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1. Relations of `- and u-dominance. Some known results.

For a Tychonoff space X , by C (X ) we denote the linear space of
all continuous real-valued functions on X . C ∗(X ) is a subspace of
C (X ) consisting of the bounded functions.
We write Cp(X ) (resp., C ∗

p (X )) if C (X ) (resp., C ∗(X )) is endowed
with the pointwise convergence topology.
By D(X ) we denote either C ∗(X ) or C (X ).

Following A. Arkhangel’skii, we say that a space Y is `-dominated
(u-dominated) by a space X if there exists a linear (uniform,
respectively) continuous operator onto T : Cp(X )→ Cp(Y ).

There are many topological properties which are invariant under
defined above relations, and there are many which are not.
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By dimension we mean the covering dimension dim.

Let X and Y be metrizable compact spaces. If free
topological groups F (X ) and F (Y ) are isomorphic then
dimX = dimY (M.I. Graev (1940-s)).

Let Cp(X ) and Cp(Y ) be linearly homeomorphic.

Assuming that X and Y are metrizable compact spaces, D.
Pavlovskii (1980) proved that dimX = dimY .

Assuming that X and Y are compact spaces, A.
Arkhangel’skii (1980) proved that dimX = dimY .

For any Tychonoff spaces X and Y , V. Pestov (1982) proved
that dimX = dimY .

Let X and Y be Tychonoff spaces. If Cp(X ) and Cp(Y ) are
uniformly homeomorphic, then dimX = dimY (S. Gul’ko
(1987, in English 1992)).
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Results about `-dominance

A. Arhangel’skii in 1990 posed a problem for metrizable compacta
X and Y , whether dimY ≤ dimX if there is continuous (and
open) linear surjection from Cp(X ) onto Cp(Y ), i.e. if Y is
`-dominated by X .
These questions were answered negatively.
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For every finite-dimensional metrizable compact space Y there
exists a continuous linear surjection T : Cp([0, 1])→ Cp(Y )
(A.L., S. Morris, V. Pestov (1992, published in 1997)).

For every natural n > 1 there exist n-dimensional metrizable
compact space Y and one-dimensional metrizable compact
space X such that Cp(X ) admits a continuous open linear
surjection onto Cp(Y ) (A.L., M. Levin, V. Pestov (1997)).

Later, M. Levin (2011) showed that for every
finite-dimensional metrizable compact space Y there exists a
continuous open linear surjection T : Cp([0, 1])→ Cp(Y ).
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It is easy to show that if there exists a continuous linear
surjection T : Cp([0, 1])→ Cp(Y ), then Y must be a strongly
countable-dimensional metrizable compact space.

If there exists a continuous linear surjection
T : Cp([0, 1])→ Cp(Y ), then Y does not have to be
finite-dimensional (P. Gartside, Z. Feng (2017)).

The problem of a characterization of those strongly
countable-dimensional metrizable compact spaces Y which
admit a continuous linear surjection T : Cp([0, 1])→ Cp(Y ),
is still open.
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So, the dimension can be increased by `-dominance. However, it
turned out that zero-dimensional case is an exception.

If there is a linear continuous surjection T : Cp(X )→ Cp(Y )
for compact metrizable spaces, then dimX = 0 implies that
dimY = 0 (A.L., M. Levin, V. Pestov (1997)).

If there is a linear continuous surjection T : Cp(X )→ Cp(Y )
for compact spaces, then dimX = 0 implies that dimY = 0
(A.L., K. Kawamura (2017)).
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The natural question arose whether the same statement is true
without assumption of compactness of X and Y . Very recently,
this difficult question was answered positively.

Let X and Y be Tychonoff spaces. If there is a linear
continuous surjection T : Cp(X )→ Cp(Y ), then dimX = 0
implies that dimY = 0 (A. Eysen, V. Valov (2024)).
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Results about u-dominance

The following question was posed by R. Górak, M. Krupski and W.
Marciszewski).

Open Problem

Let X be a compact metrizable strongly countable-dimensional
[zero-dimensional] space. Suppose that Y is u-dominated by X . Is
Y necessarily strongly countable-dimensional [zero-dimensional]?
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A map T : Dp(X )→ Dp(Y ) is called uniformly continuous if
for every neighborhood U of the zero function in Dp(Y ) there
is a neighborhood V of the zero function in Dp(X ) such that
f , g ∈ Dp(X ) and f − g ∈ V implies T (f )− T (g) ∈ U.

For every bounded function f ∈ C (X ) by ||f || we denote its
supremum-norm. A map T : D(X )→ D(Y ) is called c-good
if for every bounded function g ∈ C (Y ) there exists a bounded
function f ∈ C (X ) such that T (f ) = g and ||f || ≤ c ||g ||.
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Theorem 1.1

(R. Górak, M. Krupski and W. Marciszewski (2019)) Let X be a
compact metrizable space. Suppose that there is a uniformly
continuous surjection T : Cp(X )→ Cp(Y ) which is c-good for
some c > 0. Then

(a) If X is zero-dimensional, then so is Y .

(b) If X is strongly countable-dimensional, then so is Y .

Theorem 1.2

(R. Górak, M. Krupski and W. Marciszewski (2019)) Every
strongly countable-dimensional metrizable compact space K is
u-dominated by the unit interval [0, 1].
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Theorem 1.1 was recently generalized for σ-compact metrizable
spaces.

Theorem 1.3

(A. Eysen, V. Valov (2024)) Let X and Y be σ-compact metrizable
spaces. Suppose that there is a uniformly continuous surjection
T : Cp(X )→ Cp(Y ) which is c-good for some c > 0. Then

(a) If X is zero-dimensional, then so is Y .

(b) If X is strongly countable-dimensional, then so is Y .
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2. New results for metrizable spaces

We strengthen the last result in two directions: we prove this
statement for all (not necessarily σ-compact) metrizable spaces,
and assuming a weaker condition that T is a uniformly continuous
inversely bounded surjection.

A map T : D(X )→ D(Y ) is called inversely bounded if for every
norm bounded sequence {gn} ⊂ C ∗(Y ) there is a norm bounded
sequence {fn} ⊂ C ∗(X ) with T (fn) = gn for each n ∈ N.

Evidently, every linear continuous map between Dp(X ) and Dp(Y )
is uniformly continuous and every c-good map is inversely
bounded. Also, every linear continuous surjection
T : C ∗

p (X )→ C ∗
p (Y ), where X and Y are arbitrary Tychonoff

spaces, is inversely bounded.
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In fact we develop a general scheme for the proof as follows. For
the brevity, we write X ∈ P if X has the property P.

We consider the properties P of metrizable spaces such that:

(a) if X ∈ P and F ⊂ X is closed, then F ∈ P;

(b) P is closed under finite products;

(c) if X is a countable union of closed subsets each having the
property P, then X ∈ P;

(d) if f : X → Y is a closed continuous map with finite fibers and
Y ∈ P, then X ∈ P.

From the classical results of dimension theory it follows that
zero-dimensionality, countable-dimensionality and strongly
countable-dimensionality satisfy conditions (a)− (d) above.
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Theorem 2.1

Let X be a metrizable space and Y be a perfectly normal
topological space. Suppose that T : Dp(X )→ Dp(Y ) is a
uniformly continuous inversely bounded surjection. For any
topological property P satisfying conditions (a)− (d) above, if
X ∈ P then Y ∈ P.
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Corollary 2.2

Let X be a metrizable space and Y be a perfectly normal
topological space. Suppose that T : Dp(X )→ Dp(Y ) is a
uniformly continuous inversely bounded surjection.

(i) If X is either countable-dimensional or strongly
countable-dimensional, then so is Y .

(ii) If X is zero-dimensional, then so is Y .

Note that item (ii) was established in Theorem 1.3 for arbitrary
Tychonoff spaces X ,Y and c-good surjections T . However, we
don’t know whether every uniformly continuous inversely bounded
map is c-good for some c > 0.

17 / 40



A linear continuous version of Theorem 2.1 is also true.

Theorem 2.3

Let X be a metrizable space and Y be a perfectly normal
topological space. Suppose that T : Dp(X )→ Dp(Y ) is a linear
continuous surjection. For any topological property P satisfying
conditions (a)− (d) above, if X ∈ P then Y ∈ P.
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3. Scattered-like properties P

Definitions

À A topological space X is called scattered if every closed subset
A ⊆ X has an isolated (in A) point.

Á If X is a countable union of closed scattered subspaces then
X is called strongly σ-scattered.

Â A Tychonoff space X is called pseudocompact if every
continuous function f : X → R is bounded.
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Open Problem

Let X and Y be Tychonoff spaces.

(1) Suppose that T : Dp(X )→ Dp(Y ) is a continuous linear
surjection (continuous linear isomorphism). Is Y scattered
provided X is scattered?

(2) Suppose that T : Dp(X )→ Dp(Y ) is a uniformly continuous
inversely bounded surjection. Is Y scattered provided X is
scattered?
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Quick result

Let X and Y be compact spaces. Suppose that
T : Cp(X )→ Cp(Y ) is a continuous linear surjection. If X is
scattered then Y is also scattered.

Proof.

Consider T as an operator between Banach spaces. Then T
remains continuous. Banach spaces C (X ) is Asplund if and only if
X is scattered. Then C (Y ) also is Asplund, i.e. Y is scattered.
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Ã A topological space X is said to be a ∆-space (∆1-space) if
for every decreasing sequence {Dn : n ∈ ω} of subsets of X
(countable subsets of X , respectively) with empty
intersection, there is a decreasing sequence {Vn : n ∈ ω}
consisting of open subsets of X , also with empty intersection,
and such that Dn ⊆ Vn for every n ∈ ω.

Equivalently, X is a ∆-space (∆1-space) iff every countable
sequence of disjoint sets (distinct points) admits a point-finite
open expansion.
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Ä A ∆-space X ⊂ R is said to be a ∆-set.

∆-sets X ⊂ R are defined by Reed and van Douwen (1980).

Å A topological space X is said to be a Q-space if every subset
of X is a Gδ-set (equivalently, every subset of X is a Fσ-set).

Q-sets X ⊂ R are defined by Hausdorff (1933).

Æ X ⊂ R is called a λ-set if each countable A ⊂ X is Gδ in X .

λ-sets X ⊂ R are defined by Kuratowski (1933).
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Q-set ⇒ ∆-set ⇒ λ-set;
similarly, Q-space ⇒ ∆-space ⇒ ∆1-space.

Existence of uncountable Q- and ∆-sets depends on additional
axioms of ZFC; there are uncountable λ-sets in ZFC.
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Theorem 3.0

(A.L., J. Ka̧kol)

X is a ∆-space ⇔ Cp(X ) is a distinguished locally convex
space.

A Corson compact space X is a ∆-space ⇔ X is a scattered
Eberlein compact space.

[0, ω1] is an example of a scattered compact but not ∆-space.

(A.L., J. Ka̧kol, O. Kurka)

Let X be Čech-complete. Then X is a ∆1-space ⇔ X is
scattered.

Let X be pseudocompact. Then X is a ∆1-space ⇔ every
countable subset of X is scattered.
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Theorem 3.1

(A.L., J. Ka̧kol) Let Y be `-dominated by X .

(a) If X is σ-scattered (σ-discrete), then Y is σ-scattered
(σ-discrete, respectively).

(b) If X is a scattered Eberlein compact space, then Y also is a
scattered Eberlein compact space.

(c) If X is a ∆-space, then Y also is a ∆-space.

(d) Let X and Y be normal spaces (for instance, let both be
metrizable spaces or both be subsets of the real line R). If X
is a Q-space, then Y also is a Q-space.

(e) Let X and Y be metrizable spaces. If X is scattered, then Y
also is scattered.
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Theorem 3.1

(A.L., V. Valov)

(f) Let X and Y be metrizable spaces. Suppose that
T : C ∗

p (X )→ C ∗
p (Y ) is a linear continuous surjection. If X is

scattered, then Y also is scattered.
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Theorem 3.1 (e), (f) strengthen the following result of J. Baars:

Let X and Y be metrizable spaces.

(a) Suppose that Cp(X ) and Cp(Y ) are linearly homeomorphic.
Then X is scattered if and only if Y is scattered.

(b) Suppose that C ∗
p (X ) and C ∗

p (Y ) are linearly homeomorphic.
Then X is scattered if and only if Y is scattered.
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Sketch of the proof of Theorem 3.1 (e)

Let Y be `-dominated by X . Let X and Y be metrizable spaces. If
X is scattered, then Y also is scattered.

If X is metrizable and scattered, then X homeomorphically embeds
into a scattered Eberlein compact space (T. Banakh & A.L.),
hence X is a ∆-space. So, by Theorem 3.1 (c) the space Y is also
a ∆-space. From another hand, every metrizable and scattered
space is completely metrizable. We have that a metrizable space Y
is `-dominated by a completely mertizable space X , therefore Y is
completely metrizable due to the known result of J. Baars, J. de
Groot and J. Pelant. Finally, Y is a Čech-complete ∆-space, and
therefore Y is scattered.
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Theorem 3.2

(A.L., J. Ka̧kol, O. Kurka) Let Y be `-dominated by X .

(a) If X is a ∆1-space, then Y also is a ∆1-space.

(b) Let X and Y be metrizable spaces. If X is a λ-space, then Y
also is a λ-space.

(c) If X is pseudocompact and every countable set in X is
scattered, then Y has the same properties.

(d) If X is a compact scattered space, then Y is a pseudocompact
space such that its Stone–Čech compactification βY is
scattered.
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Sketch of the proof of Theorem 3.2 (b)

Let Y be `-dominated by X . Let X and Y be metrizable spaces. If
X is a λ-space, then Y also is a λ-space.

Metrizable space is a ∆1-space iff every countable subset of X is
Gδ. So, X is a ∆1-space, then applying Theorem 3.2 (a), Y is also
a ∆1-space. Finally, every countable subset of Y is Gδ, i.e. Y also
is a λ-space.
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Proposition

Let X and Y be metrizable spaces. Suppose that
T : Dp(X )→ Dp(Y ) is a linear continuous surjection. If X is
strongly σ-scattered, then so is Y .

32 / 40



We don’t know whether analogues of Theorem 3.1 (e), (f) above
are valid under a weaker assumption: T : Dp(X )→ Dp(Y ) is a
uniformly continuous surjection.
Question: Let X and Y be (separable) metrizable spaces and let
T : Dp(X )→ Dp(Y ) be a uniformly continuous surjection. Is Y
scattered provided X is scattered?
This is because the following major question posed by W.
Marciszewski and J. Pelant is open.

Open Problem

Let X and Y be (separable) metrizable spaces and let
T : Dp(X )→ Dp(Y ) be a uniformly continuous surjection
(uniform homeomorphism). Let X be completely metrizable. Is Y
also completely metrizable?
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Moreover, the next problem is also open:

Open Problem

Let X and Y be (separable) metrizable spaces and let
T : Dp(X )→ Dp(Y ) be an inversely bounded uniformly
continuous surjection. Let X be completely metrizable. Is Y also
completely metrizable?
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Theorem 3.3

(A.L., V. Valov) Let X and Y be metrizable spaces. Suppose that
T : Dp(X )→ Dp(Y ) is an inversely bounded uniformly continuous
surjection. If X is strongly σ-scattered, then Y also is strongly
σ-scattered.

Proof.

Any product of finitely many scattered (resp., strongly σ-scattered)
spaces is scattered (resp., strongly σ-scattered). Evidently, any
closed subset of a strongly σ-scattered space is strongly
σ-scattered. It is also true that the preimage of a strongly
σ-scattered space under a continuous map with finite fibers is
strongly σ-scattered. Hence, all properties (a)-(d) from Theorem
2.1 are satisfied and we complete the proof.
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Theorem 3.4

(A.L., V. Valov) Let X and Y be metrizable spaces. Suppose that
T : Dp(X )→ Dp(Y ) is an inversely bounded uniformly continuous
surjection. If X is a ∆1-space then Y also is a ∆1-space.

Proof.

All properties (a)-(d) from Theorem 2.1 are satisfied.
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Theorem 3.5

(A.L., J. Ka̧kol) Let α be a fixed infinite countable ordinal. Then
for a Tychonoff space Y the following are equivalent.

(1) There exists a linear continuous surjection
T : Cp([1, α])→ Cp(Y ).

(2) Y is homeomorphic to [1, β], where β is a countable ordinal
such that either β < α, or α ≤ β < αω.
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Sketch of the proof of Theorem 3.5

Assumption (1) implies that Y has to be a countable compact
space, i.e Y is homeomorphic to [1, β], where β is a countable
ordinal. If β < α there is nothing to prove. So, let us assume that
α ≤ β. Applying the Closed Graph Theorem we consider T as a
linear continuous operator from the Banach space C ([1, α]) onto
the Banach space C ([1, β]).
Recall that the Szlenk index of a Banach space E , denoted Sz(E ),
is an ordinal number, which is invariant under linear isomorphisms.
The key tool is the following precise result of Samuel.
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Sketch of the proof of Theorem 3.5

Fact A. For any 0 ≤ γ < ω1

Sz(C ([1, ωω
γ

])) = ωγ+1.

We need also
Fact B. Let E1 and E2 be given Banach spaces with
norm-separable duals. Assume that E2 is isomorphic to a subspace
of a quotient space of E1. Then Sz(E2) ≤ Sz(E1).

In order to finish the proof of (1) ⇒ (2) suppose the contrary:
β ≥ αω. Then by Fact A, Sz(C ([1, β])) > Sz(C ([1, α])) which
contradicts Fact B.
(2) ⇒ (1) is known.
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Thank you!
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