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Galois representations, and for the development of new cohomo-
logy theories.»
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Arithmetic Algebraic Geometry

e.g. (3/5,4/5)
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Arithmetic Algebraic Geometry

Example. Fermat curves
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Fermat’s
Last
Theorem
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p-adic numbers
“numbers are like functions”: compare
332 - 7x+2=5(x—-2)+3(x-2)> with 182=5.7+3.72

= = Yso(x—2)" with -1=Y, .,7"?

power series in (x —2)"  with power series in 7 ??
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Z,= @(Z/pz — Z/p*Z )

= sequences a, € Z/p"Z s.t a,41 mod p" =a,

_ . 7 n .
= ‘power series’ }.,,5o ayp" with a, € F,

Q= Zp[%] = field of fractions of Z,

p-adic metric: d,(x,y) = p™ if x = y mod p*




Characteristic zero and characteristic p

The field F, = {0, ...p — 1} has characteristicp,i.e. 1+---+1=0
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p
Frobenius map:

ringR2F, ~ @:R—R @) =x

NEED TO CHECK:
v

Plc+y) = (x+yf = +Zu AP = 00) + o)

The Frobenius map makes many problems easier in characteristic p!



Characteristic zero and characteristic p

characteristic zero - Q~—2Z,—F, characteristic p

)

perfectoid spaces Frobenius ¢



Fontaine-Wintenberger theorem

Qp(Pl/p"") N Kb :—Fp((t))(tl/pm)
Q,({/p) F,(())(¥D)
Qy {Xanp", an € Fp} """"""" {Lant", a, € Fp} = Fp((t))-

Theorem (Fontaine-Wintenberger 1979)

The fields K and K” have the same Galois groups. In other words,
finite extensions of K correspond bijectively to finite extensions of K.




Prototype of a perfectoid space: the solenoid

Circle solenoid
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= sequences z,; € S” s.t. Z,,1 = %n

@(z) =2/: 8! > S! p-fold covering ~ S! %
S = {jz| = 1) unit circle gl ©



Prototype of a perfectoid space: the solenoid

Circle solenoid ~
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Perfectoid spaces

“Definition” (Scholze 2011)

A perfectoid space is a p-adic analytic space whose functions have
‘enough p-power roots.’

Perfectoid spaces naturally appear as limits of towers of p-fold
coverings over ‘perfectoid fields’ such as K and K.

Examples:

A 4 ({) q)
1&1 (Pﬁ<—P?<<—---) (p(xoz...:xn):(xg:...:xﬁ)
“@” (Xm & Xpm & szm & ) tower of Fermat curves

towers of abelian varieties (“tori”), Shimura varieties, . . .



Tilting equivalence

Recall: K = Qp(pl/”m) ~ Kb = Fp((t))(tl/f’m) in the sense that
finite extensions finite extensions
“—>
of K of K’

Theorem (Tilting Equivalence, Scholze 2011)
{ perfectoid spaces} {perfectoid spaces}
—>

over K over K’

This equivalence preserves the ‘étale topology.’

“Theorem.” (Scholze 2012)

Every reasonable p-adic analytic space is ‘locally” a perfectoid space. J




Applications of perfectoid spaces

» cases of Deligne’s weight-monodromy conjecture

» Shimura varieties, construction of Galois representations,
Langlands program (with Caraiani and others)

» p-divisible groups (with Weinstein)

» p-adic Hodge theory (with Bhatt and Morrow)

» commutative algebra (André, Bhatt, Schwede-Ma)
> ...

Disclaimer. Avatars of perfectoid spaces appeared before Scholze in
the work of Tate, Fontaine, Faltings, Kedlaya-Liu, ...



Slogan:

After climbing an infinite
tower, we arrive to the world of
perfectoid spaces, whereupon
we can jump over the fence
separating characteristic zero
and characteristic p geometry
and eat the fruit of Frobenius’
garden.

Tlus. Dorota Budacz

EXPANDED NOTES: http://achinger.impan.pl/scholze.pdf (in Polish)
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