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A question of Alexandrov 192?

Is it true that every �rst-countable Hausdor� compact space

has cardinality at most c?

Arkhangel'skii 1969: Yes

Theorem (Arkhangel'skii 1969)

If X is a Hausdor� space, then |X| ≤ 2L(X)χ(X).

De�nition. Let 〈X, τ〉 be a T1 topological space and x ∈ X.

I χ(X;x) = min{|B| : B is a local base at x};
I χ(X) = sup{χ(X;x) : x ∈ X};
I ψ(X;x) = min{|µ| : µ ⊂ τ, {x} = ∩µ};
I ψ(X) = sup{ψ(X;x) : x ∈ X}; and
I L(X) = min{κ : every open cover U of X has a subcover V

of cardinality ≤ κ}.
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What about T1-spaces?

Frank Tall in his 2011 survey paper on Lindelöf spaces attributes
the next question to Arhangel'skii:

Question
Is it true that |X| ≤ c for every Lindelöf �rst-countable T1 space?

Theorem (Gryzlov 1980)

|X| ≤ c for every compact �rst-countable T1 space X.

Theorem (LLL(L) 2022)

Suppose that GCH holds in V and κ is a regular cardinal. Then

there exists a countably closed cardinal preserving poset P such

that in V P there exists a Lindelöf �rst-countable T1 space X
(L(X) = χ(X) = ω) of cardinality κ.
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What we do not know

The idea of the proof is taken from the following 30 years old result
of I. Gorelic:

Theorem
Suppose that GCH holds in V and κ is a regular cardinal. Then

there exists a countably closed cardinal preserving poset P such

that in V P there exists a Lindelöf subspace X of 2κ of cardinality κ
such that ψ(X) = ω. 2

Informally speaking, we were able to modify his proof in such a way
that we gain the �rst countability, and (necessarily) lose the
Hausdor� property. This method does not allow to go beyond 2ω1 ,
which is 2c in this setting.

Question. Is it true (consistent) that |X| ≤ 2ω1 [|X| ≤ 2c] for
every

(Gor): Lindelöf Hausdor� (resp. regular, zero-dimensional) space X
with ψ(X) = ω?

(LLL): Lindelöf T1 space X with χ(X) = ω?
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The poset: Notation

I Let κ be regular, κ = tα∈κAα, |Aα| = ω, Aα = {aαn : n ∈ ω};
I {Bn : n ∈ ω} ⊂ [ω]ω is a.d. and such that

for every s ∈ 2<ω and n ∈ ω there exists m > n such that

s ⊂ χBm and Bm ∩Bi ∩ (ω \ |s|) = ∅ for all i ≤ n;
I Aα,n := {aαk : k ∈ Bn};
I For each �nite s ⊂ κ set Us =
{x : x is a function into 2, s ⊂ dom(x) ⊂ κ, and x � s ≡ 1};
For A ⊂ κ we set BA := {Us : s ∈ [A]<ω};

I Given F ⊂ 2A, s ∈ [A]<ω, and ξ ∈ A, we say that s requires ξ
(in written s � ξ) if for every x ∈ F, if x � s ≡ 1, then
x(ξ) = 1. I.e., Us ∩ F ⊂ U{ξ} ∩ F . (Depends on F !)

5 / 13



The poset: Conditions

P consists of conditions
p = 〈I, A, F,U, `, r〉 = 〈Ip, Ap, F p,Up, `p, rp〉 such that

1. I ∈ [κ]ω and A =
⋃
α∈I Aα;

2. F = {xα,n ∈ 2A : α ∈ I, n ∈ ω} is such that

(i) xα,n � Aα = χAα,n , i.e., xα,n(aαk ) = 1 i� k ∈ Bn;
(ii) xα,n � (A \Aα) = xα,m � (A \Aα) for all α ∈ I and n,m ∈ ω;

(iii) If α, β ∈ I, α 6= β, then for any n,m ∈ ω we have

|x−1
α,m(1) ∩Aβ,n| < ω;

3. U ⊂ P(BA) is a countable family of covers of F ;

4. r : A× ω → [ω]<ω is such that r(α, n) equals
{j ∈ Bn : ∃β ∈ I \ {α} ∃m ∈ ω (x−1α,n(1) ∩Aβ,m � aαj )};

5. ` is a function with domain consisting of 〈α, n, ξ〉 such that
ξ ∈ A \Aα and xα,n(ξ) = 1, `(α, n, ξ) ∈ ω, such that

Sα,n`(α,n,ξ) � ξ, where Sα,nk = {aαj : j ∈ Bn, j ≤ k}.
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The poset: Order relation

q ≤ p i� Iq ⊃ Ip, Aq ⊃ Ap, Uq ⊃ Up, `q ⊃ `p, rq ⊃ rp, and
xqα,n � Ap = xpα,n for all α ∈ Ip and n ∈ ω. Obviously, P is
countably closed.

Lemma

I Let p ∈ P and γ 6∈ Ip, then there exists q ≤ p such that

γ ∈ Iq;
I If GCH holds in V , then P is ω2-c.c. 2

If G is P-generic, then for every α ∈ κ and n ∈ ω set

xα,n =
⋃
{xpα,n : p ∈ G,α ∈ Ip} and X = {xα,n : α ∈ κ, n ∈ ω}.

X ⊂ 2κ by Lemma above

Theorem
X with the topology generated by

Bκ � X = {Us ∩X : s ∈ [κ]<ω}
is a Lindelöf, T1, and �rst-countable space.
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Sketch of the proof: Lindelöf

Let p0 ∈ P and U̇ be a P-name such that p0 forces U̇ ⊂ Bκ and
Ẋ ⊂ ∪U̇ . Let p1 ≤ p0 and U1 ∈ [Bκ]ω be such that

p1 
 {ẋα,n : α ∈ Ǐp0 , n ∈ ω} ⊂ ∪Ǔ1,

and U1 ⊂ BAp1 . Let p2 ≤ p1 and U2 ∈ [Bκ]ω be such that

p2 
 {ẋα,n : α ∈ Ǐp1 , n ∈ ω} ⊂ ∪Ǔ2,

and U2 ⊂ BAp2 . And so on...

Set pω be the �union� of all the pn's, with one extra elements
Uω :=

⋃
n∈ω Un included in addition into Upω . Then pω 


�Uω ⊂ U̇ and Uω is a cover of Ẋ�.

Indeed, pick G 3 pω, γ 6∈ Ipω and n, and q ≤ pω with q ∈ G and
γ ∈ Iq. Then Uω ∈ Uq, and hence xqγ,n ∈ ∪Uω, which implies
xγ,n ∈ ∪Uω.
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Sketch of the proof: First-countable

Given α, n, we claim that

{USα,nk
: k ∈ ω}

is a base at xα,n. Recall that S
α,n
k = {aαj : j ∈ Bn, j ≤ k}. Indeed,

pick ξ ∈ κ such that xα,n(ξ) = 1, and �nd p ∈ G such that α ∈ Ip
and ξ ∈ Ap. By the de�nition of a condition, we have Sα,n`p(α,n,ξ) � ξ,
which means

USα,n
`p(α,n,ξ)

∩ F p ⊂ Uξ.

For stronger q, `q(α, n, ξ) = `p(α, n, ξ), and hence Sα,n`q(α,n,ξ) � ξ,
which means

USα,n
`q(α,n,ξ)

∩ F q ⊂ Uξ.

Thus
USα,n

`p(α,n,ξ)
∩X ⊂ Uξ.
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The proof of Gryzlov's theorem

Pick M ≺ V , |M | = 2ω, Mω ⊂M , and X, τ ∈M . Enough to
prove that X ⊂M .

Step 1. X ∩M is countably compact as a subspace of X.

Proof. Let Y ∈ [X ∩M ]ω. Then

V � �Y has an accumulation point�.

Since Y ∈M ,

M � �Y has an accumulation point�,

i.e., Y has an accumulation point in M (and hence in M ∩X). 2
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The proof of Gryzlov's theorem, continuation

Step 2. X ∩M is compact.

Proof. Suppose not and �x a maximal family F of closed subsets
of M ∩X closed under �nite intersection, and such that

⋂
F = ∅.

Pick x ∈
⋂
{clX(F ) : F ∈ F} and note that x 6∈ X ∩M . Let

{Un : n ∈ ω} be a decreasing base at x. x 6∈ clX(X \ Un) implies
(M ∩X) \ Un 6∈ F , and hence there exists Fn ∈ F such that
Fn ∩ (X \ Un) = ∅, i.e., Fn ⊂ Un. Thus

⋂
n∈ω Fn = ∅, a

contradiction. 2
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The proof of Gryzlov's theorem, continuation

Step 3. X ⊂M .

Proof. Suppose not and �x z ∈ X \M . For every x ∈ X ∩M �nd
a neighborhood U(x) 63 z, U(x) ∈M . Let {U(xi) : i < n} ∈M
be a �nite cover of X ∩M . Then

M �
⋃
i<n

U(xi) = X,

and hence
V �

⋃
i<n

U(xi) = X,

i.e.,
⋃
i<n U(xi) = X, a contradiction because z is not covered. 2
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The last slide

Thank you for your attention!

Dzi¦kuj¦ Polsce za wsparcie dla Ukrainy!
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