A Topological Ramsey Theorem

Paul J. Szeptycki

Department of Mathematics and Statistics York University Toronto Canada and Czech Acadamy of Sciences szeptyck@yorku.ca

Joint work with Wiesław Kubiś

Ramsey's Theorem

For any $r,n \in \omega$ and any $f: [\omega]^r \to n$ there is $H \subseteq \omega$ and i < n such that

f(x) = i for all $x \in [H]^r$

H is homogeneous for f

I.e., $\omega \to (\omega)_n^r$

Given $f : [\omega]^r \to K$ where K is compact, in what sense can we assert that there is an H homogeneous for f?

A generalized notion of a convergent sequence

Definition

Let $r \in \omega \setminus \{0\}$, X a space, $S \subseteq \omega$ infinite and $f : [S]^r \to X$, *f* converges to $p \in X$ if for every neighborhood U of p there is a finite set F such that $f''[S \setminus F]^r \subseteq U$.

- If r = 1, then $f : [S]^1 \to X$ is a sequence and this notion is the same as usual.
- ② If $(x_n : n \in \omega) \rightarrow p$ and we define f on $[\omega]^r$ by $f(s) = x_{\min(s)}$, then f converges to p.
- If f : [S]^r → X converges to p and {s_i : i ∈ ω} is pairwise disjoint, then (f(s_i) : i ∈ ω) → p.

Definition

Given $r \in \omega$, a space X is said to be *r*-Ramsey if, for each $f : [\omega]^r \to X$, there is $S \subseteq \omega$ infinite such that $f \upharpoonright [S]^r$ converges. X has the Ramsey property if it is *r*-Ramsey for all $r \in \omega$.

- $1-Ramsey \iff sequentially compact.$
- 2 r + 1-Ramsey $\Rightarrow r$ -Ramsey
- Ramsey's Theorem can be restated as every finite space has the Ramsey property.

If X is compact metrizable then it has the Ramsey property.

Observations:

• Applying the theorem to finite X, we obtain Ramsey's classical theorem as a corollary.

$$\forall r, n \in \omega \big(\omega \to (\omega)_n^r \big)$$

- **2** r = 1: Compact metrizable spaces are sequentially compact.
- r = 2: Due to M. Bojańczyk, E. Kopczyński, S. Toruńczyk. Applied to obtain idempotents in compact metrizable semigroups as limits of some particular functions on [ω]².

If X is compact metrizable then it is r-Ramsey for all $r \in \omega$.

Proof: For each *n* fix a finite cover \mathcal{U}_n by $1/2^n$ balls and let $f : [\omega]^r \to X$. *f* and \mathcal{U}_n induce a finite coloring of $[\omega]^r$. Using Ramsey's Theorem, let

$$S_0 \supseteq S_1 \supseteq \dots S_n \supseteq \dots$$
 so that for all n

S_n ⊆ ω is infinite.
the diameter of F_n = f''[S_n]^r is less than 1/2ⁿ
If p ∈ ∩{F_n : n ∈ ω} and S ⊆* S_n for all n
then f ↾ [S]^r converges to p. ⊢

Corollary

If X is compact and the closure of every countable set is first countable, then X has the Ramsey property.

- **()** Any 1-point compactification of a discrete space is Ramsey
- and so is any Corson compact,
- In and any compact linearly ordered space.

This can be improved a bit:

Theorem

Sequentially compact spaces of character $< \mathfrak{b}$ have the Ramsey property.

Examples

Let $\mathcal{A} \subseteq [\omega]^{\aleph_0}$ be almost disjoint, $\Psi(\mathcal{A})$ its lsbell-Mrówka space and $\mathcal{K}(\mathcal{A})$ its one-point compactification.

Example

If \mathcal{A} is a maximal almost disjoint family, then $\mathcal{K}(\mathcal{A})$ is not 2-Ramsey (but is sequentially compact).

Proof: $\mathcal{K}(\mathcal{A})$ is *r*-Ramsey if and only if it is *r*-Ramsey with respect to $f : [\omega]^r \to \omega$.

 $f:[S]^r
ightarrow \omega$ converges to $a \in \mathcal{A}$ if and only if there is n such that

$$f''[S \setminus n]^r \subseteq a$$

 $f:[S]^r\to\omega$ converges to ∞ if and only if for every $a\in\mathcal{A}$ there is n such that

$$f''[S \setminus n]^r \cap a = \emptyset$$

Proof continued

We may assume $\mathcal{A} \subseteq [\omega \times \omega]^{\aleph_0}$ and $\{n\} \times \omega \in \mathcal{A}$ for all n. Define $f : [\omega]^2 \to \mathcal{K}(\mathcal{A})$ by $f(\{k, n\}) = (k, n)$ (k < n)Then, for any infinite $S \subseteq \omega$, and any n

$$f''[S \setminus n]^2 \in I^+(\mathcal{A})$$

Lemma (Mathias)

For \mathcal{A} mad, for any decreasing sequence $B_n \in I^+(\mathcal{A})$ there is $B \in I^+(\mathcal{A})$ such that $B \subseteq^* B_n$ for all n.

So, for any S, there is $A \in \mathcal{A}$ such that for all n

 $f''[S \setminus n]^2 \cap A$ is infinite

So, no $f \upharpoonright [S]^2$ can be convergent. \dashv

The r-Ramsey property is preserved under

- Closed subspaces
- 2 Continuous images
- **3** Countable products and Σ -products

Theorem (van Douwen)

The minimal cardinal κ such that 2^κ is not sequentially compact is the splitting number $\mathfrak s$

 $\mathfrak{s} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{\omega} \text{ is splitting. I.e., for no } A \text{ is } f \upharpoonright A \text{ constant} mod finite for all } f \in \mathcal{F}.$

2^{κ} may be sequentially compact and not Ramsey

Definition (Blass)

A is almost homogeneous for a family of functions *F* ⊆ 2^{[ω]^r} if for each *f* ∈ *F* there is *n* such that *f* is constant on [*A* \ *n*]^{*r*}.
 (2) par_r is the minimal cardinality of a family of functions [ω]^{*r*} → 2 with no almost homogeneous set.

Theorem (Blass)

For each $r \geq 2$, $\mathfrak{par}_r = \mathfrak{par}_2 = \min{\{\mathfrak{b}, \mathfrak{s}\}}$

Analogous to van Douwen's characterization of \mathfrak{s} , we have

Theorem

 \mathfrak{par}_2 is the minimal cardinal κ such that 2^{κ} is not r-Ramsey.

And so,

 $\mathfrak{b} < \mathfrak{s}$ implies that $2^{\mathfrak{b}}$ is sequentially compact not 2-Ramsey

Assuming CH ($\mathfrak{b} = \mathfrak{c}$ should suffice). For each r there is an almost disjoint family \mathcal{A} on ω such that $K(\mathcal{A})$ is r-Ramsey and not (r+1)-Ramsey.

Proof. Build $\mathcal{A} = \{a_{\alpha} : \alpha \in \omega_1\}$ on ω^{r+1} starting with

$$\{a_n: n \in \omega\} = \{\{s\} \times \omega : s \in \omega^r\}$$

Not (r + 1)-Ramsey will be witnessed by G defined by

$$G(\{k_0, k_1, ..., k_r\}_{<}) = (k_0, ..., k_r)$$

 $(B_{\alpha})_{\alpha}$ enumerate $[\omega]^{\aleph_0}$ and $(f_{\alpha})_{\alpha}$ enumerate all $f : [\omega]^r \to \omega^{r+1}$ To make the construction work, we need to fix S_{α} convergent for f_{α} and add a new a_{α} witnessing $G \upharpoonright [B_{\alpha}]^{r+1}$ is not convergent.

FINⁿ

Definition

FIN is the ideal of finite subsets of ω . FINⁿ is the Fubini product of FIN: defined recursively by $X \in \text{FIN}^{n+1}$ if

$$\{s \in \omega^n : \{k : s \frown k \in X\} \notin \mathsf{FIN}\} \in \mathsf{FIN}^n$$

2) and
$$a \in \mathsf{FIN}^{r+1}$$
 whenever a is a.d. from all a_n

$$G''[B]^{r+1} \not\in \mathsf{FIN}^{r+1} \text{ for any } B$$

Lemma

For every $f : [\omega]^r \to \omega^{r+1}$, there is $S \subseteq \omega$ such that

 $f''[S]^r \in FIN^{r+1}$

More on products

(P. Simon): The productivity number for sequential compactness is h

 $\mathfrak h$ is the minimal number of mad families needed to split every infinite subset of $\omega.$

If $\{\mathcal{A}_{\alpha}: \alpha < \mathfrak{h}\}$ witness, then

$$\prod_{\alpha < \mathfrak{h}} \mathcal{K}(\mathcal{A}_{\alpha})$$

is not sequentially compact.

② The productivity number for the Ramsey property is $\geq \mathfrak{h}$

Question

Are there \mathfrak{h} many 2-Ramsey spaces whose product is not 2-Ramsey?