On ω -Corson compact spaces and related classes of Eberlein compacta

Witold Marciszewski joint with Grzegorz Plebanek and Krzysztof Zakrzewski

University of Warsaw

November 30, 2022

All topological spaces are Tikhonov.

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space K is an Eberlein compactum if K can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

$$c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite} \},$$

for some set Γ .

All metrizable compacta are Eberlein compact spaces.

Continuous images, closed subspaces, countable products of Eberlein compacta are Eberlein compact spaces.

A compact space K is Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\Sigma(\mathbb{R}^{\Gamma}) = \{ x \in \mathbb{R}^{\Gamma} : |\{ \gamma : x(\gamma) \neq 0 \}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

Let κ be an infinite cardinal number. A compact space K is κ -Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ_{κ} -product of real lines

$$\Sigma_{\kappa}(\mathbb{R}^{\Gamma}) = \{x \in \mathbb{R}^{\Gamma} : |\{\gamma : x(\gamma) \neq 0\}| < \kappa\}.$$

Obviously, the class of Corson compact spaces coincides with the class of ω_1 -Corson compact spaces.

Let $\{X_{\gamma} : \gamma \in \Gamma\}$ be the family of nonempty topological spaces, and let a_{γ} be a fixed point of X_{γ} .

The σ -product of the family $\{(X_{\gamma}, a_{\gamma}) : \gamma \in \Gamma\}$ is the following subspace of the product $\prod_{\gamma \in \Gamma} X_{\gamma}$

$$\sigma(X_{\gamma}, a_{\gamma}, \Gamma) = \{(x_{\gamma})_{\gamma \in \Gamma} \in \prod_{\gamma \in \Gamma} X_{\gamma} : |\{\gamma \in \Gamma : x_{\gamma} \neq a_{\gamma}\}| < \omega\}.$$

If $X_{\gamma} = I = [0, 1]$ and $a_{\gamma} = 0$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I, \Gamma)$.

If $X_{\gamma} = \mathbb{R}$ and $a_{\gamma} = 0$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(\mathbb{R}, \Gamma)$.

If $X_{\gamma} = I^{\omega}$ and $a_{\gamma} = (0, 0, ...)$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I^{\omega}, \Gamma)$.

For $\kappa = \omega$, $\Sigma_{\kappa}(\mathbb{R}^{\Gamma}) = \sigma(\mathbb{R}, \Gamma)$.

A compact space K is NY compact if K can be embedded into some σ -product of metrizable compacta.

We denote the class of NY compact spaces by $\mathcal{N}\mathcal{Y}$.

Proposition

For a compact space K we have

- K is ω-Corson if and only if it can be embedded into some
 σ-product of metrizable finitely dimensional compacta if and only if
 it can be embedded into the σ-product σ(I, Γ) for some set Γ.
- **(a)** K is NY compact if and only if it can be embedded into the σ -product $\sigma(I^{\omega}, \Gamma)$ for some set Γ .

A family \mathcal{U} of subsets of a space X is T_0 -separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.

Given a family $\mathcal U$ of subsets of a space X, a point $x \in X$, and an infinite cardinal κ , we write $\operatorname{ord}(x,\mathcal U) < \kappa$ if $|\{U \in \mathcal U : x \in U\}| < \kappa$. We say that $\mathcal U$ is point-finite if $\operatorname{ord}(x,\mathcal U) < \omega$ for all $x \in X$.

Proposition

Let κ be an uncountable cardinal number. For a compact space K, the following conditions are equivalent:

- **a** K is κ -Corson:
- There exists a family \mathcal{U} consisting of cozero subsets of K which is T_0 -separating, and $\operatorname{ord}(x,\mathcal{U}) < \kappa$ for all $x \in K$.

An analogous characterization for ω -Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- There exists a T₀-separating, point-finite family U consisting of cozero subsets of K;
- K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.

Proposition (M., Plebanek, Zakrzewski)

Every ω -Corson compact space is Eberlein compact and strongly countably dimensional.

Proposition

A metrizable compact space K is ω -Corson if and only if it is strongly countably dimensional.

All scattered Eberlein compacta are ω -Corson.

7/16

A family \mathcal{A} of subsets of a space X is closure preserving if, for any subfamily $\mathcal{A}'\subseteq\mathcal{A}$, we have

$$\overline{\bigcup \mathcal{A}'} = \bigcup \{ \overline{A} : A \in \mathcal{A}' \} .$$

A space *X* is metacompact if every open cover of *X* has a point-finite open refinement.

Theorem (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- **1** K is ω -Corson;
- K has a closure preserving cover consisting of finite dimensional metrizable compacta;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open separable, metrizable, finite dimensional subspace U.

Theorem (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- **a** K belongs to the class $\mathcal{N}\mathcal{Y}$;
- There exists a T_0 -separating family $\mathcal{U} = \bigcup \{\mathcal{U}_\gamma : \gamma \in \Gamma\}$ consisting of cozero subsets of K, where each \mathcal{U}_γ is a countable and the family $\{\bigcup \mathcal{U}_\gamma : \gamma \in \Gamma\}$ is point-finite;
- K has a closure preserving cover consisting of metrizable compacta;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open subspace U of countable weight.

The equivalence of conditions (a-c) was proved by Nakhmanson and Yakovlev.

Corollary (Nakhmanson and Yakovlev)

The class Ny is stable under continuous images

Corollary

A NY compact space K is ω -Corson if and only if it is strongly countably dimensional.

Corollary

For any sequence $(K_n)_{n\in\omega}$ of nonmetrizable Eberlein compacta, the product $\prod_{n\in\omega} K_n$ does not belong to $\mathcal{N}\mathcal{Y}$.

Theorem (Gruenhage)

For a compact space K, the following conditions are equivalent:

- K is Eberlein compact;
- **(a)** K^2 is hereditarily σ -metacompact;
- **(a)** $K^2 \setminus \Delta$ is σ -metacompact.

Example (M., Plebanek, Zakrzewski)

There exist a zero-dimensional Eberlein compact space K such that K^2 is hereditarily metacompact, but K is not ω -Corson.

Theorem (M., Plebanek, Zakrzewski)

Let $(K_n)_{n\in\mathbb{N}}$ be a sequence of nonmetrizable Eberlein compact spaces, then $\prod_{n\in\mathbb{N}}K_n$ is not hereditary metacompact.

The class of ω -Corson compact spaces is clearly stable under taking closed subspaces and finite products, but is not stable under taking continuous images, as the Hilbert cube is a continuous image of the Cantor set 2^{ω} .

Problem

Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

Example (Koszmider 2016)

There exists (in ZFC) a nonmetrizable compact space without nonmetrizable zero-dimensional closed subspaces.

Example (M.)

Assuming the existence of a Luzin set, there exists a nonmetrizable Eberlein compact space K without closed nonmetrizable zero-dimensional subspaces.

Theorem (M.)

Assuming that $\mathfrak{b} > \omega_1$, each Eberlein (Corson) compact space K of weight $> \omega_1$ contains a closed nonmetrizable, zero-dimensional subspace L.

Theorem (M., Plebanek, Zakrzewski)

Assuming that $\mathfrak{b} > \omega_1$, each nonmetrizable compact space $K \in \mathcal{NY}$ contains a closed nonmetrizable zero-dimensional subspace L.

Problem

Is it consistent that every Eberlein compact space K of weight ω_1 contains a closed zero-dimensional subspace L of the same weight?

Problem

Does there exist in ZFC a compact space of weight ω_1 without nonmetrizable zero-dimensional closed subspaces?

Between ω -Corson and NY compacta

A compact space K belongs to the class $\mathcal{EC}_{\omega c}$ if, for some set Γ there is an embedding $\varphi: K \to \mathbb{R}^{\Gamma}$ and a countable subset Γ_0 of Γ such that, for each $x \in K$, the set $\operatorname{supp}(\varphi(x)) \setminus \Gamma_0$ is finite.

Proposition (M., Plebanek, Zakrzewski)

A compact space K belongs to $\mathcal{EC}_{\omega c}$ if and only if it can be embedded into the product $I^{\omega} \times L$ of the Hilbert cube I^{ω} and some ω -Corson compact space L.

Proposition (M., Plebanek, Zakrzewski)

Each ω -Corson compact space belongs to the class $\mathcal{EC}_{\omega c}$, and each member of $\mathcal{EC}_{\omega c}$ is NY compact.

For a locally compact space X, $\alpha(X)$ denotes the one point compactification of X. For an infinite cardinal number κ , $D(\kappa)$ denotes a discrete space of cardinality κ .

Example (M., Plebanek, Zakrzewski)

The space $\alpha(D(\omega_1) \times 2^{\omega})$ is ω -Corson (hence belongs to $\mathcal{EC}_{\omega c}$), but its continuous image $\alpha(D(\omega_1) \times I^{\omega})$ does not belong to $\mathcal{EC}_{\omega c}$.