On uniformly continuous surjections between C_p -spaces over metrizable spaces

Arkady Leiderman

Ben-Gurion University of the Negev, Beer Sheva ISRAEL

WARSAW, October 16, 2024

New results in my talk are published in joint papers [1], [2], [3], [4].

[1] Ali Emre Eysen, Arkady Leiderman and Vesko Valov, On uniformly continuous surjections between C_p -spaces over metrizable spaces, 2024 (submitted for publication). https://arxiv.org/pdf/2408.01870 [2] Jerzy Kąkol, Ondřej Kurka and Arkady Leiderman, Some classes of topological spaces extending the class of Δ -spaces, Proc. Amer. Math. Soc. 152 (2024), 883-899. [3] Jerzy Kakol and Arkady Leiderman, Basic properties of X for which the space $C_p(X)$ is distinguished, Proc. Amer. Math. Soc., series B, 8 (2021), 267-280. [4] Jerzy Kakol and Arkady Leiderman, On linear continuous operators between distinguished spaces $C_p(X)$, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2021) 115:199.

For a Tychonoff space X, by C(X) we denote the linear space of all continuous real-valued functions on X. $C^*(X)$ is a subspace of C(X) consisting of the bounded functions. We write $C_p(X)$ (resp., $C_p^*(X)$) if C(X) (resp., $C^*(X)$) is endowed with the pointwise convergence topology. By D(X) we denote either $C^*(X)$ or C(X).

Following A. Arkhangel'skii, we say that a space Y is ℓ -dominated (*u*-dominated) by a space X if there exists a linear (uniform, respectively) continuous operator onto $T : C_p(X) \to C_p(Y)$.

There are many topological properties which are invariant under defined above relations, and there are many which are not.

By dimension we mean the *covering dimension* dim.

 Let X and Y be metrizable compact spaces. If free topological groups F(X) and F(Y) are isomorphic then dim X = dim Y (M.I. Graev (1940-s)).

Let $C_p(X)$ and $C_p(Y)$ be linearly homeomorphic.

- Assuming that X and Y are metrizable compact spaces, D. Pavlovskii (1980) proved that dim $X = \dim Y$.
- Assuming that X and Y are compact spaces, A. Arkhangel'skii (1980) proved that dim X = dim Y.
- For any Tychonoff spaces X and Y, V. Pestov (1982) proved that dim X = dim Y.
- Let X and Y be Tychonoff spaces. If C_p(X) and C_p(Y) are uniformly homeomorphic, then dim X = dim Y (S. Gul'ko (1987, in English 1992)).

A. Arhangel'skii in 1990 posed a problem for metrizable compacta X and Y, whether dim $Y \leq \dim X$ if there is continuous (and open) linear surjection from $C_p(X)$ onto $C_p(Y)$, i.e. if Y is ℓ -dominated by X.

These questions were answered negatively.

- For every finite-dimensional metrizable compact space Y there exists a continuous linear surjection T : C_p([0, 1]) → C_p(Y) (A.L., S. Morris, V. Pestov (1992, published in 1997)).
- For every natural n > 1 there exist n-dimensional metrizable compact space Y and one-dimensional metrizable compact space X such that C_p(X) admits a continuous open linear surjection onto C_p(Y) (A.L., M. Levin, V. Pestov (1997)).
- Later, M. Levin (2011) showed that for every finite-dimensional metrizable compact space Y there exists a continuous open linear surjection T : C_p([0, 1]) → C_p(Y).

イロン 不良 とくほど 不良 とうほう

- It is easy to show that if there exists a continuous linear surjection T : C_p([0,1]) → C_p(Y), then Y must be a strongly countable-dimensional metrizable compact space.
- If there exists a continuous linear surjection
 T : *C_p*([0, 1]) → *C_p*(*Y*), then *Y* does not have to be finite-dimensional (P. Gartside, Z. Feng (2017)).
- The problem of a characterization of those strongly countable-dimensional metrizable compact spaces Y which admit a continuous linear surjection T : C_p([0,1]) → C_p(Y), is still open.

So, the dimension can be increased by ℓ -dominance. However, it turned out that zero-dimensional case is an exception.

- If there is a linear continuous surjection T : C_p(X) → C_p(Y) for compact metrizable spaces, then dim X = 0 implies that dim Y = 0 (A.L., M. Levin, V. Pestov (1997)).
- If there is a linear continuous surjection $T : C_p(X) \to C_p(Y)$ for compact spaces, then dim X = 0 implies that dim Y = 0(A.L., K. Kawamura (2017)).

The natural question arose whether the same statement is true without assumption of compactness of X and Y. Very recently, this difficult question was answered positively.

Let X and Y be Tychonoff spaces. If there is a linear continuous surjection T : C_p(X) → C_p(Y), then dim X = 0 implies that dim Y = 0 (A. Eysen, V. Valov (2024)).

The following question was posed by R. Górak, M. Krupski and W. Marciszewski).

Open Problem

Let X be a compact metrizable strongly countable-dimensional [zero-dimensional] space. Suppose that Y is u-dominated by X. Is Y necessarily strongly countable-dimensional [zero-dimensional]?

- A map T : D_p(X) → D_p(Y) is called *uniformly continuous* if for every neighborhood U of the zero function in D_p(Y) there is a neighborhood V of the zero function in D_p(X) such that f, g ∈ D_p(X) and f − g ∈ V implies T(f) − T(g) ∈ U.
- For every bounded function f ∈ C(X) by ||f|| we denote its supremum-norm. A map T : D(X) → D(Y) is called c-good if for every bounded function g ∈ C(Y) there exists a bounded function f ∈ C(X) such that T(f) = g and ||f|| ≤ c||g||.

Theorem 1.1

(R. Górak, M. Krupski and W. Marciszewski (2019)) Let X be a compact metrizable space. Suppose that there is a uniformly continuous surjection $T : C_p(X) \to C_p(Y)$ which is *c*-good for some c > 0. Then

(a) If X is zero-dimensional, then so is Y.

(b) If X is strongly countable-dimensional, then so is Y.

Theorem 1.2

(R. Górak, M. Krupski and W. Marciszewski (2019)) Every strongly countable-dimensional metrizable compact space K is *u*-dominated by the unit interval [0, 1].

Theorem 1.1 was recently generalized for σ -compact metrizable spaces.

Theorem 1.3

(A. Eysen, V. Valov (2024)) Let X and Y be σ-compact metrizable spaces. Suppose that there is a uniformly continuous surjection T : C_p(X) → C_p(Y) which is c-good for some c > 0. Then
(a) If X is zero-dimensional, then so is Y.
(b) If X is strongly countable-dimensional, then so is Y.

We strengthen the last result in two directions: we prove this statement for all (not necessarily σ -compact) metrizable spaces, and assuming a weaker condition that T is a uniformly continuous inversely bounded surjection.

A map $T : D(X) \to D(Y)$ is called *inversely bounded* if for every norm bounded sequence $\{g_n\} \subset C^*(Y)$ there is a norm bounded sequence $\{f_n\} \subset C^*(X)$ with $T(f_n) = g_n$ for each $n \in \mathbb{N}$.

Evidently, every linear continuous map between $D_p(X)$ and $D_p(Y)$ is uniformly continuous and every *c*-good map is inversely bounded. Also, every linear continuous surjection $T : C_p^*(X) \to C_p^*(Y)$, where X and Y are arbitrary Tychonoff spaces, is inversely bounded.

In fact we develop a general scheme for the proof as follows. For the brevity, we write $X \in \mathcal{P}$ if X has the property \mathcal{P} .

We consider the properties \mathcal{P} of metrizable spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property \mathcal{P} , then $X \in \mathcal{P}$;
- (d) if $f : X \to Y$ is a closed continuous map with finite fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$.

From the classical results of dimension theory it follows that zero-dimensionality, countable-dimensionality and strongly countable-dimensionality satisfy conditions (a) - (d) above.

Theorem 2.1

Let X be a metrizable space and Y be a perfectly normal topological space. Suppose that $T : D_p(X) \to D_p(Y)$ is a uniformly continuous inversely bounded surjection. For any topological property \mathcal{P} satisfying conditions (a) - (d) above, if $X \in \mathcal{P}$ then $Y \in \mathcal{P}$.

Corollary 2.2

Let X be a metrizable space and Y be a perfectly normal topological space. Suppose that $T : D_p(X) \to D_p(Y)$ is a uniformly continuous inversely bounded surjection.

- (i) If X is either countable-dimensional or strongly countable-dimensional, then so is Y.
- (ii) If X is zero-dimensional, then so is Y.

Note that item (ii) was established in Theorem 1.3 for arbitrary Tychonoff spaces X, Y and c-good surjections T. However, we don't know whether every uniformly continuous inversely bounded map is c-good for some c > 0.

A linear continuous version of Theorem 2.1 is also true.

Theorem 2.3

Let X be a metrizable space and Y be a perfectly normal topological space. Suppose that $T: D_p(X) \to D_p(Y)$ is a linear continuous surjection. For any topological property \mathcal{P} satisfying conditions (a) - (d) above, if $X \in \mathcal{P}$ then $Y \in \mathcal{P}$.

Definitions

- ① A topological space X is called *scattered* if every closed subset $A \subseteq X$ has an isolated (in A) point.
- ⁽²⁾ If X is a countable union of closed scattered subspaces then X is called *strongly* σ *-scattered*.
- ③ A Tychonoff space X is called pseudocompact if every continuous function $f : X \to \mathbb{R}$ is bounded.

Open Problem

Let X and Y be Tychonoff spaces.

- (1) Suppose that $T : D_p(X) \to D_p(Y)$ is a continuous linear surjection (continuous linear isomorphism). Is Y scattered provided X is scattered?
- (2) Suppose that $T : D_p(X) \to D_p(Y)$ is a uniformly continuous inversely bounded surjection. Is Y scattered provided X is scattered?

Quick result

Let X and Y be compact spaces. Suppose that $T : C_p(X) \to C_p(Y)$ is a continuous linear surjection. If X is scattered then Y is also scattered.

Proof.

Consider T as an operator between Banach spaces. Then T remains continuous. Banach spaces C(X) is Asplund if and only if X is scattered. Then C(Y) also is Asplund, i.e. Y is scattered.

④ A topological space X is said to be a Δ-space (Δ₁-space) if for every decreasing sequence {D_n : n ∈ ω} of subsets of X (countable subsets of X, respectively) with empty intersection, there is a decreasing sequence {V_n : n ∈ ω} consisting of open subsets of X, also with empty intersection, and such that D_n ⊆ V_n for every n ∈ ω.

Equivalently, X is a Δ -space (Δ_1 -space) iff every countable sequence of disjoint sets (distinct points) admits a point-finite open expansion.

^⑤ A Δ-space X ⊂ ℝ is said to be a Δ-set.

 Δ -sets $X \subset \mathbb{R}$ are defined by Reed and van Douwen (1980).

6 A topological space X is said to be a *Q*-space if every subset of X is a G_{δ} -set (equivalently, every subset of X is a F_{σ} -set).

Q-sets $X \subset \mathbb{R}$ are defined by Hausdorff (1933).

 $T X \subset \mathbb{R}$ is called a λ -set if each countable $A \subset X$ is G_{δ} in X.

 λ -sets $X \subset \mathbb{R}$ are defined by Kuratowski (1933).

- Q-set $\Rightarrow \Delta$ -set $\Rightarrow \lambda$ -set; similarly, Q-space $\Rightarrow \Delta$ -space $\Rightarrow \Delta_1$ -space.
- Existence of uncountable Q- and Δ-sets depends on additional axioms of ZFC; there are uncountable λ-sets in ZFC.

(A.L., J. Kakol)

- X is a Δ-space ⇔ C_p(X) is a distinguished locally convex space.
- A Corson compact space X is a Δ-space ⇔ X is a scattered Eberlein compact space.
- $[0, \omega_1]$ is an example of a scattered compact but not Δ -space.

(A.L., J. Kakol, O. Kurka)

- Let X be Čech-complete. Then X is a Δ₁-space ⇔ X is scattered.
- Let X be pseudocompact. Then X is a Δ₁-space ⇔ every countable subset of X is scattered.

- (A.L., J. Kąkol) Let Y be ℓ -dominated by X.
- (a) If X is σ -scattered (σ -discrete), then Y is σ -scattered (σ -discrete, respectively).
- (b) If X is a scattered Eberlein compact space, then Y also is a scattered Eberlein compact space.
- (c) If X is a Δ -space, then Y also is a Δ -space.
- (d) Let X and Y be normal spaces (for instance, let both be metrizable spaces or both be subsets of the real line ℝ). If X is a Q-space, then Y also is a Q-space.
- (e) Let X and Y be metrizable spaces. If X is scattered, then Y also is scattered.

(A.L., V. Valov) (f) Let X and Y be metrizable spaces. Suppose that $T : C_p^*(X) \to C_p^*(Y)$ is a linear continuous surjection. If X is scattered, then Y also is scattered. Theorem 3.1 (e), (f) strengthen the following result of J. Baars:

Let X and Y be metrizable spaces.

- (a) Suppose that $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic. Then X is scattered if and only if Y is scattered.
- (b) Suppose that $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic. Then X is scattered if and only if Y is scattered.

Sketch of the proof of Theorem 3.1 (e)

Let Y be ℓ -dominated by X. Let X and Y be metrizable spaces. If X is scattered, then Y also is scattered.

If X is metrizable and scattered, then X homeomorphically embeds into a scattered Eberlein compact space (T. Banakh & A.L.), hence X is a Δ -space. So, by Theorem 3.1 (c) the space Y is also a Δ -space. From another hand, every metrizable and scattered space is completely metrizable. We have that a metrizable space Y is ℓ -dominated by a completely mertizable space X, therefore Y is completely metrizable due to the known result of J. Baars, J. de Groot and J. Pelant. Finally, Y is a Čech-complete Δ -space, and therefore Y is scattered.

- (A.L., J. Kąkol, O. Kurka) Let Y be ℓ -dominated by X.
- (a) If X is a Δ_1 -space, then Y also is a Δ_1 -space.
- (b) Let X and Y be metrizable spaces. If X is a λ -space, then Y also is a λ -space.
- (c) If X is pseudocompact and every countable set in X is scattered, then Y has the same properties.
- (d) If X is a compact scattered space, then Y is a pseudocompact space such that its Stone–Čech compactification βY is scattered.

Sketch of the proof of Theorem 3.2 (b)

Let Y be ℓ -dominated by X. Let X and Y be metrizable spaces. If X is a λ -space, then Y also is a λ -space.

Metrizable space is a Δ_1 -space iff every countable subset of X is G_{δ} . So, X is a Δ_1 -space, then applying Theorem 3.2 (a), Y is also a Δ_1 -space. Finally, every countable subset of Y is G_{δ} , i.e. Y also is a λ -space.

Proposition

Let X and Y be metrizable spaces. Suppose that $T: D_p(X) \to D_p(Y)$ is a linear continuous surjection. If X is strongly σ -scattered, then so is Y.

We don't know whether analogues of Theorem 3.1 (e), (f) above are valid under a weaker assumption: $T : D_p(X) \to D_p(Y)$ is a uniformly continuous surjection.

Question: Let X and Y be (separable) metrizable spaces and let $T: D_p(X) \rightarrow D_p(Y)$ be a uniformly continuous surjection. Is Y scattered provided X is scattered?

This is because the following major question posed by W.

Marciszewski and J. Pelant is open.

Open Problem

Let X and Y be (separable) metrizable spaces and let $T: D_p(X) \to D_p(Y)$ be a uniformly continuous surjection (uniform homeomorphism). Let X be completely metrizable. Is Y also completely metrizable? Moreover, the next problem is also open:

Open Problem

Let X and Y be (separable) metrizable spaces and let $T: D_p(X) \to D_p(Y)$ be an inversely bounded uniformly continuous surjection. Let X be completely metrizable. Is Y also completely metrizable?

(A.L., V. Valov) Let X and Y be metrizable spaces. Suppose that $T: D_p(X) \to D_p(Y)$ is an inversely bounded uniformly continuous surjection. If X is strongly σ -scattered, then Y also is strongly σ -scattered.

Proof.

Any product of finitely many scattered (resp., strongly σ -scattered) spaces is scattered (resp., strongly σ -scattered). Evidently, any closed subset of a strongly σ -scattered space is strongly σ -scattered. It is also true that the preimage of a strongly σ -scattered space under a continuous map with finite fibers is strongly σ -scattered. Hence, all properties (a)-(d) from Theorem 2.1 are satisfied and we complete the proof.

(A.L., V. Valov) Let X and Y be metrizable spaces. Suppose that $T: D_p(X) \to D_p(Y)$ is an inversely bounded uniformly continuous surjection. If X is a Δ_1 -space then Y also is a Δ_1 -space.

Proof.

All properties (a)-(d) from Theorem 2.1 are satisfied.

(A.L., J. Kąkol) Let α be a fixed infinite countable ordinal. Then for a Tychonoff space Y the following are equivalent.

- (1) There exists a linear continuous surjection $T : C_p([1, \alpha]) \to C_p(Y).$
- (2) Y is homeomorphic to $[1, \beta]$, where β is a countable ordinal such that either $\beta < \alpha$, or $\alpha \le \beta < \alpha^{\omega}$.

Sketch of the proof of Theorem 3.5

Assumption (1) implies that Y has to be a countable compact space, i.e Y is homeomorphic to $[1, \beta]$, where β is a countable ordinal. If $\beta < \alpha$ there is nothing to prove. So, let us assume that $\alpha \leq \beta$. Applying the Closed Graph Theorem we consider T as a linear continuous operator from the Banach space $C([1, \alpha])$ onto the Banach space $C([1, \beta])$. Recall that the Szlenk index of a Banach space E, denoted Sz(E),

Recall that the Szlenk index of a Banach space E, denoted Sz(E), is an ordinal number, which is invariant under linear isomorphisms. The key tool is the following precise result of Samuel.

Sketch of the proof of Theorem 3.5

Fact A. For any $0 \leq \gamma < \omega_1$

$$\operatorname{Sz}(C([1,\omega^{\omega^{\gamma}}])) = \omega^{\gamma+1}.$$

We need also **Fact B.** Let E_1 and E_2 be given Banach spaces with norm-separable duals. Assume that E_2 is isomorphic to a subspace of a quotient space of E_1 . Then $Sz(E_2) \leq Sz(E_1)$.

In order to finish the proof of $(1) \Rightarrow (2)$ suppose the contrary: $\beta \ge \alpha^{\omega}$. Then by Fact A, $Sz(C([1, \beta])) > Sz(C([1, \alpha]))$ which contradicts Fact B. $(2) \Rightarrow (1)$ is known.

Thank you!