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1. Relations of /- and u-dominance. Some known results.

For a Tychonoff space X, by C(X) we denote the linear space of
all continuous real-valued functions on X. C*(X) is a subspace of
C(X) consisting of the bounded functions.

We write Cy(X) (resp., C5(X)) if C(X) (resp., C*(X)) is endowed
with the pointwise convergence topology.

By D(X) we denote either C*(X) or C(X).

Following A. Arkhangel'skii, we say that a space Y is /~-dominated
(u-dominated) by a space X if there exists a linear (uniform,
respectively) continuous operator onto T : Cp(X) — Cp(Y).

There are many topological properties which are invariant under
defined above relations, and there are many which are not.



By dimension we mean the covering dimension dim.

@ Let X and Y be metrizable compact spaces. If free
topological groups F(X) and F(Y) are isomorphic then
dim X =dim Y (M.l. Graev (1940-s)).

Let Cp(X) and C,(Y) be linearly homeomorphic.

@ Assuming that X and Y are metrizable compact spaces, D.
Pavlovskii (1980) proved that dim X =dim Y.

@ Assuming that X and Y are compact spaces, A.
Arkhangelskii (1980) proved that dim X = dim Y.

@ For any Tychonoff spaces X and Y, V. Pestov (1982) proved
that dim X =dim Y.

@ Let X and Y be Tychonoff spaces. If C,(X) and C,(Y) are
uniformly homeomorphic, then dim X = dim Y (S. Gul'ko
(1987, in English 1992)).




Results about /-dominance

A. Arhangel’skii in 1990 posed a problem for metrizable compacta
X and Y, whether dim Y < dim X if there is continuous (and
open) linear surjection from C,(X) onto Cp(Y), i.e. if Y is
{-dominated by X.

These questions were answered negatively.



@ For every finite-dimensional metrizable compact space Y there
exists a continuous linear surjection T : C5([0,1]) — Cp(Y)
(A.L., S. Morris, V. Pestov (1992, published in 1997)).

@ For every natural n > 1 there exist n-dimensional metrizable
compact space Y and one-dimensional metrizable compact
space X such that C,(X) admits a continuous open linear
surjection onto Cp(Y) (A.L., M. Levin, V. Pestov (1997)).

o Later, M. Levin (2011) showed that for every
finite-dimensional metrizable compact space Y there exists a
continuous open linear surjection T : C,([0,1]) = Cp(Y).




@ It is easy to show that if there exists a continuous linear
surjection T : Cp([0,1]) = Cp(Y), then Y must be a strongly
countable-dimensional metrizable compact space.

@ If there exists a continuous linear surjection
T : Cp([0,1]) = Co(Y), then Y does not have to be
finite-dimensional (P. Gartside, Z. Feng (2017)).

@ The problem of a characterization of those strongly
countable-dimensional metrizable compact spaces Y which
admit a continuous linear surjection T : C5([0,1]) = Cp(Y),
is still open.




So, the dimension can be increased by ¢-dominance. However, it
turned out that zero-dimensional case is an exception.

o If there is a linear continuous surjection T : C,(X) = Cp(Y)
for compact metrizable spaces, then dim X = 0 implies that
dimY =0 (A.L., M. Levin, V. Pestov (1997)).

o If there is a linear continuous surjection T : Cp(X) — Cp(Y)

for compact spaces, then dim X = 0 implies that dimY =0
(A.L., K. Kawamura (2017)).




The natural question arose whether the same statement is true
without assumption of compactness of X and Y. Very recently,
this difficult question was answered positively.

@ Let X and Y be Tychonoff spaces. If there is a linear
continuous surjection T : Cp(X) — Cp(Y), then dim X =0
implies that dim Y = 0 (A. Eysen, V. Valov (2024)).




Results about u-dominance

The following question was posed by R. Gérak, M. Krupski and W.
Marciszewski).

Open Problem

Let X be a compact metrizable strongly countable-dimensional
[zero-dimensional] space. Suppose that Y is u-dominated by X. Is
Y necessarily strongly countable-dimensional [zero-dimensional]?




@ Amap T : Dp(X) — Dp(Y) is called uniformly continuous if
for every neighborhood U of the zero function in D,(Y') there
is a neighborhood V of the zero function in D,(X) such that
f.g € Dp(X)and f —g € V implies T(f) — T(g) € U.

@ For every bounded function f € C(X) by ||f|| we denote its
supremum-norm. A map T : D(X) — D(Y) is called c-good
if for every bounded function g € C(Y) there exists a bounded
function f € C(X) such that T(f) = g and ||f|| < c||g]|-




Theorem 1.1

(R. Gérak, M. Krupski and W. Marciszewski (2019)) Let X be a
compact metrizable space. Suppose that there is a uniformly
continuous surjection T : Cp(X) — Cp(Y') which is c-good for
some ¢ > 0. Then

(a) If X is zero-dimensional, then so is Y.

(b) If X is strongly countable-dimensional, then so is Y.

(R. Gérak, M. Krupski and W. Marciszewski (2019)) Every
strongly countable-dimensional metrizable compact space K is
u-dominated by the unit interval [0, 1].




Theorem 1.1 was recently generalized for o-compact metrizable
spaces.

Theorem 1.3

(A. Eysen, V. Valov (2024)) Let X and Y be o-compact metrizable
spaces. Suppose that there is a uniformly continuous surjection
T : Cp(X) = Cp(Y) which is c-good for some ¢ > 0. Then

(a) If X is zero-dimensional, then so is Y.

(b) If X is strongly countable-dimensional, then so is Y.




2. New results for metrizable spaces

We strengthen the last result in two directions: we prove this
statement for all (not necessarily o-compact) metrizable spaces,
and assuming a weaker condition that T is a uniformly continuous
inversely bounded surjection.

A map T : D(X) — D(Y) is called inversely bounded if for every
norm bounded sequence {g,} C C*(Y) there is a norm bounded
sequence {f,} C C*(X) with T(f,) = g, for each n € N.

Evidently, every linear continuous map between D,(X) and Dy(Y)
is uniformly continuous and every c-good map is inversely
bounded. Also, every linear continuous surjection

T: Cy(X) — C5(Y), where X and Y are arbitrary Tychonoff
spaces, is inversely bounded.



In fact we develop a general scheme for the proof as follows. For
the brevity, we write X € P if X has the property P.

We consider the properties P of metrizable spaces such that:

(a) if X € P and F C X is closed, then F € P;

(b) P is closed under finite products;

(c) if X is a countable union of closed subsets each having the
property P, then X € P;

(d) if f: X — Y is a closed continuous map with finite fibers and
Y € P, then X € P.

From the classical results of dimension theory it follows that
zero-dimensionality, countable-dimensionality and strongly
countable-dimensionality satisfy conditions (a) — (d) above.




Let X be a metrizable space and Y be a perfectly normal
topological space. Suppose that T : D,(X) = Dp(Y) is a
uniformly continuous inversely bounded surjection. For any
topological property P satisfying conditions (a) — (d) above, if
X € P then Y € P.




Corollary 2.2

Let X be a metrizable space and Y be a perfectly normal
topological space. Suppose that T : D,(X) — Dp(Y) is a
uniformly continuous inversely bounded surjection.

(i) If X is either countable-dimensional or strongly
countable-dimensional, then so is Y.

(ii) If X is zero-dimensional, then so is Y.

Note that item (ii) was established in Theorem 1.3 for arbitrary
Tychonoff spaces X, Y and c-good surjections T. However, we
don't know whether every uniformly continuous inversely bounded
map is c-good for some ¢ > 0.



A linear continuous version of Theorem 2.1 is also true.

Let X be a metrizable space and Y be a perfectly normal
topological space. Suppose that T : D,(X) — Dp(Y) is a linear
continuous surjection. For any topological property P satisfying
conditions (a) — (d) above, if X € P then Y € P.




3. Scattered-like properties P

@ A topological space X is called scattered if every closed subset
A C X has an isolated (in A) point.

@ If X is a countable union of closed scattered subspaces then
X is called strongly o-scattered.

® A Tychonoff space X is called pseudocompact if every
continuous function f : X — R is bounded.




Let X and Y be Tychonoff spaces.

(1) Suppose that T : D,(X) — Dp(Y) is a continuous linear
surjection (continuous linear isomorphism). Is Y scattered
provided X is scattered?

2) Suppose that T : D,(X) — Dy(Y) is a uniformly continuous
(2) Supp B . y

inversely bounded surjection. Is Y scattered provided X is
scattered?




Quick result

Let X and Y be compact spaces. Suppose that
T : Cp(X) = Cp(Y) is a continuous linear surjection. If X is
scattered then Y is also scattered.

Proof.

Consider T as an operator between Banach spaces. Then T
remains continuous. Banach spaces C(X) is Asplund if and only if
X is scattered. Then C(Y) also is Asplund, i.e. Y is scattered.
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@ A topological space X is said to be a A-space (A;-space) if
for every decreasing sequence {D,, : n € w} of subsets of X
(countable subsets of X, respectively) with empty
intersection, there is a decreasing sequence {V,, : n € w}
consisting of open subsets of X, also with empty intersection,
and such that D, C V,, for every n € w.

Equivalently, X is a A-space (A;-space) iff every countable
sequence of disjoint sets (distinct points) admits a point-finite
open expansion.




® A A-space X C R is said to be a A-set. )

A-sets X C R are defined by Reed and van Douwen (1980).

® A topological space X is said to be a Q-space if every subset
of X is a Gs-set (equivalently, every subset of X is a F,-set). J

Q@-sets X C R are defined by Hausdorff (1933).

@ X C R is called a A-set if each countable A C X is G5 in X. J

A-sets X C R are defined by Kuratowski (1933).



o @-set = A-set = A-set;
similarly, Q-space = A-space = Aj-space.

@ Existence of uncountable Q- and A-sets depends on additional
axioms of ZFC; there are uncountable A-sets in ZFC.




Theorem 3.0
(A.L., J. Kakol)
e X is a A-space & Cp(X) is a distinguished locally convex
space.
@ A Corson compact space X is a A-space < X is a scattered
Eberlein compact space.

@ [0,ws] is an example of a scattered compact but not A-space.

v

(A.L., J. Kakol, O. Kurka)
o Let X be Cech-complete. Then X is a Aj-space < X is
scattered.

@ Let X be pseudocompact. Then X is a Aj-space < every
countable subset of X is scattered. )




Theorem 3.1
(A.L., J. Kakol) Let Y be ¢-dominated by X.

(a) If X is o-scattered (o-discrete), then Y is o-scattered
(o-discrete, respectively).

(b) If X is a scattered Eberlein compact space, then Y also is a
scattered Eberlein compact space.

(c) If X is a A-space, then Y also is a A-space.

(d) Let X and Y be normal spaces (for instance, let both be
metrizable spaces or both be subsets of the real line R). If X
is a @Q-space, then Y also is a Q-space.

(e) Let X and Y be metrizable spaces. If X is scattered, then Y
also is scattered.




(A.L., V. Valov)

(f) Let X and Y be metrizable spaces. Suppose that
T : C5(X) — C5(Y) is a linear continuous surjection. If X is
scattered, then Y also is scattered.




Theorem 3.1 (e), (f) strengthen the following result of J. Baars:

Let X and Y be metrizable spaces.

(a) Suppose that C,(X) and C,(Y) are linearly homeomorphic.
Then X is scattered if and only if Y is scattered.

(b) Suppose that C;(X) and C;(Y') are linearly homeomorphic.
Then X is scattered if and only if Y is scattered.




Sketch of the proof of Theorem 3.1 (e)

Let Y be f-dominated by X. Let X and Y be metrizable spaces. If
X is scattered, then Y also is scattered.

If X is metrizable and scattered, then X homeomorphically embeds
into a scattered Eberlein compact space (T. Banakh & A.L.),
hence X is a A-space. So, by Theorem 3.1 (c) the space Y is also
a A-space. From another hand, every metrizable and scattered
space is completely metrizable. We have that a metrizable space Y
is /~dominated by a completely mertizable space X, therefore Y is
completely metrizable due to the known result of J. Baars, J. de
Groot and J. Pelant. Finally, Y is a Cech-complete A-space, and
therefore Y is scattered.




Theorem 3.2
(A.L., J. Kakol, O. Kurka) Let Y be ¢-dominated by X.
(a) If X is a Aj-space, then Y also is a Aj-space.

(b) Let X and Y be metrizable spaces. If X is a A-space, then Y
also is a A-space.

(c) If X is pseudocompact and every countable set in X is
scattered, then Y has the same properties.

(d) If X is a compact scattered space, then Y is a pseudocompact
space such that its Stone—Cech compactification SY is
scattered.




Sketch of the proof of Theorem 3.2 (b)

Let Y be ¢-dominated by X. Let X and Y be metrizable spaces. If
X is a A-space, then Y also is a \-space.

Metrizable space is a Aj-space iff every countable subset of X is
Gs. So, X is a Aj-space, then applying Theorem 3.2 (a), Y is also
a Aj-space. Finally, every countable subset of Y is Gg, i.e. Y also
is a A-space.




Proposition

Let X and Y be metrizable spaces. Suppose that

T : Dp(X) = Dp(Y) is a linear continuous surjection. If X is
strongly o-scattered, then so is Y.




We don’t know whether analogues of Theorem 3.1 (e), (f) above
are valid under a weaker assumption: T : D,y(X) = Dp(Y) is a
uniformly continuous surjection.

Question: Let X and Y be (separable) metrizable spaces and let
T : Dp(X) — Dp(Y) be a uniformly continuous surjection. Is Y
scattered provided X is scattered?

This is because the following major question posed by W.
Marciszewski and J. Pelant is open.

Open Problem

Let X and Y be (separable) metrizable spaces and let

T : Dp(X) — Dp(Y) be a uniformly continuous surjection
(uniform homeomorphism). Let X be completely metrizable. Is Y
also completely metrizable?




Moreover, the next problem is also open:

Open Problem

Let X and Y be (separable) metrizable spaces and let

T : Dp(X) = Dp(Y) be an inversely bounded uniformly
continuous surjection. Let X be completely metrizable. Is Y also
completely metrizable?




Theorem 3.3

(A.L., V. Valov) Let X and Y be metrizable spaces. Suppose that
T : Dp(X) = Dp(Y) is an inversely bounded uniformly continuous
surjection. If X is strongly o-scattered, then Y also is strongly
o-scattered.

Proof.

Any product of finitely many scattered (resp., strongly o-scattered)
spaces is scattered (resp., strongly o-scattered). Evidently, any
closed subset of a strongly o-scattered space is strongly
o-scattered. It is also true that the preimage of a strongly
o-scattered space under a continuous map with finite fibers is
strongly o-scattered. Hence, all properties (a)-(d) from Theorem
2.1 are satisfied and we complete the proof.
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Theorem 3.4

(A.L., V. Valov) Let X and Y be metrizable spaces. Suppose that
T : Dp(X) = Dp(Y') is an inversely bounded uniformly continuous
surjection. If X is a Aj-space then Y also is a Aj-space.

All properties (a)-(d) from Theorem 2.1 are satisfied.




Theorem 3.5

(A.L., J. Kakol) Let a be a fixed infinite countable ordinal. Then
for a Tychonoff space Y the following are equivalent.

(1) There exists a linear continuous surjection
T : Co([1,a]) = Co(Y).

(2) Y is homeomorphic to [1, 3], where (3 is a countable ordinal
such that either 8 < o, or a < 8 < .




Sketch of the proof of Theorem 3.5

Assumption (1) implies that Y has to be a countable compact
space, i.e Y is homeomorphic to [1, 3], where [ is a countable
ordinal. If 8 < « there is nothing to prove. So, let us assume that
a < . Applying the Closed Graph Theorem we consider T as a
linear continuous operator from the Banach space C([1, «]) onto
the Banach space C([1, 4]).

Recall that the Szlenk index of a Banach space E, denoted Sz(E),
is an ordinal number, which is invariant under linear isomorphisms.
The key tool is the following precise result of Samuel.




Sketch of the proof of Theorem 3.5
Fact A. Forany 0 < v < w;

Sz(C([1,w”])) = WL

We need also

Fact B. Let E; and E, be given Banach spaces with
norm-separable duals. Assume that E; is isomorphic to a subspace
of a quotient space of Ey. Then Sz(E) < Sz(E;).

In order to finish the proof of (1) = (2) suppose the contrary:
B > a®. Then by Fact A, Sz(C([1,3])) > Sz(C([1,«])) which
contradicts Fact B.
(2) = (1) is known.




Thank you!
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