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X is a perfect Polish space.

Definition 1
A set A ⊆ X is perfectly meager (A ∈ PM), if for all perfect subsets P of
X , the set A ∩ P is meager in P.

Definition 2
A set A ⊆ X is universally meager (A ∈ UM), if A is meager with respect
to any perfect Polish topology τ (A ∈M(X , τ)) on X giving the original
Borel structure of X .
Equivalently, A ∈ UM if A does not contain any injective Borel image of
a non-meager subset of any perfect Polish space.

Remark 1

UM ⊆ PM.

Proposition 1
Consistently (eg., under CH or MA):

UM ( PM.

Theorem 1 (Bartoszyński)
Consistently:

UM = PM.

Definition 3
We say that a set A ⊆ X is countably perfectly meager in X (A ∈ PMσ),
if for every sequence of perfect subsets (Pn : n ∈ N) of X , there exists
an Fσ-set F in X such that A ⊆ F and F ∩Pn is meager in Pn for each n.

Proposition 2 (Bartoszyński)

PMσ ⊆ UM.

Definition 4
A is an s0-set if for every perfect set P there is a copy of the Cantor set
K ⊆ P with K ∩ A = ∅.

Theorem 2
The following are equivalent for A ⊆ X:

1. A ∈ PMσ.
2. A is an s0-set and for every sequence (Kn : n ∈ N) of pairwise

disjoint and disjoint from A copies of the Cantor set in X there are
closed sets Fn in X such that A ⊆

⋃
n Fn and Km 6⊆ Fn for each

m,n ∈ N.

Theorem 3
The product of two countably perfectly meager sets is countably
perfectly meager in the sense that if A and B are PMσ-sets in perfect
Polish spaces X and Y , respectively, then A× B is a PMσ-set in X × Y.

Remark 2
If I is a σ-ideal of subsets of X , then by I∗ we denote the σ-ideal
generated by the closed subsets of X which belong to I.

A ∈ PMσ iff A ∈M∗(X , τ) for any perfect Polish topology τ on X giving
the original Borel structure of X , i.e., for any such τ there are closed in
the original topology, τ -meager sets Fn ⊆ X with A ⊆

⋃
n Fn,

(whereas A ∈ UM iff A ∈M(X , τ) for any perfect Polish topology τ on X
giving the original Borel structure of X).

Problem 1

PMσ = UM ?

More precisely, is it true that every universally meager subset of X is
countably perfectly meager in X?

Definition 5
I A ⊆ X is a λ′-set in X if every countable set D ⊆ X is relatively Gδ

in A ∪ D,
I A ⊆ X is a λ-set if every countable set D ⊆ A is relatively Gδ in A.

Proposition 3
λ′-sets in X are PMσ in X . In particular, the following sets are PMσ in
the respective spaces:

1. any b-scale in NN (Rothberger), i.e., a set of the form {fα : α < b}
where

I α < β < b implies fα <∗ fβ ,
I for every f ∈ NN there is α < b with fα �∗ f .

2. any Hausdorff (ω1, ω
∗
1)-gap in P(N).

Definition 6
A ⊆ X has the Hurewicz property, if every continuous image of A in NN
is bounded in the ordering ≤∗ of eventual domination.

Proposition 4
Any set A ⊆ X with the Hurewicz property and no perfect subsets is
PMσ in X . In particular, the following sets are PMσ in the respective
spaces:

1. any subset of X of cardinality less than b,
2. any Sierpiński set in 2N (Fremlin and Miller),
3. γ-set in 2N (Galvin and Miller).

By a theorem of Just, Miller, Scheepers and Szeptycki if A ⊆ X has the
Hurewicz property, then for every sequence (Kn : n ∈ N) of copies of the
Cantor set in X disjoint from A there are closed sets Fn in X such that
A ⊆

⋃
n Fn and Km ∩ Fn = ∅ for each m,n ∈ N.

Definition 7
A subset A of 2N is perfectly meager in the transitive sense (A ∈ AFC′)
if for every perfect subset P of 2N, there exists an Fσ-set F in X such
that A ⊆ F and F ∩ (P + t) is meager in P + t for each t ∈ 2N.

Proposition 5 (Bartoszyński)
For A ⊆ 2N the following are equivalent:

1. A ∈ PMσ,
2. for every perfect subset P of 2N, there exists an Fσ-set F in 2N

such that A ⊆ F and F ∩ (P + q) is meager in P + q for every
q ∈ Q, where Q consists of all eventually zero binary sequences.

Proposition 6
Any set A ⊆ 2N perfectly meager in the transitive sense is PMσ in 2N. In
particular, the following sets are PMσ in 2N:

1. meager-additive sets,
2. γ-sets,
3. strongly meager sets,
4. Sierpiński sets.

The following example, based on a result of Bartoszyński and Shelah
and classical ideas of Rothberger shows that there exists (in ZFC) a
countably perfectly meager set in 2N of cardinality b that has neither the
Hurewicz nor λ′ property. It also shows that the Hurewicz and λ′

properties are not the same.

Example 1
Inductively, one easily constructs a b-scale in NN, i.e., a subset
{fα : α < b} of NN with the following properties:

I fα is strictly increasing,
I α < β < b implies fα <∗ fβ,
I for every f ∈ NN there is α < b with fα �∗ f .

By identifying each fα with the characteristic function of its range, we
obtain a homeomorphic copy A of {fα : α < b} in 2N.

Let B = A ∪Q, where Q consists of all eventually zero binary
sequences. Then:

I {fα : α < b}, being unbounded in NN, does not have the Hurewicz
property,

I {fα : α < b} is a λ′-set in NN (Rothberger),

I B has the Hurewicz property (first noted by Bartoszyński and
Shelah) and has no perfect subsets, so B is countably perfectly
meager in 2N,

I A is countably perfectly meager in 2N as a subset of B,

I A does not the Hurewicz property as the homeomorphic image of
{fα : α < b},

I if F is any Fσ-set in 2N such that A ⊆ F , then F ∩Q 6= ∅ (since
otherwise F viewed as a subset of NN is bounded, whereas A is
unbounded). In particular, neither A nor B are λ′-sets in 2N.

Proposition 7
If there is a λ′-set in 2N of cardinality of the continuum, then there is
also one which is not perfectly meager in the transitive sense (but being
a λ′-set in 2N it is PMσ-set in 2N as well).

Main results

Theorem 8
Let T be a subset of 2N of cardinality 2ℵ0 . There exist a set H ⊆ T × 2N

intersecting each vertical section {t} × 2N, t ∈ T , in a singleton and a
homeomorphic copy E of H in 2N which is not a PMσ-set in 2N. In
particular, T is a continuous injective image of E.

Corollary 9

1. If there exists a universally meager set in 2N of cardinality of the
continuum, then there is also one which is not countably perfectly
meager.
(Just take T ∈ UM; then E ∈ UM \ PMσ).

2. If there exists a λ-set in 2N of cardinality of the continuum, then
there is also one which is not countably perfectly meager.
(Just take T ∈ λ; then E ∈ λ \ PMσ).

3. If there exists a λ′-set in 2N of cardinality of the continuum, then
there is also one whose homeomorphic copy in 2N is not countably
perfectly meager. In particular, the class PMσ is not closed with
respect to homeomorphic images.
(Just take T a λ′ set in 2N; then H is λ′ in 2N × 2N and E is its
homeomorphic image in 2N which is not PMσ).

Sketch of proof of Theorem 8.

Let C0,C1, . . . be pairwise disjoint meager Cantor sets in 2N such that:

(1) each non-empty open set in 2N contains some Cn.

Let P = 2N \
⋃

n Cn.

Claim 1. There exists a set H ⊆ T × P intersecting each vertical
section {t} × P, t ∈ T , in a singleton, such that each Fσ-set in 2N × 2N

containing H contains also {t} × V for some t ∈ T and a non-empty
open set V in 2N.

This is proved by a diagonalization argument.

Let {Ft : t ∈ T} be a parametrization on T of all Fσ-sets in 2N × 2N.

For each t ∈ T , we pick (t , ϕ(t)) ∈ ({t} × P) \ Ft , whenever this is
possible, and we let ϕ(t) be an arbitrary fixed element of P, otherwise.

Then the graph H = {(t , ϕ(t)) : t ∈ T} has the required property.

Let F be an Fσ-set in 2N × 2N containing H, and let t ∈ T be such that
F = Ft . Then (t , ϕ(t)) ∈ Ft , hence Ft contains {t} × P. Consequently, P
being a dense Gδ-set in 2N, the Baire category theorem provides a
non-empty open set V in 2N with {t} × V ⊆ Ft , completing the proof of
the claim.

For any s ∈ 2<N let Ns = {x ∈ 2N : s ⊆ x} be the standard basic open
set in 2N determined by s.

Let ∼ be the equivalence relation on 2N × 2N, whose equivalence
classes are given by:

[(x , y)]∼ =

{
Nx |n × {y}, if y ∈ Cn,

{(x , y)}, if y ∈ P

Let π(x , y) = [(x , y)]∼ be the quotient map onto the quotient space

K = (2N × 2N)/ ∼

(whose topology consists of sets U ⊆ K such that π−1(U) is open in
2N × 2N).

Claim 2. The space K is homeomorphic to 2N.

Indeed, K is compact, Hausdorff, second countable, zero-dimensional
topological space without isolated points. This may be proved e.g. by
defining explicitly a countable basis for K consisting of clopen sets.

Finally, let
E = π(H)

(cf. Claim 1).

Clearly, E is a homeomorphic copy of H in K and T is the injective
image of E under the continuous function proj1 ◦ π−1|E , where proj1 is
the projection of 2N × 2N onto the first axis.

We will complete the proof by showing that

E is not a PMσ-set in K .

More precisely, we will show that if F ∗ is an Fσ-set in K such that
E ⊆ F ∗, then F ∗ contains one of the members of a certain countable
collection {Ps : s ∈ 2<N} of perfect subsets of K .

To that end, let us consider an Fσ-set F ∗ in K such that E ⊆ F ∗. Then
F = π−1(F ∗)

is an Fσ-set in 2N × 2N containing H, so there are t ∈ T and a
non-empty open set V in 2N such {t} × V ⊆ F , cf. Claim 1.

Let us fix Cn ⊆ V (cf. (1)) and let s = t |n.

We have {t} × Cn ⊆ F , so

(2) π({t} × Cn) ⊆ F ∗.

Recall that for any y ∈ Cn

π(t , y) = Ns × {y}.

It follows that:

(3) π({t} × Cn) = {Ns × {y} : y ∈ Cn} = π(Ns × Cn).

Consequently, letting
Ps = π(Ns × Cn),

we conclude that Ps ⊆ F ∗ cf. (2) and (3).

It follows that any Fσ-set in K containing E also contains some of
(countably many perfect sets in K of the form) Ps, which confirms that E
is not a PMσ-set in K .


