$

 $\supset \mathbf{Z}/p^2\mathbf{Z}$

 $\varphi(z) = z^p \colon \mathbf{S}^1 \to \mathbf{S}^1$ *p*-fold covering

unit circle

 $S^1 = \{|z| = 1\}$

Perfectoid spaces

"Definition" (Scholze 2011)

A **perfectoid space** is a *p*-adic analytic space whose functions have 'enough *p*-power roots.'

Perfectoid spaces naturally appear as limits of towers of p-fold coverings over 'perfectoid fields' such as K and K^{\flat} .

Examples:

"
$$\varprojlim$$
" $\left(\mathbf{P}_{K}^{n} \stackrel{\varphi}{\leftarrow} \mathbf{P}_{K}^{n} \stackrel{\varphi}{\leftarrow} \cdots\right)$ $\varphi(x_{0}:\ldots:x_{n}) = (x_{0}^{p}:\ldots:x_{n}^{p})$

"
$$\varprojlim$$
" $\left(X_m \stackrel{\varphi}{\leftarrow} X_{pm} \stackrel{\varphi}{\leftarrow} X_{p^2m} \stackrel{\varphi}{\leftarrow} \cdots\right)$ tower of Fermat curves

towers of abelian varieties ("tori"), Shimura varieties, ...

Tilting equivalence

Recall:
$$K = \mathbf{Q}_p(p^{1/p^{\infty}}) \sim K^{\flat} = \mathbf{F}_p((t))(t^{1/p^{\infty}})$$
 in the sense that
$$\begin{cases} \text{finite extensions} \\ \text{of } K \end{cases} \longleftrightarrow \begin{cases} \text{finite extensions} \\ \text{of } K^{\flat} \end{cases}$$

Theorem (Tilting Equivalence, Scholze 2011)

$$\left\{ \begin{array}{c} \text{perfectoid spaces} \\ \text{over } K \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{perfectoid spaces} \\ \text{over } K^{\flat} \end{array} \right\}$$

This equivalence preserves the 'étale topology.'

"Theorem." (Scholze 2012)

Every reasonable p-adic analytic space is 'locally' a perfectoid space.

Applications of perfectoid spaces

- cases of Deligne's weight-monodromy conjecture
- ► Shimura varieties, construction of Galois representations, Langlands program (with Caraiani and others)
- ▶ *p*-divisible groups (with Weinstein)
- ▶ *p*-adic Hodge theory (with Bhatt and Morrow)
- commutative algebra (André, Bhatt, Schwede–Ma)
- **.** . . .

Disclaimer. Avatars of perfectoid spaces appeared before Scholze in the work of Tate, Fontaine, Faltings, Kedlaya–Liu, . . .

Illus. Dorota Budacz

Slogan:

After climbing an infinite tower, we arrive to the world of perfectoid spaces, whereupon we can jump over the fence separating characteristic zero and characteristic p geometry and eat the fruit of Frobenius' garden.

EXPANDED NOTES: http://achinger.impan.pl/scholze.pdf (in Polish)

CREDITS: 3-adic disk: A. T. Fomenko, featured in N. Koblitz *p-adic Numbers*, *p-adic Analysis*, *and Zeta Functions*, Springer 1984 P. S. photo: Bildarchiv des Mathematischen Forschungsinstituts Oberwolfach Fields Medal photo: Stefan Zachow for the International Mathematical Union