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Calculus of variations

The main goal of calculus of variations is to find critical points of functions
defined over infinite-dimensional objects and study their properties.

In this lecture, we only consider minimisation problems, i.e., given a set X
and a function I : X → R ∪ {+∞}, we look for solutions of

min

{
I (u) : u ∈ X

}
.

This type of problems appears frequently in relation to partial differential
equations, via a formalism called the Euler-Lagrange equations.
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Example: brachistochrone problem

Proposed by Johann Bernoulli in 1696, solved independently by himself
and Newton in 1697.

Brachistochrone problem

Find the curve along which a point
mass will move from point A to B
in the shortest time.

What is the functional to minimise?

mgy =
1

2
mv2 =⇒ v =

√
2gy

Since dt = ds/v ,

I [y ] =

∫ xB

xA

√
1 + (y ′)2√

2gy
dx .

A

B

Figure: Shape of the path of quickest
descent (brachistochrone).
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Euler-Lagrange equations

For an integral functional of the form

I [y ] =

∫ x2

x1

L(x , y , y ′) dx

where L is called the Lagrangian, any function y(x) that minimises
or maximises I [y ] satisfies the following differential equation:

∂L

∂y
− d

dx

(
∂L

∂y ′

)
= 0.

For the brachistochrone problem, setting

L(x , y , y ′) =

√
1 + (y ′)2√

2gy

one obtains the equation of (a part of) the (inverted) cycloid.
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Euler-Lagrange equations

This concept can be applied to more general functionals: for a function
u : Ω ⊂ RN → R and the Lagrangian

L := L(x , u, ux1 , ..., uxN )

the Euler-Lagrange equation for I =
∫
Ω L becomes

∂L

∂u
−

N∑
i=1

∂

∂xi

(
∂L

∂uxi

)
= 0

If the functional I is strictly convex, this becomes a 1-to-1 correspondence
between the minimiser and the solution of the Euler-Lagrange equation.

This now becomes a partial differential equation (PDE).
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Example: Laplace equation

Minimising the Dirichlet energy

I [u] =
1

2

∫
Ω
|∇u|2 dx =

1

2

∫
Ω

(
N∑
i=1

(
∂u

∂xi

)2
)

dx

corresponds to the Euler-Lagrange equation

−
N∑
i=1

∂2u

∂x2i
= 0

or equivalently
−∆u := −div (∇u) = 0,

called the Laplace equation. It is very common in physics, e.g. in
electromagnetism or heat transfer.
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Weak solutions: Laplace equation

Consider the Laplace equations with Dirichlet boundary conditions{
−div (∇u) = 0 in Ω

u = h on ∂Ω

for sufficiently regular h. Solutions of the PDE are known to be smooth
inside Ω; can we directly prove existence of smooth solutions?

Using the Euler-Lagrange equation, we may equivalently find a solution
to the minimisation problem

min

{∫
Ω
|∇u|2 dx : u|∂Ω = h

}
.
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Direct method of calculus of variations

Let X be a complete metric space. Given a functional I : X → R ∪ {+∞},
our goal is to find a solution of the minimisation problem

min{I (u) : u ∈ X}.

Assuming that the following two assumptions hold:

(Coe) Coercivity: for all t ∈ R, every sequence (un) ⊂ X with I (un) ≤ t
has a convergent subsequence in X .

(Lsc) Lower semicontinuity: for every sequence (un) ⊂ X with un → u
in X , it holds that

I (u) ≤ lim inf
n→∞

I (un).

there exists at least one solution to the minimisation problem.

Wojciech Górny (U. Warsaw) Linear-growth PDEs 04.12.2025 8 / 32



Weak solutions: Laplace equation

Applying the direct method of calculus of variations in C∞(Ω) ∩ C (Ω),
we do not obtain a minimiser:

Step 1. Find a minimising sequence uk ∈ C∞(Ω) ∩ C (Ω) with u = h
on ∂Ω, i.e.,

∫
Ω |∇u|2 dx → inf.

Step 2. Thus, the minimising sequence uk ∈ C∞(Ω) ∩ C (Ω) has
uniformly bounded energy, i.e.,

∫
Ω |∇u|2 dx ≤ M.

Step 3 - failure. This is not enough to conclude that there exists a limit
function u ∈ C∞(Ω) ∩ C (Ω); even in 1D the limit may fail to be C 1(Ω).

To obtain existence of solutions, we need a larger function space.
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Failure of Step 3

Figure: Smooth approximations of the modulus.
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Weak solutions

We separately consider existence and regularity of solutions.

Step 1. Use the variational formulation to prove existence of a solution
in a large enough class;

Step 2. Use a different set of techniques to conclude that this solution
lies in a smaller class with better properties.
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Sobolev spaces

The correct choice is the Sobolev space W 1,p(Ω) with p = 2, i.e.,

u ∈ W 1,p(Ω) ⇔ u ∈ Lp(Ω) and its weak derivative ∇u ∈ Lp(Ω;RN),

where ∇u is the unique function defined via integration by parts, so that∫
Ω
u∇φ dx = −

∫
Ω
φ∇u dx for all φ ∈ C∞

c (Ω).

We set ∥u∥W 1,p(Ω) = (∥u∥pp + ∥∇u∥pp)1/p.

Crucially for this argument, Sobolev spaces have three key properties:

(a) The embedding id : W 1,p(Ω) → Lp(Ω) is compact;

(b) For p ∈ (1,∞), the Sobolev spaces are reflexive;

(c) The trace (boundary values) of every Sobolev function is well-defined.
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Weak solutions: Laplace equation

We apply the direct method again.

Step 1. Find a minimising sequence uk ∈ W 1,2(Ω) with u = h on ∂Ω,
i.e.,

∫
Ω |∇u|2 dx → inf.

Step 2. Thus, the minimising sequence uk ∈ W 1,2(Ω) has uniformly
bounded energy, i.e.,

∫
Ω |∇u|2 dx ≤ M.

Step 3 - success! There exists a limit function u ∈ W 1,2(Ω). Indeed,
by the Poincaré inequality estimating the norm ∥u∥2 by ∥∇u∥2, reflexivity
and the compact embedding, there exists u ∈ W 1,2(Ω) such that

un → u in L2(Ω) and ∇un ⇀ ∇u in L2(Ω;RN).

(We call this weak convergence in W 1,2(Ω).)
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Weak solutions: Laplace equation

Step 4. u is a minimiser: by the lower semicontinuity of the Dirichlet
energy with respect to weak convergence in W 1,2(Ω),

inf ≤
∫
Ω
|∇u|2 dx ≤ lim inf

n→∞

∫
Ω
|∇un|2 dx → inf .

Step 5. u satisfies the boundary condition; one can show that the
subspace

W 1,2
h (Ω) :=

{
u ∈ W 1,2(Ω) : u|∂Ω = h

}
is weakly closed, so if un ∈ W 1,2

h (Ω), we also have u ∈ W 1,2
h (Ω). We thus

have a solution to the minimisation problem u ∈ W 1,2(Ω).

One separately shows that it is smooth inside Ω: one possible approach
is to prove that it lies in C 1(Ω), use linearity of the equation, and notice
that every partial derivative ∂u

∂xi
also solves the Laplace equation.
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Nonlinear PDEs

A generalisation of the above is the p-Laplace equation{
−div (|∇u|p−2∇u) = 0 in Ω

u = h on ∂Ω

for p ∈ (1,∞). Using the Euler-Lagrange equation, we may equivalently
find a solution to the minimisation problem

min

{∫
Ω
|∇u|p dx : u|∂Ω = h

}
.

A similar scheme produces solutions in W 1,p(Ω) for any admissible h.
Solutions to this PDE are of class C 1,α

loc (Ω), but in general not better;
since the equation is not linear, ∂u

∂xi
does not satisfy the same equation.
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Linear growth functionals

In the formal limit p → 1, we get the 1-Laplace equation −div

(
∇u

|∇u|

)
= 0 in Ω

u = h on ∂Ω.

Formally, it is the Euler-Lagrange equation of the least gradient problem

min

{∫
Ω
|∇u| dx : u ∈ W 1,1(Ω), u|∂Ω = h

}
.

Is this problem well-posed?

Wojciech Górny (U. Warsaw) Linear-growth PDEs 04.12.2025 16 / 32



Weak solutions: 1-Laplace equation

Let us once more try the direct method.

Step 1. Find a minimising sequence uk ∈ W 1,1(Ω) with u = h on ∂Ω,
i.e.,

∫
Ω |∇u| dx → inf.

Step 2. Thus, the minimising sequence uk ∈ W 1,1(Ω) has uniformly
bounded energy, i.e.,

∫
Ω |∇u| dx ≤ M.

Step 3 - failure. There might be no limit function in W 1,1(Ω).

Since W 1,1(Ω) is not reflexive, the limiting sequence converges in L1(Ω),
but the gradients do not necessarily converge weakly in L1(Ω;RN).

We again need a larger function space.
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Failure of Step 3

Figure: Smooth approximations of a step function.
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BV spaces

The correct choice is the space of functions of bounded variation BV (Ω),
i.e.,

u ∈ BV (Ω) ⇔ u ∈ L1(Ω) and its distributional derivative Du ∈ M(Ω;RN),

where Du is the unique measure defined via integration by parts, so that∫
Ω
u∇φ dx = −

∫
Ω
φ dDu for all φ ∈ C∞

c (Ω).

We set ∥u∥BV (Ω) = ∥u∥1 + ∥Du∥M.

Similarly to the Sobolev case, it holds that

(a) The embedding id : BV (Ω) → L1(Ω) is compact;

(b) The trace (boundary values) of every BV function is well-defined.
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Weak solutions: 1-Laplace equation

... and again the direct method.

Step 1. Find a minimising sequence uk ∈ W 1,1(Ω) with u = h on ∂Ω,
i.e.,

∫
Ω |∇u| dx → inf.

Step 2. Thus, the minimising sequence uk ∈ W 1,1(Ω) has uniformly
bounded energy, i.e.,

∫
Ω |∇u| dx ≤ M.

Step 3 - success! There exists a limit function in BV (Ω). Indeed,
by the Poincaré inequality estimating the norm ∥un∥1 by ∥∇un∥1, the
compact embedding and lower semicontinuity of the total variation,
there exists u ∈ BV (Ω) such that

un → u in L1(Ω) and ∇un ⇀ Du weakly* in M(Ω;RN).

(We call this weak* convergence in BV (Ω).)
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Weak solutions: 1-Laplace equation

Step 4. u is a minimiser: by the lower semicontinuity of the total
variation with respect to convergence in L1(Ω),

inf ≤
∫
Ω
|Du| ≤ lim inf

n→∞

∫
Ω
|Dun| → inf .

Step 5 - failure. u does not necessarily satisfy the boundary condition;
the subspace

BVh(Ω) :=

{
u ∈ BV (Ω) : u|∂Ω = h

}
is not weakly* closed, so if un ∈ BVh(Ω), we may have that u|∂Ω ̸= h.

It turns out that for linear-growth PDEs attainment of boundary values
depends on the geometry of the domain and the boundary data.
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Failure of Step 5

Figure: We take characteristing functions of an increasing family of intervals
χ[−a,a](x) with a → 1−. The boundary values of the limit function is not equal
to the limit of boundary values of the approximating sequence.
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The least gradient problem

Thus, the correct formulation of the least gradient problem is

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = h

}
which can be equivalently described as the 1-Laplace equation −div

(
Du

|Du|

)
= 0 in Ω

u = h on ∂Ω.

Note that the object Du
|Du| has to be carefully defined and proving this

equivalence is non-trivial.

R.V. Kohn, G. Strang, Comm. Pure Appl. Math. 39 (1986).

J.M. Mazón, J. Rossi, S. Segura de León, Indiana Univ. Math. J.
(2014).
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General linear growth functionals

More generally, consider minimisation of a linear growth integral functional

min

{∫
Ω
g(x ,Du) : u ∈ BV (Ω), u|∂Ω = h

}
,

where
c1|ξ| − c2 ≤ |g(x , ξ)| ≤ c3(1 + |ξ|).

Formally, the Euler-Lagrange equation for such a problem is

−div(∇ξg(x ,Du)) = 0.

F. Andreu, V. Caselles, J.M. Mazón, Birkhäuser (2004).

L. Beck, T. Schmidt, J. Funct. Anal. (2015).

W. Górny, J.M. Mazón, J. Funct. Anal. (2022).

W. Górny, J.M. Mazón, Publ. Mat. (2025).
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Geometric viewpoint

Let us formally look at the equation

−div

(
Du

|Du|

)
= 0.

One can show that:

(a) If u is a solution, then χ{u>t} is also a solution;

(b) For u = χE with ∂E smooth enough, the left-hand side is the (minus)
mean curvature of ∂E ;

(c) Locally, after choosing the right coordinates the level sets even
minimise the area functional

∫
B

√
1 + |Du|2 and thus the level sets

are quite regular.
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Geometric viewpoint
Setting u = χE and h = χF in

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = h

}
the least gradient problem has a simple geometric meaning.

Existence and properties of solutions depend on the shape of the domain!
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Classical results
Let N ≥ 2. To tackle the question of boundary values of solutions to

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = h

}
one directly estimates the values of u at the boundary using geometric
measure theory techniques.

If Ω is strictly convex, then

h ∈ C (∂Ω) ⇒ ∃! a solution u ∈ BV (Ω)

and u ∈ C (Ω).

If Ω is uniformly convex, then

h ∈ C 0,α(∂Ω) ⇒ u ∈ C 0,α/2(Ω).

P. Sternberg, G. Williams, W. Ziemer, J. Reine Angew. Math. (1992).
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Modern research directions

The anisotropic least gradient problem is

min

{∫
Ω
ϕ(x ,Du) : u ∈ BV (Ω), u|∂Ω = h

}
where ϕ(x , ·) is a uniformly bounded family of norms.

(a) Find the minimal assumptions on ϕ, h, Ω for existence of solutions;

(a’) For fixed ϕ and a strictly convex domain (w.r. to ϕ), what are the
minimal assumptions on h for existence of solutions?

(b) Regularity (C 0,α, Lp, W 1,p) and structure results;

(c) Relaxing the geometric assumptions on Ω for regular h;

(d) Generalisations to metric measure spaces.
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Wojciech Górny (U. Warsaw) Linear-growth PDEs 04.12.2025 28 / 32



Modern research directions

The anisotropic least gradient problem is

min

{∫
Ω
ϕ(x ,Du) : u ∈ BV (Ω), u|∂Ω = h

}
where ϕ(x , ·) is a uniformly bounded family of norms.

(a) Find the minimal assumptions on ϕ, h, Ω for existence of solutions;

(a’) For fixed ϕ and a strictly convex domain (w.r. to ϕ), what are the
minimal assumptions on h for existence of solutions?

(b) Regularity (C 0,α, Lp, W 1,p) and structure results;

(c) Relaxing the geometric assumptions on Ω for regular h;

(d) Generalisations to metric measure spaces.
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Existence of solutions: discontinuous boundary data

There are two competing effects.

(a) For regular enough h (e.g. continuous a.e. on ∂Ω), there exist
solutions for every domain strictly convex w.r. to ϕ;

(a’) If Ω is strictly convex and h is continuous a.e. on ∂Ω, there exist
solutions for every norm ϕ;

(b) If we allow for less regular h, for every two different norms ϕ1 and ϕ2

there exists h which is admissible in the anisotropic least gradient
problem for only one of them.

W. Górny, Indiana Univ. Math. J. (2021).

W. Górny, Math. Ann. (2023).
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Existence of solutions: positive result

Theorem (WG, Indiana Univ. Math. J. (2021))

Let Ω ⊂ RN be strictly convex and suppose that h ∈ L1(∂Ω) is continuous
HN−1-a.e. Then, there exists a solution u ∈ BV (Ω) to

min

{∫
Ω
ϕ(Du) : u ∈ BV (Ω), u|∂Ω = h

}
for every norm ϕ and u(y)

y→x0−−−→ h(x0) at each continuity point x0 of h.

Proof:

1. Show existence of a generalised solution u;

2. Approximate h by continuous functions hn which satisfy a series
of key inequalities around a given continuity point x0;

3. Modify each level set of u to construct a competitor for minimality
which locally around x0 satisfies a similar series of inequalities;

4. Verify that this competitor has lower energy unless the boundary
datum is attained at x0.
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Existence of solutions: negative result

Theorem (WG, Math. Ann. (2023))

Let Ω = B(0, 1) ⊂ R2. Suppose that ϕ1 and ϕ2 are two strictly convex
norms of class C 2. Unless ϕ1 = cϕ2 for some c > 0, there exists a
function h ∈ L∞(∂Ω) \ BV (∂Ω) such that there exists a solution to

min

{∫
Ω
ϕ1(Du) : u ∈ BV (Ω), u|∂Ω = h

}
but there is no solution to

min

{∫
Ω
ϕ2(Du) : u ∈ BV (Ω), u|∂Ω = h

}
.

Proof: explicit construction of a fat Cantor set C on ∂Ω such that h = χC

has the desired properties.

Thank you for your attention!
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