On cardinalities of Lindelöf first countable spaces

Lyubomyr Zdomskyy

Institute of Discrete Mathematics and Geometry, University of Technology in Vienna

Warsaw Topology and Set Theory Seminar November 16, 2022, online

Joint work with L. Aurichi and L. Chiozini de Souza.

A question of Alexandrov 192?

Is it true that every first-countable Hausdorff compact space has cardinality at most c ?

Arkhangel'skii 1969: Yes
Theorem (Arkhangel'skii 1969)
If X is a Hausdorff space, then $|X| \leq 2^{L(X) \chi(X)}$.
Definition. Let $\langle X, \tau\rangle$ be a T_{1} topological space and $x \in X$.

- $\chi(X ; x)=\min \{|\mathcal{B}|: \mathcal{B}$ is a local base at $x\}$;
- $\chi(X)=\sup \{\chi(X ; x): x \in X\}$;
- $\psi(X ; x)=\min \{|\mu|: \mu \subset \tau,\{x\}=\cap \mu\}$;
- $\psi(X)=\sup \{\psi(X ; x): x \in X\}$; and
- $L(X)=\min \{\kappa$: every open cover \mathcal{U} of X has a subcover \mathcal{V} of cardinality $\leq \kappa\}$.

What about T_{1}-spaces?

Frank Tall in his 2011 survey paper on Lindelöf spaces attributes the next question to Arhangel'skii:

Question
Is it true that $|X| \leq \mathfrak{c}$ for every Lindelöf first-countable T_{1} space?
Theorem (Gryzlov 1980)
$|X| \leq \mathfrak{c}$ for every compact first-countable T_{1} space X.
Theorem (LLL(L) 2022)
Suppose that GCH holds in V and κ is a regular cardinal. Then there exists a countably closed cardinal preserving poset \mathbb{P} such that in $V^{\mathbb{P}}$ there exists a Lindelöf first-countable T_{1} space X ($L(X)=\chi(X)=\omega$) of cardinality κ.

What we do not know

The idea of the proof is taken from the following 30 years old result of I. Gorelic:

Theorem

Suppose that GCH holds in V and κ is a regular cardinal. Then there exists a countably closed cardinal preserving poset \mathbb{P} such that in $V^{\mathbb{P}}$ there exists a Lindelöf subspace X of 2^{κ} of cardinality κ such that $\psi(X)=\omega$.
Informally speaking, we were able to modify his proof in such a way that we gain the first countability, and (necessarily) lose the Hausdorff property. This method does not allow to go beyond $2^{\omega_{1}}$, which is $2^{\mathfrak{c}}$ in this setting.
Question. Is it true (consistent) that $|X| \leq 2^{\omega_{1}}\left[|X| \leq 2^{c}\right]$ for every
(Gor): Lindelöf Hausdorff (resp. regular, zero-dimensional) space X with $\psi(X)=\omega$?
(LLL): Lindelöf T_{1} space X with $\chi(X)=\omega$?

The poset: Notation

- Let κ be regular, $\kappa=\sqcup_{\alpha \in \kappa} A_{\alpha},\left|A_{\alpha}\right|=\omega, A_{\alpha}=\left\{a_{n}^{\alpha}: n \in \omega\right\}$;
- $\left\{B_{n}: n \in \omega\right\} \subset[\omega]^{\omega}$ is a.d. and such that for every $s \in 2^{<\omega}$ and $n \in \omega$ there exists $m>n$ such that $s \subset \chi_{B_{m}}$ and $B_{m} \cap B_{i} \cap(\omega \backslash|s|)=\emptyset$ for all $i \leq n$;
- $A_{\alpha, n}:=\left\{a_{k}^{\alpha}: k \in B_{n}\right\}$;
- For each finite $s \subset \kappa$ set $U_{s}=$ $\{x: x$ is a function into $2, s \subset \operatorname{dom}(x) \subset \kappa$, and $x \upharpoonright s \equiv 1\}$; For $A \subset \kappa$ we set $\mathcal{B}_{A}:=\left\{U_{s}: s \in[A]^{<\omega}\right\}$;
- Given $F \subset 2^{A}, s \in[A]^{<\omega}$, and $\xi \in A$, we say that s requires ξ (in written $s \vDash \xi$) if for every $x \in F$, if $x \upharpoonright s \equiv 1$, then $x(\xi)=1$. I.e., $U_{s} \cap F \subset U_{\{\xi\}} \cap F$. (Depends on $F!$)

The poset: Conditions

\mathbb{P} consists of conditions
$p=\langle I, A, F, \mathrm{U}, \ell, r\rangle=\left\langle I^{p}, A^{p}, F^{p}, \mathrm{U}^{p}, \ell^{p}, r^{p}\right\rangle$ such that

1. $I \in[\kappa]^{\omega}$ and $A=\bigcup_{\alpha \in I} A_{\alpha}$;
2. $F=\left\{x_{\alpha, n} \in 2^{A}: \alpha \in I, n \in \omega\right\}$ is such that
(i) $x_{\alpha, n} \upharpoonright A_{\alpha}=\chi_{A_{\alpha, n}}$, i.e., $x_{\alpha, n}\left(a_{k}^{\alpha}\right)=1$ iff $k \in B_{n}$;
(ii) $x_{\alpha, n} \upharpoonright\left(A \backslash A_{\alpha}\right)=x_{\alpha, m} \upharpoonright\left(A \backslash A_{\alpha}\right)$ for all $\alpha \in I$ and $n, m \in \omega$;
(iii) If $\alpha, \beta \in I, \alpha \neq \beta$, then for any $n, m \in \omega$ we have

$$
\left|x_{\alpha, m}^{-1}(1) \cap A_{\beta, n}\right|<\omega ;
$$

3. $\mathrm{U} \subset \mathcal{P}\left(\mathcal{B}_{A}\right)$ is a countable family of covers of F;
4. $r: A \times \omega \rightarrow[\omega]^{<\omega}$ is such that $r(\alpha, n)$ equals
$\left\{j \in B_{n}: \exists \beta \in I \backslash\{\alpha\} \exists m \in \omega\left(x_{\alpha, n}^{-1}(1) \cap A_{\beta, m} \vDash a_{j}^{\alpha}\right)\right\} ;$
5. ℓ is a function with domain consisting of $\langle\alpha, n, \xi\rangle$ such that $\xi \in A \backslash A_{\alpha}$ and $x_{\alpha, n}(\xi)=1, \quad \ell(\alpha, n, \xi) \in \omega$, such that

$$
S_{\ell(\alpha, n, \xi)}^{\alpha, n} \vDash \xi, \quad \text { where } S_{k}^{\alpha, n}=\left\{a_{j}^{\alpha}: j \in B_{n}, j \leq k\right\} .
$$

The poset: Order relation

$q \leq p$ iff $I^{q} \supset I^{p}, A^{q} \supset A^{p}, \mathrm{U}^{q} \supset \mathrm{U}^{p}, \ell^{q} \supset \ell^{p}, r^{q} \supset r^{p}$, and $x_{\alpha, n}^{q} \upharpoonright A^{p}=x_{\alpha, n}^{p}$ for all $\alpha \in I^{p}$ and $n \in \omega$. Obviously, \mathbb{P} is countably closed.

Lemma

- Let $p \in \mathbb{P}$ and $\gamma \notin I^{p}$, then there exists $q \leq p$ such that $\gamma \in I^{q}$;
- If GCH holds in V, then \mathbb{P} is ω_{2}-c.c.

If G is \mathbb{P}-generic, then for every $\alpha \in \kappa$ and $n \in \omega$ set

$$
x_{\alpha, n}=\bigcup\left\{x_{\alpha, n}^{p}: p \in G, \alpha \in I^{p}\right\} \text { and } X=\left\{x_{\alpha, n}: \alpha \in \kappa, n \in \omega\right\} .
$$

$X \subset 2^{\kappa}$ by Lemma above
Theorem
X with the topology generated by
$\mathcal{B}_{\kappa} \upharpoonright X=\left\{U_{s} \cap X: s \in[\kappa]^{<\omega}\right\}$
is a Lindelöf, T_{1}, and first-countable space.

Sketch of the proof: Lindelöf

Let $p_{0} \in \mathbb{P}$ and $\dot{\mathcal{U}}$ be a \mathbb{P}-name such that p_{0} forces $\dot{\mathcal{U}} \subset \mathcal{B}_{\kappa}$ and $\dot{X} \subset \cup \dot{\mathcal{U}}$. Let $p_{1} \leq p_{0}$ and $\mathcal{U}_{1} \in\left[\mathcal{B}_{\kappa}\right]^{\omega}$ be such that

$$
p_{1} \Vdash\left\{\dot{x}_{\alpha, n}: \alpha \in \check{I}^{p_{0}}, n \in \omega\right\} \subset \cup \check{\mathcal{U}}_{1},
$$

and $\mathcal{U}_{1} \subset \mathcal{B}_{A^{p_{1}}}$. Let $p_{2} \leq p_{1}$ and $\mathcal{U}_{2} \in\left[\mathcal{B}_{\kappa}\right]^{\omega}$ be such that

$$
p_{2} \Vdash\left\{\dot{x}_{\alpha, n}: \alpha \in \check{I}^{p_{1}}, n \in \omega\right\} \subset \cup \check{\mathcal{U}}_{2},
$$

and $\mathcal{U}_{2} \subset \mathcal{B}_{A^{p_{2}}}$. And so on...
Set p_{ω} be the "union" of all the p_{n} 's, with one extra elements $\mathcal{U}_{\omega}:=\bigcup_{n \in \omega} \mathcal{U}_{n}$ included in addition into $\bigcup^{p_{\omega}}$. Then $p_{\omega} \Vdash$ " $\mathcal{U}_{\omega} \subset \dot{\mathcal{U}}$ and \mathcal{U}_{ω} is a cover of \dot{X} ".
Indeed, pick $G \ni p_{\omega}, \gamma \notin I^{p_{\omega}}$ and n, and $q \leq p_{\omega}$ with $q \in G$ and $\gamma \in I^{q}$. Then $\mathcal{U}_{\omega} \in \mathrm{U}^{q}$, and hence $x_{\gamma, n}^{q} \in \cup \mathcal{U}_{\omega}$, which implies $x_{\gamma, n} \in \cup \mathcal{U}_{\omega}$.

Sketch of the proof: First-countable

Given α, n, we claim that

$$
\left\{U_{S_{k}^{\alpha, n}}: k \in \omega\right\}
$$

is a base at $x_{\alpha, n}$. Recall that $S_{k}^{\alpha, n}=\left\{a_{j}^{\alpha}: j \in B_{n}, j \leq k\right\}$. Indeed, pick $\xi \in \kappa$ such that $x_{\alpha, n}(\xi)=1$, and find $p \in G$ such that $\alpha \in I^{p}$ and $\xi \in A^{p}$. By the definition of a condition, we have $S_{\ell^{p}(\alpha, n, \xi)}^{\alpha, n} \vDash \xi$, which means

$$
U_{S_{\ell p}^{\alpha, n}(\alpha, n, \xi)} \cap F^{p} \subset U_{\xi}
$$

For stronger $q, \ell^{q}(\alpha, n, \xi)=\ell^{p}(\alpha, n, \xi)$, and hence $S_{\ell^{q}(\alpha, n, \xi)}^{\alpha, n} \vDash \xi$, which means

$$
U_{S_{\ell q}^{\alpha, n}(\alpha, n, \xi)} \cap F^{q} \subset U_{\xi}
$$

Thus

$$
U_{S_{\ell p(\alpha, n, \xi)}^{\alpha, n}} \cap X \subset U_{\xi}
$$

The proof of Gryzlov's theorem

Pick $M \prec V,|M|=2^{\omega}, M^{\omega} \subset M$, and $X, \tau \in M$. Enough to prove that $X \subset M$.

Step 1. $X \cap M$ is countably compact as a subspace of X.
Proof. Let $Y \in[X \cap M]^{\omega}$. Then

$$
V \vDash \text { " } Y \text { has an accumulation point". }
$$

Since $Y \in M$,

$$
M \vDash \text { " } Y \text { has an accumulation point", }
$$

i.e., Y has an accumulation point in M (and hence in $M \cap X$).

The proof of Gryzlov's theorem, continuation

Step 2. $X \cap M$ is compact.
Proof. Suppose not and fix a maximal family \mathcal{F} of closed subsets of $M \cap X$ closed under finite intersection, and such that $\bigcap \mathcal{F}=\emptyset$. Pick $x \in \bigcap\left\{c l_{X}(F): F \in \mathcal{F}\right\}$ and note that $x \notin X \cap M$. Let $\left\{U_{n}: n \in \omega\right\}$ be a decreasing base at $x . \quad x \notin c l_{X}\left(X \backslash U_{n}\right)$ implies $(M \cap X) \backslash U_{n} \notin \mathcal{F}$, and hence there exists $F_{n} \in \mathcal{F}$ such that $F_{n} \cap\left(X \backslash U_{n}\right)=\emptyset$, i.e., $F_{n} \subset U_{n}$. Thus $\bigcap_{n \in \omega} F_{n}=\emptyset$, a contradiction.

The proof of Gryzlov's theorem, continuation

Step 3. $X \subset M$.
Proof. Suppose not and fix $z \in X \backslash M$. For every $x \in X \cap M$ find a neighborhood $U(x) \not \supset z, U(x) \in M$. Let $\left\{U\left(x_{i}\right): i<n\right\} \in M$ be a finite cover of $X \cap M$. Then

$$
M \vDash \bigcup_{i<n} U\left(x_{i}\right)=X,
$$

and hence

$$
V \vDash \bigcup_{i<n} U\left(x_{i}\right)=X,
$$

i.e., $\bigcup_{i<n} U\left(x_{i}\right)=X$, a contradiction because z is not covered. \square

The last slide

Thank you for your attention!
Dziękuję Polsce za wsparcie dla Ukrainy!

