On uniformly continuous surjections between C_p -spaces over metrizable spaces

Arkady Leiderman

Ben-Gurion University of the Negev, Beer Sheva ISRAEL

WARSAW, October 16, 2024

 $1/40$

イロト 不優 トメ 差 トメ 差 トー 差

New results in my talk are published in joint papers [1], [2], [3], [4].

[1] Ali Emre Eysen, Arkady Leiderman and Vesko Valov, On uniformly continuous surjections between C_p -spaces over metrizable spaces, 2024 (submitted for publication). https://arxiv.org/pdf/2408.01870 [2] Jerzy Kakol, Ondřej Kurka and Arkady Leiderman, Some classes of topological spaces extending the class of ∆-spaces, Proc. Amer. Math. Soc. 152 (2024), 883–899. **[3]** Jerzy Kakol and Arkady Leiderman, Basic properties of X for which the space $C_p(X)$ is distinguished, Proc. Amer. Math. Soc., series B, 8 (2021), 267–280. [4] Jerzy Kakol and Arkady Leiderman, On linear continuous operators between distinguished spaces $C_p(X)$, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2021) 115:199.

For a Tychonoff space X, by $C(X)$ we denote the linear space of all continuous real-valued functions on $X.$ $C^*(X)$ is a subspace of $C(X)$ consisting of the bounded functions. We write $\mathcal{C}_\rho(X)$ (resp., $\mathcal{C}^*_\rho(X))$ if $\mathcal{C}(X)$ (resp., $\mathcal{C}^*(X))$ is endowed with the pointwise convergence topology. By $D(X)$ we denote either $C^*(X)$ or $C(X)$.

Following A. Arkhangel'skii, we say that a space Y is ℓ -dominated (*u*-dominated) by a space X if there exists a linear (uniform, respectively) continuous operator onto $T: C_p(X) \to C_p(Y)$.

There are many topological properties which are invariant under defined above relations, and there are many which are not.

By dimension we mean the *covering dimension* dim.

 \bullet Let X and Y be metrizable compact spaces. If free topological groups $F(X)$ and $F(Y)$ are isomorphic then dim $X = \dim Y$ (M.I. Graev (1940-s)).

Let $C_p(X)$ and $C_p(Y)$ be linearly homeomorphic.

- Assuming that X and Y are metrizable compact spaces, D. Pavlovskii (1980) proved that dim $X =$ dim Y.
- Assuming that X and Y are compact spaces, A. Arkhangel'skii (1980) proved that dim $X = \dim Y$.
- For any Tychonoff spaces X and Y, V. Pestov (1982) proved that dim $X = \dim Y$
- Let X and Y be Tychonoff spaces. If $C_p(X)$ and $C_p(Y)$ are uniformly homeomorphic, then dim $X = \dim Y$ (S. Gul'ko (1987, in English 1992)).

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

A. Arhangel'skii in 1990 posed a problem for metrizable compacta X and Y, whether dim $Y \leq$ dim X if there is continuous (and open) linear surjection from $C_p(X)$ onto $C_p(Y)$, i.e. if Y is ℓ -dominated by X.

These questions were answered negatively.

- \bullet For every finite-dimensional metrizable compact space Y there exists a continuous linear surjection $T : C_p([0, 1]) \to C_p(Y)$ (A.L., S. Morris, V. Pestov (1992, published in 1997)).
- For every natural $n > 1$ there exist *n*-dimensional metrizable compact space Y and one-dimensional metrizable compact space X such that $C_p(X)$ admits a continuous open linear surjection onto $C_p(Y)$ (A.L., M. Levin, V. Pestov (1997)).
- Later, M. Levin (2011) showed that for every finite-dimensional metrizable compact space Y there exists a continuous open linear surjection $T: C_p([0, 1]) \to C_p(Y)$.

6 / 40

- It is easy to show that if there exists a continuous linear surjection $T: C_p([0,1]) \to C_p(Y)$, then Y must be a strongly countable-dimensional metrizable compact space.
- If there exists a continuous linear surjection $T: C_p([0,1]) \to C_p(Y)$, then Y does not have to be finite-dimensional (P. Gartside, Z. Feng (2017)).
- The problem of a characterization of those strongly countable-dimensional metrizable compact spaces Y which admit a continuous linear surjection $T: C_p([0, 1]) \to C_p(Y)$, is still open.

So, the dimension can be increased by ℓ -dominance. However, it turned out that zero-dimensional case is an exception.

- **•** If there is a linear continuous surjection $T : C_p(X) \to C_p(Y)$ for compact metrizable spaces, then dim $X = 0$ implies that dim $Y = 0$ (A.L., M. Levin, V. Pestov (1997)).
- **•** If there is a linear continuous surjection $T : C_p(X) \to C_p(Y)$ for compact spaces, then dim $X = 0$ implies that dim $Y = 0$ (A.L., K. Kawamura (2017)).

8 / 40

K ロメ K 倒 メ K 重 メ X 重 メ 一重

The natural question arose whether the same statement is true without assumption of compactness of X and Y . Very recently, this difficult question was answered positively.

• Let X and Y be Tychonoff spaces. If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then dim $X = 0$ implies that dim $Y = 0$ (A. Eysen, V. Valov (2024)).

The following question was posed by R. Górak, M. Krupski and W. Marciszewski).

Open Problem

Let X be a compact metrizable strongly countable-dimensional [zero-dimensional] space. Suppose that Y is u-dominated by X. Is Y necessarily strongly countable-dimensional [zero-dimensional]?

- A map $T: D_{p}(X) \to D_{p}(Y)$ is called uniformly continuous if for every neighborhood U of the zero function in $D_p(Y)$ there is a neighborhood V of the zero function in $D_p(X)$ such that $f, g \in D_p(X)$ and $f - g \in V$ implies $T(f) - T(g) \in U$.
- For every bounded function $f \in C(X)$ by $||f||$ we denote its supremum-norm. A map $T: D(X) \to D(Y)$ is called c-good if for every bounded function $g \in C(Y)$ there exists a bounded function $f \in C(X)$ such that $T(f) = g$ and $||f|| \le c||g||$.

Theorem 1.1

(R. Górak, M. Krupski and W. Marciszewski (2019)) Let X be a compact metrizable space. Suppose that there is a uniformly continuous surjection $T: C_p(X) \to C_p(Y)$ which is c-good for some $c > 0$. Then

(a) If X is zero-dimensional, then so is Y.

(b) If X is strongly countable-dimensional, then so is Y.

Theorem 1.2

(R. Górak, M. Krupski and W. Marciszewski (2019)) Every strongly countable-dimensional metrizable compact space K is u-dominated by the unit interval $[0, 1]$.

Theorem 1.1 was recently generalized for σ -compact metrizable spaces.

Theorem 1.3

(A. Eysen, V. Valov (2024)) Let X and Y be σ -compact metrizable spaces. Suppose that there is a uniformly continuous surjection $T: C_p(X) \to C_p(Y)$ which is c-good for some $c > 0$. Then (a) If X is zero-dimensional, then so is Y. (b) If X is strongly countable-dimensional, then so is Y.

We strengthen the last result in two directions: we prove this statement for all (not necessarily σ -compact) metrizable spaces, and assuming a weaker condition that T is a uniformly continuous inversely bounded surjection.

A map $T: D(X) \to D(Y)$ is called *inversely bounded* if for every norm bounded sequence $\{g_n\}\subset \mathcal{C}^*(Y)$ there is a norm bounded sequence $\{f_n\} \subset C^*(X)$ with $\mathcal{T}(f_n) = g_n$ for each $n \in \mathbb{N}$.

Evidently, every linear continuous map between $D_p(X)$ and $D_p(Y)$ is uniformly continuous and every c-good map is inversely bounded. Also, every linear continuous surjection $\mathcal{T}: C^*_\rho(X) \to C^*_\rho(Y)$, where X and Y are arbitrary Tychonoff spaces, is inversely bounded.

In fact we develop a general scheme for the proof as follows. For the brevity, we write $X \in \mathcal{P}$ if X has the property \mathcal{P} .

We consider the properties P of metrizable spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property P, then $X \in \mathcal{P}$;
- (d) if $f: X \to Y$ is a closed continuous map with finite fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$.

From the classical results of dimension theory it follows that zero-dimensionality, countable-dimensionality and strongly countable-dimensionality satisfy conditions $(a) - (d)$ above.

Theorem 2.1

Let X be a metrizable space and Y be a perfectly normal topological space. Suppose that $T: D_p(X) \to D_p(Y)$ is a uniformly continuous inversely bounded surjection. For any topological property P satisfying conditions $(a) - (d)$ above, if $X \in \mathcal{P}$ then $Y \in \mathcal{P}$.

Corollary 2.2

Let X be a metrizable space and Y be a perfectly normal topological space. Suppose that $T: D_p(X) \to D_p(Y)$ is a uniformly continuous inversely bounded surjection.

- (i) If X is either countable-dimensional or strongly countable-dimensional, then so is Y .
- (i) If X is zero-dimensional, then so is Y.

Note that item (ii) was established in Theorem 1.3 for arbitrary Tychonoff spaces X, Y and c-good surjections T . However, we don't know whether every uniformly continuous inversely bounded map is c-good for some $c > 0$.

A linear continuous version of Theorem 2.1 is also true.

Theorem 2.3

Let X be a metrizable space and Y be a perfectly normal topological space. Suppose that $T: D_{p}(X) \to D_{p}(Y)$ is a linear continuous surjection. For any topological property P satisfying conditions $(a) - (d)$ above, if $X \in \mathcal{P}$ then $Y \in \mathcal{P}$.

Definitions

- $\circled{1}$ A topological space X is called *scattered* if every closed subset $A \subseteq X$ has an isolated (in A) point.
- $\circled{2}$ If X is a countable union of closed scattered subspaces then X is called strongly σ -scattered.
- $\circled{3}$ A Tychonoff space X is called pseudocompact if every continuous function $f : X \to \mathbb{R}$ is bounded.

Open Problem

Let X and Y be Tychonoff spaces.

- (1) Suppose that $T: D_p(X) \to D_p(Y)$ is a continuous linear surjection (continuous linear isomorphism). Is Y scattered provided X is scattered?
- (2) Suppose that $T: D_{p}(X) \to D_{p}(Y)$ is a uniformly continuous inversely bounded surjection. Is Y scattered provided X is scattered?

Quick result

Let X and Y be compact spaces. Suppose that $T: C_p(X) \to C_p(Y)$ is a continuous linear surjection. If X is scattered then Y is also scattered.

Proof.

Consider T as an operator between Banach spaces. Then T remains continuous. Banach spaces $C(X)$ is Asplund if and only if X is scattered. Then $C(Y)$ also is Asplund, i.e. Y is scattered.

➃ A topological space X is said to be a ∆-space (∆1-space) if for every decreasing sequence $\{D_n : n \in \omega\}$ of subsets of X (countable subsets of X , respectively) with empty intersection, there is a decreasing sequence $\{V_n : n \in \omega\}$ consisting of open subsets of X , also with empty intersection, and such that $D_n \subseteq V_n$ for every $n \in \omega$.

Equivalently, X is a Δ -space (Δ_1 -space) iff every countable sequence of disjoint sets (distinct points) admits a point-finite open expansion.

⑤ A Δ -space $X \subset \mathbb{R}$ is said to be a Δ -set.

 Δ -sets $X\subset\mathbb{R}$ are defined by Reed and van Douwen (1980).

 $\circled{6}$ A topological space X is said to be a Q-space if every subset of X is a G_{δ} -set (equivalently, every subset of X is a F_{σ} -set).

Q-sets $X \subset \mathbb{R}$ are defined by Hausdorff (1933).

 \overline{O} X $\subset \mathbb{R}$ is called a λ -set if each countable $A \subset X$ is G_{δ} in X.

 λ -sets $X \subset \mathbb{R}$ are defined by Kuratowski (1933).

- Q-set \Rightarrow Δ -set \Rightarrow λ -set; similarly, Q-space $\Rightarrow \Delta$ -space $\Rightarrow \Delta_1$ -space.
- Existence of uncountable Q- and ∆-sets depends on additional axioms of ZFC; there are uncountable λ -sets in ZFC.

(A.L., J. K¸akol)

- \bullet X is a Δ -space \Leftrightarrow $C_p(X)$ is a distinguished locally convex space.
- A Corson compact space X is a Δ -space \Leftrightarrow X is a scattered Eberlein compact space.
- [0, ω_1] is an example of a scattered compact but not Δ -space.

(A.L., J. Kąkol, O. Kurka)

- Let X be Cech-complete. Then X is a Δ_1 -space \Leftrightarrow X is scattered.
- Let X be pseudocompact. Then X is a Δ_1 -space \Leftrightarrow every countable subset of X is scattered.

- (A.L., J. Kakol) Let Y be ℓ -dominated by X.
- (a) If X is σ -scattered (σ -discrete), then Y is σ -scattered $(\sigma$ -discrete, respectively).
- (b) If X is a scattered Eberlein compact space, then Y also is a scattered Eberlein compact space.
- (c) If X is a Δ -space, then Y also is a Δ -space.
- (d) Let X and Y be normal spaces (for instance, let both be metrizable spaces or both be subsets of the real line $\mathbb R$). If X is a Q -space, then Y also is a Q -space.
- (e) Let X and Y be metrizable spaces. If X is scattered, then Y also is scattered.

(A.L., V. Valov) (f) Let X and Y be metrizable spaces. Suppose that $\mathcal{T}: C^*_\rho(X) \to C^*_\rho(Y)$ is a linear continuous surjection. If X is scattered, then Y also is scattered.

Theorem 3.1 (e), (f) strengthen the following result of J. Baars:

Let X and Y be metrizable spaces.

- (a) Suppose that $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic. Then X is scattered if and only if Y is scattered.
- (b) Suppose that $C_p^*(X)$ and $C_p^*(Y)$ are linearly homeomorphic. Then X is scattered if and only if Y is scattered.

Sketch of the proof of Theorem 3.1 (e)

Let Y be ℓ -dominated by X. Let X and Y be metrizable spaces. If X is scattered, then Y also is scattered.

If X is metrizable and scattered, then X homeomorphically embeds into a scattered Eberlein compact space (T. Banakh & A.L.), hence X is a Δ -space. So, by Theorem 3.1 (c) the space Y is also a ∆-space. From another hand, every metrizable and scattered space is completely metrizable. We have that a metrizable space Y is ℓ -dominated by a completely mertizable space X, therefore Y is completely metrizable due to the known result of J. Baars, J. de Groot and J. Pelant. Finally, Y is a Čech-complete Δ -space, and therefore Y is scattered.

- (A.L., J. Kakol, O. Kurka) Let Y be ℓ -dominated by X.
- (a) If X is a Δ_1 -space, then Y also is a Δ_1 -space.
- (b) Let X and Y be metrizable spaces. If X is a λ -space, then Y also is a λ -space.
- (c) If X is pseudocompact and every countable set in X is scattered, then Y has the same properties.
- (d) If X is a compact scattered space, then Y is a pseudocompact space such that its Stone–Cech compactification βY is scattered.

Sketch of the proof of Theorem 3.2 (b)

Let Y be ℓ -dominated by X. Let X and Y be metrizable spaces. If X is a λ -space, then Y also is a λ -space.

Metrizable space is a Δ_1 -space iff every countable subset of X is G_{δ} . So, X is a Δ_1 -space, then applying Theorem 3.2 (a), Y is also a Δ_1 -space. Finally, every countable subset of Y is G_δ , i.e. Y also is a λ -space.

Proposition

Let X and Y be metrizable spaces. Suppose that $T: D_p(X) \to D_p(Y)$ is a linear continuous surjection. If X is strongly σ -scattered, then so is Y.

32 / 40

 Ω

メロトメ 御 トメ 差 トメ 差 トー 差

We don't know whether analogues of Theorem 3.1 (e), (f) above are valid under a weaker assumption: $T: D_p(X) \to D_p(Y)$ is a uniformly continuous surjection.

Question: Let X and Y be (separable) metrizable spaces and let $T: D_{p}(X) \to D_{p}(Y)$ be a uniformly continuous surjection. Is Y scattered provided X is scattered?

This is because the following major question posed by W.

Marciszewski and J. Pelant is open.

Open Problem

Let X and Y be (separable) metrizable spaces and let $T: D_p(X) \to D_p(Y)$ be a uniformly continuous surjection (uniform homeomorphism). Let X be completely metrizable. Is Y also completely metrizable?

Moreover, the next problem is also open:

Open Problem

Let X and Y be (separable) metrizable spaces and let $T: D_p(X) \to D_p(Y)$ be an inversely bounded uniformly continuous surjection. Let X be completely metrizable. Is Y also completely metrizable?

 $(A.L., V.$ Valov) Let X and Y be metrizable spaces. Suppose that $T: D_{p}(X) \to D_{p}(Y)$ is an inversely bounded uniformly continuous surjection. If X is strongly σ -scattered, then Y also is strongly σ -scattered.

Proof.

Any product of finitely many scattered (resp., strongly σ -scattered) spaces is scattered (resp., strongly σ -scattered). Evidently, any closed subset of a strongly σ -scattered space is strongly σ -scattered. It is also true that the preimage of a strongly σ -scattered space under a continuous map with finite fibers is strongly σ -scattered. Hence, all properties (a)-(d) from Theorem 2.1 are satisfied and we complete the proof.

 $(A.L., V. Valov)$ Let X and Y be metrizable spaces. Suppose that $T: D_p(X) \to D_p(Y)$ is an inversely bounded uniformly continuous surjection. If X is a Δ_1 -space then Y also is a Δ_1 -space.

Proof.

All properties (a)-(d) from Theorem 2.1 are satisfied.

(A.L., J. Kakol) Let α be a fixed infinite countable ordinal. Then for a Tychonoff space Y the following are equivalent.

- (1) There exists a linear continuous surjection $T: C_p([1,\alpha]) \to C_p(Y)$.
- (2) Y is homeomorphic to [1, β], where β is a countable ordinal such that either $\beta < \alpha$, or $\alpha \leq \beta < \alpha^{\omega}$.

Sketch of the proof of Theorem 3.5

Assumption (1) implies that Y has to be a countable compact space, i.e Y is homeomorphic to $[1, \beta]$, where β is a countable ordinal. If $\beta < \alpha$ there is nothing to prove. So, let us assume that $\alpha \leq \beta$. Applying the Closed Graph Theorem we consider T as a linear continuous operator from the Banach space $C([1,\alpha])$ onto the Banach space $C([1,\beta])$. Recall that the Szlenk index of a Banach space E , denoted $Sz(E)$,

is an ordinal number, which is invariant under linear isomorphisms. The key tool is the following precise result of Samuel.

Sketch of the proof of Theorem 3.5

Fact A. For any $0 \leq \gamma \leq \omega_1$

$$
Sz(\mathcal{C}([1,\omega^{\omega^{\gamma}}])) = \omega^{\gamma+1}.
$$

We need also

Fact B. Let E_1 and E_2 be given Banach spaces with norm-separable duals. Assume that E_2 is isomorphic to a subspace of a quotient space of E_1 . Then $Sz(E_2) \leq Sz(E_1)$.

In order to finish the proof of $(1) \Rightarrow (2)$ suppose the contrary: $\beta \geq \alpha^\omega$. Then by Fact A, Sz $(\mathcal{C}([1,\beta]))>\text{Sz}(\mathcal{C}([1,\alpha]))$ which contradicts Fact B. $(2) \Rightarrow (1)$ is known.

Thank you!

40 / 40

KO K K @ K K Z K K Z K Y W K Y K Y W W Y