On cardinalities of Lindelöf first countable spaces

Lyubomyr Zdomskyy

Institute of Discrete Mathematics and Geometry, University of Technology in Vienna

Warsaw Topology and Set Theory Seminar November 16, 2022, online

Joint work with L. Aurichi and L. Chiozini de Souza.

Is it true that every first-countable Hausdorff compact space has cardinality at most c?

Arkhangel'skii 1969: Yes

Theorem (Arkhangel'skii 1969)

If X is a Hausdorff space, then $|X| \leq 2^{L(X)\chi(X)}$.

Definition. Let $\langle X, \tau \rangle$ be a T_1 topological space and $x \in X$.

•
$$\chi(X;x) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a local base at } x\};$$

•
$$\chi(X) = \sup\{\chi(X; x) : x \in X\};$$

$$\blacktriangleright \ \psi(X;x) = \min\{|\mu| : \mu \subset \tau, \{x\} = \cap \mu\};\$$

•
$$\psi(X) = \sup\{\psi(X; x) : x \in X\}$$
; and

L(X) = min{κ : every open cover U of X has a subcover V of cardinality ≤ κ}.

Frank Tall in his 2011 survey paper on Lindelöf spaces attributes the next question to Arhangel'skii:

Question

Is it true that $|X| \leq \mathfrak{c}$ for every Lindelöf first-countable T_1 space?

Theorem (Gryzlov 1980)

 $|X| \leq \mathfrak{c}$ for every compact first-countable T_1 space X.

Theorem (LLL(L) 2022)

Suppose that GCH holds in V and κ is a regular cardinal. Then there exists a countably closed cardinal preserving poset \mathbb{P} such that in $V^{\mathbb{P}}$ there exists a Lindelöf first-countable T_1 space X $(L(X) = \chi(X) = \omega)$ of cardinality κ .

What we do not know

The idea of the proof is taken from the following 30 years old result of I. Gorelic:

Theorem

Suppose that GCH holds in V and κ is a regular cardinal. Then there exists a countably closed cardinal preserving poset \mathbb{P} such that in $V^{\mathbb{P}}$ there exists a Lindelöf subspace X of 2^{κ} of cardinality κ such that $\psi(X) = \omega$.

Informally speaking, we were able to modify his proof in such a way that we gain the first countability, and (necessarily) lose the Hausdorff property. This method does not allow to go beyond 2^{ω_1} , which is $2^{\mathfrak{c}}$ in this setting.

Question. Is it true (consistent) that $|X| \leq 2^{\omega_1} [|X| \leq 2^{\mathfrak{c}}]$ for every

(Gor): Lindelöf Hausdorff (resp. regular, zero-dimensional) space X with $\psi(X) = \omega$?

(LLL): Lindelöf T_1 space X with $\chi(X) = \omega$?

The poset: Notation

• Let κ be regular, $\kappa = \bigsqcup_{\alpha \in \kappa} A_{\alpha}$, $|A_{\alpha}| = \omega$, $A_{\alpha} = \{a_{n}^{\alpha} : n \in \omega\}$; ▶ $\{B_n : n \in \omega\} \subset [\omega]^{\omega}$ is a.d. and such that for every $s \in 2^{<\omega}$ and $n \in \omega$ there exists m > n such that $s \in \chi_{B_m}$ and $B_m \cap B_i \cap (\omega \setminus |s|) = \emptyset$ for all i < n; • $A_{\alpha,n} := \{a_k^{\alpha} : k \in B_n\};$ For each finite $s \subset \kappa$ set $U_s =$ $\{x : x \text{ is a function into } 2, s \subset \operatorname{dom}(x) \subset \kappa, \text{ and } x \upharpoonright s \equiv 1\};$ For $A \subset \kappa$ we set $\mathcal{B}_A := \{U_s : s \in [A]^{<\omega}\}$; • Given $F \subset 2^A$, $s \in [A]^{<\omega}$, and $\xi \in A$, we say that s requires ξ (in written $s \models \xi$) if for every $x \in F$, if $x \upharpoonright s \equiv 1$, then $x(\xi) = 1$. I.e., $U_s \cap F \subset U_{\{\xi\}} \cap F$. (Depends on F!)

The poset: Conditions

$$\begin{split} \mathbb{P} \text{ consists of conditions} \\ p &= \langle I, A, F, \mathsf{U}, \ell, r \rangle = \langle I^p, A^p, F^p, \mathsf{U}^p, \ell^p, r^p \rangle \text{ such that} \\ 1. \ I \in [\kappa]^{\omega} \text{ and } A &= \bigcup_{\alpha \in I} A_{\alpha}; \\ 2. \ F &= \{ x_{\alpha,n} \in 2^A : \alpha \in I, n \in \omega \} \text{ is such that} \\ (i) \ x_{\alpha,n} \upharpoonright A_{\alpha} = \chi_{A_{\alpha,n}}, \text{ i.e., } x_{\alpha,n}(a_k^{\alpha}) = 1 \text{ iff } k \in B_n; \\ (ii) \ x_{\alpha,n} \upharpoonright (A \setminus A_{\alpha}) = x_{\alpha,m} \upharpoonright (A \setminus A_{\alpha}) \text{ for all } \alpha \in I \text{ and } n, m \in \omega; \\ (iii) \ \text{ If } \alpha, \beta \in I, \alpha \neq \beta, \text{ then for any } n, m \in \omega \text{ we have} \\ &| x_{\alpha,m}^{-1}(1) \cap A_{\beta,n} | < \omega; \end{split}$$

3. $U \subset \mathcal{P}(\mathcal{B}_A)$ is a countable family of covers of F;

4.
$$r: A \times \omega \to [\omega]^{<\omega}$$
 is such that $r(\alpha, n)$ equals
 $\{j \in B_n : \exists \beta \in I \setminus \{\alpha\} \exists m \in \omega \ (x_{\alpha,n}^{-1}(1) \cap A_{\beta,m} \vDash a_j^{\alpha})\};$

5. ℓ is a function with domain consisting of $\langle \alpha, n, \xi \rangle$ such that $\xi \in A \setminus A_{\alpha}$ and $x_{\alpha,n}(\xi) = 1$, $\ell(\alpha, n, \xi) \in \omega$, such that

$$S_{\ell(\alpha,n,\xi)}^{\alpha,n} \vDash \xi, \text{ where } S_k^{\alpha,n} = \{a_j^{\alpha} : j \in B_n, j \le k\}.$$

The poset: Order relation

 $q \leq p \text{ iff } I^q \supset I^p, A^q \supset A^p, U^q \supset U^p, \ell^q \supset \ell^p, r^q \supset r^p, \text{ and } x^q_{\alpha,n} \upharpoonright A^p = x^p_{\alpha,n} \text{ for all } \alpha \in I^p \text{ and } n \in \omega.$ Obviously, \mathbb{P} is countably closed.

Lemma

- Let $p \in \mathbb{P}$ and $\gamma \notin I^p$, then there exists $q \leq p$ such that $\gamma \in I^q$;
- If GCH holds in V, then \mathbb{P} is ω_2 -c.c.

If G is $\mathbb P\text{-generic},$ then for every $\alpha\in\kappa$ and $n\in\omega$ set

$$x_{\alpha,n} = \bigcup \{ x_{\alpha,n}^p : p \in G, \alpha \in I^p \} \text{ and } X = \{ x_{\alpha,n} : \alpha \in \kappa, n \in \omega \}.$$

 $X \subset 2^\kappa$ by Lemma above

Theorem

X with the topology generated by $\mathcal{B}_{\kappa} \upharpoonright X = \{U_s \cap X : s \in [\kappa]^{<\omega}\}$ is a Lindelöf, T_1 , and first-countable space. П

Sketch of the proof: Lindelöf

Let $p_0 \in \mathbb{P}$ and $\dot{\mathcal{U}}$ be a \mathbb{P} -name such that p_0 forces $\dot{\mathcal{U}} \subset \mathcal{B}_{\kappa}$ and $\dot{X} \subset \cup \dot{\mathcal{U}}$. Let $p_1 \leq p_0$ and $\mathcal{U}_1 \in [\mathcal{B}_{\kappa}]^{\omega}$ be such that

$$p_1 \Vdash \{ \dot{x}_{\alpha,n} : \alpha \in \check{I}^{p_0}, n \in \omega \} \subset \cup \check{\mathcal{U}}_1,$$

and $\mathcal{U}_1\subset\mathcal{B}_{A^{p_1}}.$ Let $p_2\leq p_1$ and $\mathcal{U}_2\in[\mathcal{B}_\kappa]^\omega$ be such that

$$p_2 \Vdash \{ \dot{x}_{\alpha,n} : \alpha \in \check{I}^{p_1}, n \in \omega \} \subset \cup \check{\mathcal{U}}_2,$$

and $\mathcal{U}_2 \subset \mathcal{B}_{A^{p_2}}.$ And so on...

Set p_{ω} be the "union" of all the p_n 's, with one extra elements $\mathcal{U}_{\omega} := \bigcup_{n \in \omega} \mathcal{U}_n$ included in addition into $U^{p_{\omega}}$. Then $p_{\omega} \Vdash$ " $\mathcal{U}_{\omega} \subset \dot{\mathcal{U}}$ and \mathcal{U}_{ω} is a cover of \dot{X} ".

Indeed, pick $G \ni p_{\omega}, \gamma \notin I^{p_{\omega}}$ and n, and $q \leq p_{\omega}$ with $q \in G$ and $\gamma \in I^q$. Then $\mathcal{U}_{\omega} \in \mathsf{U}^q$, and hence $x^q_{\gamma,n} \in \cup \mathcal{U}_{\omega}$, which implies $x_{\gamma,n} \in \cup \mathcal{U}_{\omega}$.

Sketch of the proof: First-countable

Given α, n , we claim that

$$\{U_{S_k^{\alpha,n}}:k\in\omega\}$$

is a base at $x_{\alpha,n}$. Recall that $S_k^{\alpha,n} = \{a_j^{\alpha} : j \in B_n, j \leq k\}$. Indeed, pick $\xi \in \kappa$ such that $x_{\alpha,n}(\xi) = 1$, and find $p \in G$ such that $\alpha \in I^p$ and $\xi \in A^p$. By the definition of a condition, we have $S_{\ell^p(\alpha,n,\xi)}^{\alpha,n} \models \xi$, which means

$$U_{S^{\alpha,n}_{\ell^p(\alpha,n,\xi)}} \cap F^p \subset U_{\xi}.$$

For stronger q, $\ell^q(\alpha, n, \xi) = \ell^p(\alpha, n, \xi)$, and hence $S^{\alpha, n}_{\ell^q(\alpha, n, \xi)} \vDash \xi$, which means

$$U_{S^{\alpha,n}_{\ell^{q}(\alpha,n,\xi)}} \cap F^{q} \subset U_{\xi}.$$

Thus

$$U_{S^{\alpha,n}_{\ell^p(\alpha,n,\xi)}} \cap X \subset U_{\xi}.$$

Pick $M \prec V$, $|M| = 2^{\omega}$, $M^{\omega} \subset M$, and $X, \tau \in M$. Enough to prove that $X \subset M$.

Step 1. $X \cap M$ is countably compact as a subspace of X. Proof. Let $Y \in [X \cap M]^{\omega}$. Then

 $V \vDash "Y$ has an accumulation point".

Since $Y \in M$,

 $M \vDash$ "Y has an accumulation point",

i.e., Y has an accumulation point in M (and hence in $M \cap X$). \Box

Step 2. $X \cap M$ is compact.

Proof. Suppose not and fix a maximal family \mathcal{F} of closed subsets of $M \cap X$ closed under finite intersection, and such that $\bigcap \mathcal{F} = \emptyset$. Pick $x \in \bigcap \{ cl_X(F) : F \in \mathcal{F} \}$ and note that $x \notin X \cap M$. Let $\{ U_n : n \in \omega \}$ be a decreasing base at x. $x \notin cl_X(X \setminus U_n)$ implies $(M \cap X) \setminus U_n \notin \mathcal{F}$, and hence there exists $F_n \in \mathcal{F}$ such that $F_n \cap (X \setminus U_n) = \emptyset$, i.e., $F_n \subset U_n$. Thus $\bigcap_{n \in \omega} F_n = \emptyset$, a contradiction.

Step 3. $X \subset M$.

Proof. Suppose not and fix $z \in X \setminus M$. For every $x \in X \cap M$ find a neighborhood $U(x) \not\supseteq z$, $U(x) \in M$. Let $\{U(x_i) : i < n\} \in M$ be a finite cover of $X \cap M$. Then

$$M \vDash \bigcup_{i < n} U(x_i) = X,$$

and hence

$$V \vDash \bigcup_{i < n} U(x_i) = X,$$

i.e., $\bigcup_{i < n} U(x_i) = X$, a contradiction because z is not covered. \Box

Thank you for your attention! Dziękuję Polsce za wsparcie dla Ukrainy!