OPERATOR SEMIGROUPS IN THE CALKIN ALGEBRA (PART 2)

TOMASZ KOCHANEK

In the second part of the talk, continuing our discussion concerning continuity of semigroups in the Calkin algebra $\mathcal{Q}(\mathcal{H})$, we shall present a sketch of proof of the characterization of SOT-continuity of a dyadic semigroup $(q(t))_{t\in\mathbb{D}} \subset \mathcal{Q}(\mathcal{H})$ induced by the zero element of the extension group $\operatorname{Ext}(X)$, where X is an admissible compact metric space. Namely, if $X = \lim_{t \to \infty} X_n$, where $X_n = \overline{\exp(2^{-n}Z)}$, $Z \subset \mathbb{C}$ is a closed set lying in some left half-plane, and $\pi_n \colon X \to X_n$ stands for the n^{th} projection, for each $n \in \mathbb{N}$, then for the semigroup $(q(t))_{t\geq 0}$ induced by $\Theta \in \operatorname{Ext}(X)$ the following conditions are equivalent:

- (i) $(q(t))_{t\in\mathbb{D}}$ is strongly continuous with respect to a fixed Calkin's representation $\gamma: \mathcal{Q}(\mathcal{H}) \to \mathcal{B}(\mathbb{H});$
- (ii) $(q(t))_{t\in\mathbb{D}}$ is strongly continuous with respect to all Calkin's representations;
- (iii) $\lim_{n\to\infty} \pi_n(\xi) = 1$ for every $\xi \in X$.

Next, we shall discuss the lifting problem for C_0 -semigroups $(q(t))_{t\geq 0}$ in $\mathcal{Q}(\mathcal{H})$, i.e. the question whether one can find a (strongly continuous) operator semigroup $(Q(t))_{t\geq 0}$ in $\mathcal{B}(\mathcal{H})$ such that $\pi Q(t) = q(t)$ for $t \geq 0$. Let A be the generator of $(q(t))_{t\geq 0}$. By using Milnor's exact sequence, we show that if each q(t) has a normal lift, then the question whether the extension Γ induced by $(q(t))_{t\geq 0}$ is trivial reduces to the question whether the corresponding first derived functor $\lim_{t \to 0} {}^{(1)}\operatorname{Ext}_2(X_n)$ for the suspensions of $X_n = \overline{\exp(2^{-n}\sigma(A))}$ vanishes. With the aid of the CRISP property and Kasparov's Technical Theorem, we propose two results which provide some geometric conditions on $\sigma(A)$ guaranteeing splitting of Γ .

The talk will be mostly based on the preprint: Compact perturbations of operator semigroups, arXiv:2203.05635v2

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, BANACHA 2, 02-097 WARSAW, POLAND *Email address*: tkoch@mimuw.edu.pl