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H(A,B) — the family of all Boolean homomorphisms A — B
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Bor(2%) — the Borel o-field on 2%

Ax — the standard product measure on 2%

N () = {A € Bor(2%): A.(A) =0}

M,, = Bor(2%) /N (\x)

M = M,, = Bor([0,1])/N

Moy = {0,1}
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Ultrafilters in V™~ induce homomorphisms in V

Let V be a ground model and A € V a Boolean algebra.

A is a Boolean algebra in any M,.-generic extension V[G].

Let U be an M,.-name for an ultrafilter on A, that is,

1y, “U is an ultrafilter on A",

In V, we define a Boolean homomorphism ¢,;: A — M,:

Su(A) =[AeU]

for every A € A.
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Homomorphisms in V induce ultrafilters in VM=

Let V be a ground model and A € V a Boolean algebra.
A is a Boolean algebra in any M-generic extension V[G].

Let ¢: A — M, be a Boolean homomorphism.

Define an M.-name H¢:

Us = {(A 6(A)): Ac A}

Then: _
1k, “Uyg is an ultrafilter on A”.
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Duality between homomorphisms and ultrafilters

homomorphisms ¢: A — M,
I

M-names for ultrafilters on A

If I is an M,.-name for an ultrafilter on A, then:

Iy, Ui,y = U.

If ¢: A — M is a homomorphism, then:

¢(U¢) = ¢
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But what about sequences?

Fix ¢n, ¢ € H(A, M,) and let U, = Uy, and U = Uy,

What can we say about convergence properties of the sequence
(Uy,) in St(A) N VM<? When is it convergent to U?

Proposition

The following conditions are equivalent:
Q Iy, “(U,) converges to U",
@ for every A € A it holds:

oA =AV 8n(A) (=V A 6n(A)

n m>n n m>=n

If (2) holds, then we say that (¢,) converges algebraically to ¢.
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Two topologies on H(A, M)

Fréchet—Nikodym metric on M

For every A, B € M, put:
dg(A, B) = M\(AAB).
(M, dy) is a complete metric space.

Pointwise topology on H (A, M,,)

We may endow H (A, M) with the pointwise topology:
V(¢,A ) ={y € H(A,M,): du(p(A),¥(A)) <e},
where ¢ € H(A,M,),A€ A,e > 0.

St(A) and H(A, Mp) with the pointwise topology are
homeomorphic. In particular, St(A) always embeds into H(A, M,).
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Two topologies on H(A, M)
7M )

Uniform metric on H(A

For every ¢, 9 € H(A, M) put:

dhom(®, 1) = sup{dx(d(A), p(A)): A€ A}.

dhom is a metric bounded by 1.

H(A, Mp) with the uniform topology is a discrete space.

Convergence of sequences

@ (¢on) converges pointwise to ¢ if it converges to ¢ in the
pointwise topology on H(A, M,,).

@ (¢n) converges uniformly to ¢ if it converges to ¢ in the
uniform topology on H(A, M,,).
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Algebraic/pointwise /uniform convergences

Let ¢n, ¢ € H(A, My).

(¢n) converges uniformly to ¢

I

(¢n) converges pointwise to ¢

T

(¢n) converges algebraically to ¢

If K =0, then algebraic convergence < pointwise convergence.
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Corollary
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Convergence of ultrafilters vs. convergence of
homomorphisms

Proposition

The following conditions are equivalent:
Q Iy, “(U,) converges to U",
@ (¢n) converges algebraically to ¢.

Corollary

If Ik, “(U,,) converges to U", then (¢,) converges pointwise to ¢.

Theorem

Q If Iy, V®°n € w: U, =U, then (¢,) converges uniformly to
Q.

@ If (¢,) converges uniformly to ¢, then for almost all n € w
there is p, € M such that p, IF Un =U.
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Interlude—distinguishing ultrafilters

Let ¢/ and V be M,.-names for ultrafilters on A st. 11-Uf # V.

There is a maximal antichain (p,) in M, and a sequence (A,) in A
such that p, IF A, € UAV.

A priori we have no control over the values A\.(pn)...

Theorem

If i and V are M,.-names for ultrafilters on A st. 1 I- U # V, then
for every € > 0 there exists p € M, and C € A such that

@ \i(p) >1/4—¢, and
o plF CeclUAV.

Remark: 1/4 is optimal!
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The Efimov problem

Problem

Does there exists an Efimov space, i.e. an infinite compact
Hausdorff space with no non-trivial convergent sequences nor any
copies of Bw?

No ZFC example is known!

Consistent examples

@ CH (Fedorchuk, Dow—Pichardo-Mendoza, Talagrand)

@ O (Fedorchuk, Kunen—-DZamonja, de la Vega, S.—Zdomskyy)
Q s =w; & ¢ = 2“1 (Fedorchuk)

Q cof([s]”,C) =5 & 2° < 2° (Dow)

@ b = ¢ (Dow-Shelah)

@ cof([cof N]¥,C) = cof(N) < ¢ (S.)

@ and in many models obtained by forcing...
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Efimov spaces in the random model

Theorem (Dow—Fremlin)

There is an Efimov space in the random model.

If A € Vis a g-complete Boolean algebra, then

lFa,, “St(A) has no non-trivial convergent sequences.”

If A € V, then TFAE:
@ Ik, “St(A) has no non-trivial convergent sequences”;

@ every algebraically convergent sequence in H(A, M)
converges uniformly.
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Efimov spaces in the random model

Corollary

If, in V, A is such a Boolean algebra that it has size < k and every
algebraically convergent sequence in H (A, M,) converges
uniformly, then, in VM= the Stone space St(A) is an Efimov space.

Corollary

If A is such a Boolean algebra that St(A) is an F-space, then every
algebraically convergent sequence in H(A, M,) is uniformly
convergent.

In particular, that holds for A = p(w) and A = p(w)/Fin.
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Two more topologies on H(A, M)

Stone duality

Let A and B be Boolean algebras.

There is a one-to-one correspondence between homomorphisms
A — B and continuous functions St(B) — St(A):

H(A,B) 3 ¢ — fy, € C(St(B), St(A))

£, 1Al = ¢(A), VAeA

Borel Fréchet-Nikodym (pseudo)metric on M,
For every A, B € Bor(St(M,)) put:

dBor(A, B) = \.(AAB).

dB°r is a pseudometric.
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Two more topologies on H(A, M)

Borel pointwise topology on H (A, M)

Sub-basic open sets:
V(¢,Ae) = { € H(A,My): dZ (M [A], £, [A]) < e},

where ¢ € H(A,M,), A € Bor(St(A)),e > 0.

Pointwise Borel convergence of sequences

(¢n) converges Borel pointwise to ¢ if it converges to ¢ in the
Borel pointwise topology on H (A, M,).

Borel uniform metric on H(A, M)

For every ¢,9 € H(A,M,) put:

ham(®, %) = sup{dZ (£ [A], £, [A]): A€ Bor(St(A))}.

dB° is a metric bounded by 1.
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For every A and &, dpom = dB"

hom*
Let ¢n, ¢ € H(A, M,).

(¢n) converges (Borel) uniformly to ¢
\
(¢n) converges Borel pointwise to ¢
\
(¢n) converges pointwise to ¢

T

(¢n) converges algebraically to ¢
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Topologies on the space of probability measures

P(A) — finitely additive probability measures on A

Norm topology

w,v € P(A):

dvar(p, v) = AS;PA(IM(A) —v(A)| + |u(B) — v(B)I)
AYB=0

Weak topology

w € P(A), p € C(St(A))*™, e > 0:
V(i pie) ={v e P(A): [o(u) — (V)] <e}.

Weak* topology

e P(A), f € C(St(A)), € > 0:

V(w fie) = {v e P(A): |u(f) —v(f)] <e}.
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Topologies on the space of probability measures

Weak* topology — equivalent definition

uwe PA), Ac A e>0:

U Are) = {v € P(A): |(A) — v(A)| <e}.

Fact

Let pn, o € P(A). The sequence (1) converges to p with respect
to the weak topology if and only if (fi,(B)) converges to fi(B) for
every Borel set B C St(A).
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Homomorphisms and measures

F: H(A,M,) — P(A)
F(d)) =As 0
F()(A) = Ax(6(A))

Proposition
Fis:
@ uniformly-norm continuous;

@ pointwise-weak* continuous.
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Homomorphisms and measures

Corollary

®On, ¢ € H(A,My). Then:
Q if (¢n) converges uniformly to ¢, then (A o ¢,) converges to
Ak © ¢ in norm;
Q@ if (¢n) converges Borel pointwise to ¢, then (A © ¢p)
converges to A\, o ¢ weakly;
@ if (¢n) converges pointwise to ¢, then (A o ¢,) converges to
Ak © ¢ weakly*.
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A sequence (ux) of Radon probability measures on a compact
space K is uniformly countably additive if for every descending
sequence (E,) of Borel sets such that (| E, = () and every ¢ > 0
there is N € w such that px(E,) < e for every n > N and k € w.
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Homomorphisms and measures

Uniform countable additivity

A sequence (ux) of Radon probability measures on a compact
space K is uniformly countably additive if for every descending
sequence (E,) of Borel sets such that (| E, = () and every ¢ > 0
there is N € w such that px(E,) < e for every n > N and k € w.

Nikodym Convergence Theorem

Every weakly convergent sequence of Radon measures on a
compact space is uniformly countably additive.

Theorem

Gny & € H(A, M,). If (¢,) converges pointwise to ¢ and (A, o f¢_nl)
is uniformly countably additive, then (¢,) converges Borel
pointwise to ¢.
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A Boolean algebra A has the Grothendieck property if every
weakly* convergent sequence of measures on St(A) is weakly
convergent.
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Homomorphisms and measures

Grothendieck property

A Boolean algebra A has the Grothendieck property if every
weakly* convergent sequence of measures on St(A) is weakly
convergent.

Examples: o-complete Boolean algebras
Non-examples: countable Boolean algebras

Theorem

If A has the Grothendieck property, then every pointwise
convergent sequence in H(A, M) is Borel pointwise convergent.



Thank you for your attention!



