On forcing names for ultrafilters

Piotr Borodulin-Nadzieja

University of Wrocław

seminar in Warsaw, 2021

The talk is based on two preprints:

- PBN, Damian Sobota, On sequences of homomorphisms into measure algebras and the Efimov Problem (arxiv)
- PBN, Katarzyna Cegiełka, On measures induced by forcing names for ultrafilters

Let G be a \mathbb{P} -generic over V. Then, in V[G], we may consider A and ultrafilters on A (*old* and *new*).

Let G be a \mathbb{P} -generic over V. Then, in V[G], we may consider A and ultrafilters on A (*old* and *new*).

Applications:

reals are ultrafilters on the Cantor algebra,

Let G be a \mathbb{P} -generic over V. Then, in V[G], we may consider A and ultrafilters on A (*old* and *new*).

Applications:

- reals are ultrafilters on the Cantor algebra,
- Stone spaces of *old* Boolean algebras may provide interesting examples of topological spaces.

Let \dot{u} be a \mathbb{P} -name for an ultrafilter on \mathbb{A} .

Let \dot{u} be a \mathbb{P} -name for an ultrafilter on \mathbb{A} . Consider $\varphi \colon \mathbb{A} \to \mathbb{P}$ defined by

 $\varphi(A) = \|A \in \dot{u}\|.$

Then φ is a Boolean homomorphism.

Let $\varphi \colon \mathbb{A} \to \mathbb{P}$ be a Boolean homomorphism.

Let $\varphi \colon \mathbb{A} \to \mathbb{P}$ be a Boolean homomorphism. Consider a \mathbb{P} -name \dot{u} defined by

$$\dot{\varphi} = \{ \langle A, \varphi(A) \rangle \colon A \in \mathbb{A} \}.$$

Then $\dot{\varphi}$ is a name for an ultrafilter on A.

Proposition

For every \mathbb{P} -name \dot{u} for an ultrafilter on \mathbb{A} there is a Boolean homomorphism $\varphi \colon \mathbb{A} \to \mathbb{P}$ such that

 $1 \Vdash \dot{u} = \dot{\varphi}.$

Proposition

For every \mathbb{P} -name \dot{u} for an ultrafilter on \mathbb{A} there is a Boolean homomorphism $\varphi \colon \mathbb{A} \to \mathbb{P}$ such that

 $1 \Vdash \dot{u} = \dot{\varphi}.$

Remark. Ultrafilters = homomorphisms to $\{0, 1\}$.

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}$$

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{\lambda_{\kappa}=0}$$

Remarks:

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{/\lambda_{\kappa}=0}.$$

Remarks:

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{\lambda_{\kappa}=0}$$

Remarks:

•
$$\mathbb{M}_1 = \{0, 1\}$$
,

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{\lambda_{\kappa}=0}$$

Remarks:

•
$$\mathbb{M}_1 = \{0, 1\}$$
,

•
$$\mathbb{M}_{\omega} = \operatorname{Bor}[0,1]_{/\mathcal{N}}$$
,

For a cardinal number κ define the measure algebra of type κ by

$$\mathbb{M}_{\kappa} = \mathrm{Bor}(\{0,1\}^{\kappa})_{\lambda_{\kappa}=0}$$

Remarks:

•
$$\mathbb{M}_1 = \{0, 1\}$$
,

- $\mathbb{M}_{\omega} = \operatorname{Bor}[0,1]_{/\mathcal{N}}$,
- Forcing with \mathbb{M}_{κ} = adding κ random reals (for $\kappa > \omega$).

Let $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ be a Boolean homomorphism. Then φ induces a measure μ on \mathbb{A} defined by

Let $\varphi\colon\mathbb{A}\to\mathbb{M}_\kappa$ be a Boolean homomorphism. Then φ induces a measure μ on \mathbb{A} defined by

 $\mu(A) = \lambda_{\kappa}(\varphi(A)).$

Let $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ be a Boolean homomorphism. Then φ induces a measure μ on \mathbb{A} defined by

$$\mu(A) = \lambda_{\kappa}(\varphi(A)).$$

Remark. By a "measure" we mean here a *finitely additive* measure.

Let $\dot{\varphi}$ be a M-name for an ultrafilter on A. Let μ be the measure induced by φ .

Let $\dot{\varphi}$ be a M-name for an ultrafilter on A. Let μ be the measure induced by $\varphi.$

Suppose that $\mu = \delta_u$ for some ultrafilter u on \mathbb{A} (in V!). Then ...

Let $\dot{\varphi}$ be a M-name for an ultrafilter on A. Let μ be the measure induced by $\varphi.$

Suppose that $\mu = \delta_u$ for some ultrafilter u on \mathbb{A} (in V!). Then ...

 $1 \Vdash \dot{\varphi} = \check{u}.$

Let $\dot{\varphi}$ be a M-name for an ultrafilter on A. Let μ be the measure induced by $\varphi.$

Suppose that $\mu = \delta_u$ for some ultrafilter u on \mathbb{A} (in V!). Then ...

$$1 \Vdash \dot{\varphi} = \check{u}.$$

If μ is purely atomic, then

$$1 \Vdash \dot{\varphi} \in V.$$

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{C} (a real). Let μ be the measure induced by φ .

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{C} (a real). Let μ be the measure induced by φ .

• if μ is the standard Lebesgue measure, then $\dot{\varphi}$ is a "random" real.

Let $\dot{\varphi}$ be a M-name for an ultrafilter on \mathbb{C} (a real). Let μ be the measure induced by φ .

- if μ is the standard Lebesgue measure, then $\dot{\varphi}$ is a "random" real.
- if μ is non-atomic, then $\dot{\varphi}$ is a "new" real.

Suppose that α is a property of subsets of ω such that

 $A = \{x \in 2^{\omega} : \alpha(x)\}$ is not scattered.

Suppose that α is a property of subsets of ω such that

 $A = \{x \in 2^{\omega} : \alpha(x)\}$ is not scattered.

(e.g. $\alpha(x) = x$ is of asymptotic density 0)
Suppose that α is a property of subsets of ω such that

 $A = \{x \in 2^{\omega} : \alpha(x)\}$ is not scattered.

(e.g. α(x) = x is of asymptotic density 0)
Let μ be a non-atomic measure on C such that μ̂(A) = 1.

Suppose that α is a property of subsets of ω such that

 $A = \{x \in 2^{\omega} : \alpha(x)\}$ is not scattered.

(e.g. α(x) = x is of asymptotic density 0)
Let μ be a non-atomic measure on C such that μ̂(A) = 1.
Let φ: C → M_κ be a homomorphism such that μ = λ_κ ∘ φ.

Suppose that α is a property of subsets of ω such that

 $A = \{x \in 2^{\omega} : \alpha(x)\}$ is not scattered.

(e.g. $\alpha(x) = x$ is of asymptotic density 0)

- Let μ be a non-atomic measure on \mathbb{C} such that $\hat{\mu}(A) = 1$.
- Let $\varphi \colon \mathbb{C} \to \mathbb{M}_{\kappa}$ be a homomorphism such that $\mu = \lambda_{\kappa} \circ \varphi$.
- Then $\dot{\varphi}$ is a name for a new subset and $1 \Vdash \alpha(\dot{\varphi})$.

Piotr Borodulin-Nadzieja On forcing names for ultrafilters

In the classical random model there are no well ordered chains of size ω_2 in $\mathcal{P}(\omega)/Fin$.

Proposition

There is a \subseteq -chain of subsets of ω of size \mathfrak{c} in $\mathcal{P}(\omega)/Fin$.

In the classical random model there are no well ordered chains of size ω_2 in $\mathcal{P}(\omega)/Fin$.

Proposition

There is a \subseteq -chain of subsets of ω of size \mathfrak{c} in $\mathcal{P}(\omega)/Fin$.

Proof: $A_r = \mathbb{Q} \cap (-\infty, r)$.

In the classical random model there are no well ordered chains of size ω_2 in $\mathcal{P}(\omega)/Fin$.

Proposition

There is a \subseteq -chain of subsets of ω of size \mathfrak{c} in $\mathcal{P}(\omega)/Fin$.

Proof: $A_r = \mathbb{Q} \cap (-\infty, r)$.

Proposition

Under MA each well-ordered chain in $\mathcal{P}(\omega)/Fin$ of size $< \mathfrak{c}$ can be extended.

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha < \omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$. Then there are $\alpha \neq \beta \in \omega_2$ and an automorphism $\Phi \colon \mathbb{M}_{\omega_2} \to \mathbb{M}_{\omega_2}$ such that $\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$ and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

Theorem (Kunen)

Theorem (Kunen)

In the classical random model there are no well ordered chains of size ω_2 in $\mathcal{P}(\omega)/Fin$.

Suppose the contrary. I.e. $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.

Theorem (Kunen)

- - homomorphisms $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$.

Theorem (Kunen)

- Suppose the contrary. I.e. $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.
- We may assume that T
 _α = φ
 _α for α < ω₂ and homomorphisms φ_α: C → M_{ω₂}.
- Then we have an automorphism Φ swapping some $\alpha < \beta$ and $\Phi[\mathbb{M}_{\omega_2}] \Vdash \Phi \circ \varphi_{\alpha} \subseteq^* \Phi \circ \varphi_{\beta}.$

Theorem (Kunen)

- Suppose the contrary. I.e. $1 \Vdash$ there is $(\dot{T}_{\alpha})_{\alpha < \omega_2}$ strictly \subseteq^* -increasing in $\mathcal{P}(\omega)$.
- We may assume that T
 _α = φ
 _α for α < ω₂ and homomorphisms φ_α: C → M_{ω₂}.
- Then we have an automorphism Φ swapping some $\alpha < \beta$ and $\Phi[\mathbb{M}_{\omega_2}] \Vdash \Phi \circ \varphi_{\alpha} \subseteq^* \Phi \circ \varphi_{\beta}$.
- But this means that

$$\mathbb{M}_{\omega_2} \Vdash \dot{\varphi}_\beta \subseteq^* \dot{\varphi}_\alpha.$$

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha < \omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$. Then there are $\alpha < \beta$ and an automorphism $\Phi \colon \mathbb{M}_{\omega_2} \to \mathbb{M}_{\omega_2}$ such that $\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$ and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

WLOG: there is a measure μ on C such that μ = λ_{ω2} ◦ φ_α for each α.

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha < \omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$. Then there are $\alpha < \beta$ and an automorphism $\Phi \colon \mathbb{M}_{\omega_2} \to \mathbb{M}_{\omega_2}$ such that $\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$ and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

- WLOG: there is a measure μ on C such that μ = λ_{ω2} φ_α for each α.
- Fix an independent family $\{C_n : n \in \omega\} \subseteq \mathbb{C}$ generating \mathbb{C} .

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha < \omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$. Then there are $\alpha < \beta$ and an automorphism $\Phi \colon \mathbb{M}_{\omega_2} \to \mathbb{M}_{\omega_2}$ such that $\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$ and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

- WLOG: there is a measure μ on C such that μ = λ_{ω2} φ_α for each α.
- Fix an independent family $\{C_n : n \in \omega\} \subseteq \mathbb{C}$ generating \mathbb{C} .
- We say that $A \in \mathbb{C}$ is *a chunk* if it is of the form

$$A = (C_{i_0} \wedge \cdots \wedge C_{i_k}) \wedge (C_{j_0}^c \wedge \cdots \wedge C_{j_l}^c)$$

Proposition

Assume GCH. Suppose $(\varphi_{\alpha})_{\alpha < \omega_2}$ is a sequence of homomorphisms $\varphi_{\alpha} \colon \mathbb{C} \to \mathbb{M}_{\omega_2}$. Then there are $\alpha < \beta$ and an automorphism $\Phi \colon \mathbb{M}_{\omega_2} \to \mathbb{M}_{\omega_2}$ such that $\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$ and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

- WLOG: there is a measure μ on \mathbb{C} such that $\mu = \lambda_{\omega_2} \circ \varphi_{\alpha}$ for each α .
- Fix an independent family $\{C_n : n \in \omega\} \subseteq \mathbb{C}$ generating \mathbb{C} .
- We say that $A \in \mathbb{C}$ is a *chunk* if it is of the form

$$A = (C_{i_0} \wedge \cdots \wedge C_{i_k}) \wedge (C_{j_0}^c \wedge \cdots \wedge C_{j_l}^c)$$

We say that α and β are symmetric if for each chunks A, B

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

 If not, then there is a coloring c: [ω₂]² → C × C assigning "witnesses".

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

- If not, then there is a coloring c: [ω₂]² → C × C assigning "witnesses".
- GCH + Erdös-Rado implies that there is an uncountable monochromatic Λ (WLOG = ω_1) with color $\langle A, B \rangle$.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for every chunks A and B.

- If not, then there is a coloring c: [ω₂]² → C × C assigning "witnesses".
- GCH + Erdös-Rado implies that there is an uncountable monochromatic Λ (WLOG = ω_1) with color $\langle A, B \rangle$.

Then for each $\alpha < \beta < \omega_1$ we have $\varphi_{\alpha}(A) \land \varphi_{\beta}(B) = 0$ and $\varphi_{\beta}(A) \land \varphi_{\alpha}(B) \neq 0$.

• Let
$$D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$$
.

• Let
$$D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$$
.

By ccc there is $\gamma < \omega_1$ such that $D = \bigvee_{\alpha < \gamma} \varphi_{\alpha}(A)$.

• Let
$$D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$$
.

By ccc there is $\gamma < \omega_1$ such that $D = \bigvee_{\alpha < \gamma} \varphi_{\alpha}(A)$.

• Then
$$D \wedge \varphi_{\gamma}(B) = 0$$
.

• Let
$$D = \bigvee_{\alpha < \omega_1} \varphi_{\alpha}(A)$$
.

By ccc there is $\gamma < \omega_1$ such that $D = \bigvee_{\alpha < \gamma} \varphi_{\alpha}(A)$.

• Then
$$D \wedge \varphi_{\gamma}(B) = 0$$
.

But φ_{γ+1}(A) ∧ φ_γ(B) ≠ 0 and φ_{γ+1}(A) ≤ D. A contradiction.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for each chunks A and B.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for each chunks A and B.

So, by Sikorski's Extension Lemma, there is an automorphism $\Phi \colon \mathbb{M}_{\omega_2} \to \mathbb{M}_{\omega_2}$ such that

$$\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$$
 and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

$$\varphi_{\alpha}(A) \wedge \varphi_{\beta}(B) = 0 \iff \varphi_{\beta}(A) \wedge \varphi_{\alpha}(B) = 0$$

for each chunks A and B.

So, by Sikorski's Extension Lemma, there is an automorphism $\Phi\colon \mathbb{M}_{\omega_2}\to\mathbb{M}_{\omega_2}$ such that

$$\Phi \circ \varphi_{\alpha} = \varphi_{\beta}$$
 and $\Phi \circ \varphi_{\beta} = \varphi_{\alpha}$.

and we are done.

Kamburelis' theorem

Piotr Borodulin-Nadzieja On forcing names for ultrafilters

Definition

A Boolean algebra \mathbb{A} is σ -centered if there is a countable set of ultrafilters (u_n) on \mathbb{A} such that $\mathbb{A} \setminus \{0\} = \bigcup_n u_n$.

Definition

A Boolean algebra \mathbb{A} is σ -centered if there is a countable set of ultrafilters (u_n) on \mathbb{A} such that $\mathbb{A} \setminus \{0\} = \bigcup_n u_n$.

Definition

A Boolean algebra \mathbb{A} supports a measure μ if $\mu(A) > 0$ for each nonzero $A \in \mathbb{A}$.

Definition

A Boolean algebra \mathbb{A} is σ -centered if there is a countable set of ultrafilters (u_n) on \mathbb{A} such that $\mathbb{A} \setminus \{0\} = \bigcup_n u_n$.

Definition

A Boolean algebra \mathbb{A} supports a measure μ if $\mu(A) > 0$ for each nonzero $A \in \mathbb{A}$.

 \mathbb{A} - σ -centered $\implies \mathbb{A}$ supports a measure $\implies \mathbb{A}$ is ccc.

Kamburelis' theorem

Theorem (Kamburelis)

Let \mathbbm{A} be a Boolean algebra. TFAE

- A supports a measure,
- there is κ such that $\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A}$ is σ -centered.
A measure preserving automorphism $\varphi \colon (\mathbb{A}, \mu) \to (\mathbb{A}, \mu)$ is *ergodic* if for every non-null $N, M \in \mathbb{A}$ there is $n \in \omega$ such that $\varphi^n(N) \cap M \neq 0$.

A measure preserving automorphism $\varphi \colon (\mathbb{A}, \mu) \to (\mathbb{A}, \mu)$ is *ergodic* if for every non-null $N, M \in \mathbb{A}$ there is $n \in \omega$ such that $\varphi^n(N) \cap M \neq 0$.

Theorem

For every $\kappa \geq \omega$ there is an ergodic automorphism of \mathbb{M}_{κ} .

Theorem

For every $\kappa \geq \omega$ there is an ergodic automorphism of \mathbb{M}_{κ} .

Theorem

For every $\kappa \geq \omega$ there is an ergodic automorphism of \mathbb{M}_{κ} .

For $\kappa = \omega$ consider $f \colon S^1 \to S^1$ defined by

$$f(x) = e^{i\alpha}x$$

for an irrational α .

Theorem

For every $\kappa \geq \omega$ there is an ergodic automorphism of \mathbb{M}_{κ} .

For $\kappa = \omega$ consider $f \colon S^1 \to S^1$ defined by

$$f(x) = e^{i\alpha}x$$

for an irrational α .

Let $\varphi(A) = f^{-1}[A]$.

In general: consider

$$X=([0,1]^\kappa)^\mathbb{Z},$$

equipped with the product measure μ .

In general: consider

$$X=([0,1]^{\kappa})^{\mathbb{Z}},$$

equipped with the product measure μ .

• Let $T: X \to X$ be the Bernoulli shift, i.e.

$$T(x)(n) = x(n+1).$$

In general: consider

$$X=([0,1]^{\kappa})^{\mathbb{Z}},$$

equipped with the product measure μ . • Let $T: X \to X$ be the Bernoulli shift, i.e.

$$T(x)(n) = x(n+1).$$

• T is mixing, i.e. for every non-null N, M we have $\lim_{n} \mu(T^{-n}[M] \cap N) = \mu(M)\mu(N).$

In general: consider

$$X=([0,1]^{\kappa})^{\mathbb{Z}},$$

equipped with the product measure μ . • Let $T: X \to X$ be the Bernoulli shift, i.e.

$$T(x)(n) = x(n+1).$$

• T is mixing, i.e. for every non-null N, M we have $\lim_{n} \mu(T^{-n}[M] \cap N) = \mu(M)\mu(N).$

So T induces an ergodic automorphism of $Bor(X)_{/\mu=0}$.

• T induces an ergodic automorphism of $Bor(X)_{/\mu=0}$.

- T induces an ergodic automorphism of $Bor(X)_{/\mu=0}$.
- By Maharam's theorem there is a measure preserving isomorphism ψ: Bor(X)_{/µ=0} → M_κ.

- T induces an ergodic automorphism of $Bor(X)_{/\mu=0}$.
- By Maharam's theorem there is a measure preserving isomorphism ψ: Bor(X)_{/µ=0} → M_κ.

• Let
$$\varphi = \psi \circ T^{-1} \circ \psi^{-1}$$
.

Theorem (Kamburelis)

Let \mathbbm{A} be a Boolean algebra. TFAE

- A supports a measure,
- there is κ such that $\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A}$ is σ -centered.

Suppose that \mathbb{A} supports a measure μ .

- Suppose that \mathbb{A} supports a measure μ .
- By Maharam's theorem, there is κ and $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ such that

$$\mu = \lambda_{\kappa} \circ \varphi.$$

- Suppose that \mathbb{A} supports a measure μ .
- By Maharam's theorem, there is κ and $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ such that

$$\mu = \lambda_{\kappa} \circ \varphi.$$

• Let ψ be an ergodic automorphism of \mathbb{M}_{κ} and let

$$\varphi_n = \psi^n \circ \varphi.$$

- Suppose that \mathbb{A} supports a measure μ .
- By Maharam's theorem, there is κ and $\varphi \colon \mathbb{A} \to \mathbb{M}_{\kappa}$ such that

$$\mu = \lambda_{\kappa} \circ \varphi.$$

Let ψ be an ergodic automorphism of \mathbb{M}_{κ} and let

$$\varphi_n = \psi^n \circ \varphi.$$

Let $A \in \mathbb{A} \setminus \{0\}$, $P \in \mathbb{M}_{\kappa} \setminus \{0\}$. Then there is *n* such that $Q := \varphi_n[A] \cap P \neq 0.$

- Suppose that \mathbb{A} supports a measure μ .
- By Maharam's theorem, there is κ and $arphi \colon \mathbb{A} o \mathbb{M}_{\kappa}$ such that

$$\mu = \lambda_{\kappa} \circ \varphi.$$

Let ψ be an ergodic automorphism of \mathbb{M}_{κ} and let

$$\varphi_n = \psi^n \circ \varphi.$$

Let $A \in \mathbb{A} \setminus \{0\}$, $P \in \mathbb{M}_{\kappa} \setminus \{0\}$. Then there is *n* such that $Q := \varphi_n[A] \cap P \neq 0.$

 $Q \Vdash A \in \dot{\varphi_n}.$

Suppose that (φ_n) is such that

$$\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A} \setminus \{0\} = \bigcup_{n} \dot{\varphi_n}.$$

Suppose that (φ_n) is such that

$$\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A} \setminus \{0\} = \bigcup_{n} \dot{\varphi_n}.$$

• Let
$$\mu_n = \lambda_\kappa \circ \varphi_n$$
.

Suppose that (φ_n) is such that

$$\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A} \setminus \{0\} = \bigcup_{n} \dot{\varphi_n}.$$

Let
$$\mu_n = \lambda_\kappa \circ \varphi_n.$$

Let
$$\mu = \sum \mu_n / 2^{n+1}.$$

Piotr Borodulin-Nadzieja On forcing names for ultrafilters

Suppose that
$$(\varphi_n)$$
 is such that

$$\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A} \setminus \{0\} = \bigcup_{n} \dot{\varphi_n}.$$

Let
$$\mu_n = \lambda_\kappa \circ \varphi_n.$$

Let $\mu = \sum_n \mu_n / 2^{n+1}.$

For each $A \in \mathbb{A} \setminus \{0\}$ there is *n* such that $\varphi_n(A) \neq 0$.

Suppose that (φ_n) is such that

$$\Vdash_{\mathbb{M}_{\kappa}} \mathbb{A} \setminus \{0\} = \bigcup_{n} \dot{\varphi_n}.$$

Let
$$\mu_n=\lambda_\kappa\circ\varphi_n.$$
 Let
$$\mu=\sum_n \mu_n/2^{n+1}$$

For each A ∈ A \ {0} there is n such that φ_n(A) ≠ 0.
Thus μ_n(A) > 0 and so μ(A) > 0.

Frechet-Nikodym metric

Definition

If \mathbb{M} is a measure algebra, then $d_{\lambda} \colon \mathbb{M} \to [0,\infty)$ defined by

$$d_\lambda(A,B)=\mu(A riangle B)$$

is a metric (called Frechet-Nikodym metric).

Frechet-Nikodym metric

Definition

If \mathbb{M} is a measure algebra, then $d_{\lambda} \colon \mathbb{M} \to [0,\infty)$ defined by

$$d_\lambda(A,B)=\mu(A riangle B)$$

is a metric (called *Frechet-Nikodym metric*).

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges *metrically pointwise* to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

 $d_{\lambda}(\varphi_n(A),\varphi(A)) \to 0.$

Frechet-Nikodym metric

Definition

If \mathbb{M} is a measure algebra, then $d_{\lambda} \colon \mathbb{M} \to [0,\infty)$ defined by

$$d_\lambda(A,B)=\mu(A riangle B)$$

is a metric (called *Frechet-Nikodym metric*).

Definition

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges *metrically pointwise* to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

 $d_{\lambda}(\varphi_n(A),\varphi(A)) \to 0.$

Remark. Stone topology = pointwise convergence topology.

Proposition (PBN, Sobota)

Suppose that

 $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges to $\dot{\varphi}$.

Then (φ_n) converges metrically pointwise to φ .

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges *uniformly* to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

 $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall A \in \mathbb{A} \ d_{\lambda}(\varphi_n(A), \varphi(A)) < \varepsilon.$

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges *uniformly* to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

 $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall A \in \mathbb{A} \ d_{\lambda}(\varphi_n(A), \varphi(A)) < \varepsilon.$

Theorem (PBN, Sobota, 2020)

Let \mathbb{M} be a measure algebra. If $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges trivially to $\dot{\varphi}$, then (φ_n) converges to φ uniformly.

We say that a sequence of homomorphisms $\varphi_n \colon \mathbb{A} \to \mathbb{M}$ converges *uniformly* to a homomorphism $\varphi \colon \mathbb{A} \to \mathbb{M}$ if

 $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall A \in \mathbb{A} \ d_{\lambda}(\varphi_n(A), \varphi(A)) < \varepsilon.$

Theorem (PBN, Sobota, 2020)

Let \mathbb{M} be a measure algebra. If $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges trivially to $\dot{\varphi}$, then (φ_n) converges to φ uniformly.

If $\mathbb{M} \Vdash (\dot{\varphi}_n)$ converges non-trivially to $\dot{\varphi}$, then (φ_n) does not converge to φ uniformly.

Thank you and greetings from Wrocław

