
On affinization

Tomasz Brzeziński
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The affinization principle

▶ Affine spaces (algebraic structures) are defined with no
reference to vector spaces (additive structures).

▶ Choosing points in affine spaces converts them into
mutually isomorphic vector spaces – tangent spaces at
these points.

▶ Any affine map is uniquely linearised to a linear map
between tangent vector spaces – the linearisation.

▶ ‘Good’ algebraic structure on an affine space linearises to
the corresponding linear structure on any tangent vector
space.



Affinization of groups: heaps [Prüfer ’24, Baer ’29]

A heap is a nonempty set A together with a ternary operation

⟨−,−,−⟩ : A×A×A → A,

such that for all ai ∈ A, i = 1, . . . , 5,

(a)
〈
⟨a1, a2, a3⟩, a4, a5

〉
=

〈
a1, a2, ⟨a3, a4, a5⟩

〉
,

(b) ⟨a1, a2, a2⟩ = a1 = ⟨a2, a2, a1⟩.
A heap A is abelian if ⟨a, b, c⟩ = ⟨c, b, a⟩.

Homomorphism of heaps: a function f : A → B such that

f (⟨a1, a2, a3⟩) =
〈
f(a1), f(a2), f(a3)

〉
.



Heaps are ‘good’ affinizations of groups

▶ If (A,+) is an (abelian) group, then A is an (abelian) heap
with operation 〈

a, b, c
〉
= a− b+ c.

▶ Let A be an (abelian) heap. For all o ∈ A, A is an (abelian)
group (denoted by Ao) with addition and inverses

a+ b :=
〈
a, o, b

〉
, −a =

〈
o, a, o

〉
.

▶ A heap homomorphism f : A → B uniquely defines the
group homomorphism:

f̂ : Ao → Bp, f̂(a) = f(a)− f(o).



Affine spaces defined intrinsically

[Breaz, TB, Rybołowicz, Saracco, 2023]

An affine space a is an abelian heap with an F-action
(λ, a, b) 7→ λ ▷a b, such that
▶ − ▷a − is a bi-heap map,
▶ (αβ) ▷a b = α ▷a (β ▷a b),
▶ λ ▷a b =

〈
λ ▷c b, λ ▷c a, a

〉
,

▶ 0 ▷a b = a, 1 ▷a b = b.
Intuition:
▶

〈
a, b, c

〉
= a+

−→
bc ;

▶ λ ▷a b := a+ λ
−→
ab .



Affine spaces are ‘good’ affinizations of vector spaces
Fix an o ∈ a, then the abelian group ao = (a,+, o) with scalar
multiplication:

αa = α ▷o a

is a vector space called the tangent space at o or the vector
fibre at o, denoted by Toa.

a is an affine space over Toa:

▶
−→
ab =

〈
o, a, b

〉
= b− a,

▶ α ▷a b = a+ α
−→
ab = (1− α)a+ αb.

An affine transformation f : a → b is a morphism of heaps such
that

f(λ ▷a b) = λ ▷f(a) f(b).

The corresponding linear transformation f̂ : Toa −→ Tob,

f̂(a) =
〈
f(a), f(o), o

〉
= f(a)− f(o).



Affinization of associative algebras [TB ‘19]

Definition
An associative affgebra is an affine space a together with an
associative bi-affine map · : a× a → a.
Bi-affine property implies that, for all a, b, c, d ∈ a,

a⟨b, c, d⟩ = ⟨ab, ac, ad⟩, ⟨b, c, d⟩a = ⟨ba, ca, da⟩,

i.e. an associative affgebra is a truss.



Affgebras are ‘good’ affinizations of associative
algebras [Andruszkiewicz-TB-Rybołowicz ‘22]

Theorem (RRA, TB & BR)
Let a be an associative affgebra and o ∈ a.

(1) Toa is an associative algebra with multiplication:

a • b = ⟨ab, ao, o2, ob, o⟩ = ab− ao− ob+ o2.

(2) Toa⊕ F is an associative algebra with product:

(a, α)(b, β) = (ab+(β−1)ao+(α−1)ob+(α−1)(β−1)o2, αβ)

(3) Toa ∼= {(a, 1) | a ∈ a} ⊆ Toa⊕ F, as associative affgebras.



Lie algebras

Definition
A Lie algebra is a vector space g together with a bilinear
operation [−,−] such that, for all a, b, c ∈ g,

[a, a] = 0,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0,

Note that
▶ If charF ̸= 2, [a, a] = 0 iff [a, b] = −[b, a];
▶ The Jacobi identity can be equivalently written as:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0;

▶ The Jacobi identity can be equivalently written as:

[[a, b], c] = [[a, c], b] + [a, [b, c]].



Lie affgebras [TB & Papworth ’23], [Andruszkiewicz,
TB, & Radziszewski ’25]

Definition
A (left) Lie bracket on an affine space a is a bi-affine map
{−,−} : a× a → a such that, for all a, b, c ∈ a,〈

{a, b}, {a, a}, {b, a}
〉
= {b, b},〈

{a, {b, c}}, {a, {a, a}}, {b, {c, a}}, {b, {b, b}}, {c, {a, b}}
〉
= {c, {c, c}}.

An affine space with a Lie bracket is called a Lie affgebra.

In Toa:
{a, b} − {a, a}+ {b, a} = {b, b},

{a, {b, c}}−{a, {a, a}}+{b, {c, a}}−{b, {b, b}}+{c, {a, b}} = {c, {c, c}}.



Comments

▶ An affine map f : a → b is a homomorphism of Lie
affgebras provided,

f({a, b}) = {f(a), f(b)}.

▶ The intrinsic definition of Lie affgebras includes the
Grabowska-Grabowski-Urbański ‘05 definition as a special
case:

{a, a} = a,

for all a ∈ a.



Lie algebras are ‘good’ affinizations of Lie algebras

Theorem (TB-JP & RRA-TB-KR)
Let (a, {−,−}) be a Lie affgebra.
▶ For all o ∈ a, the unique linearisation of {−,−},

[−,−] :Toa× Toa −→ Toa,

(a, b) 7−→ {a, b} − {a, o}+ {o, o} − {o, b},

is a Lie bracket on Toa.
▶ The linearisation of a Lie affgebra homomorphism

f : a → b is a Lie algebra homomorphism.
▶ Toa ∼= Tpa as Lie algebras.

The Lie algebra on Toa is called the tangent Lie algebra to the
Lie affgebra a.



Lie affgebras vs Lie algebras

Theorem (RRA-TB-KR)
Let g be a Lie algebra. Let δ, λ,∈ Lin(g) and s ∈ g.

{−,−} :g× g −→ g,

(a, b) 7−→ [a, b]− δ(a) + λ(b) + s.

▶ (g, {−,−}) is a Lie affgebra iff, for all a, b ∈ g,

λ([a, b]) = [δ(a), b] + [a, λ(b)].

We write a(g; δ, λ, s).
▶ For all o ∈ g, Toa(g; δ, λ, s) ∼= g.

▶ If Toa ∼= g, then a ∼= a(g; δ, λ, s).



Comments

▶ In terminology of Leger and Luks (2000) the condition

λ([a, b]) = [δ(a), b] + [a, λ(b)] (∗)

means that δ is a generalised derivation of g.
▶ (*) implies that κ = λ− δ is an element of the

quasicentroid QC(g) of g, i.e. [a, κ(a)] = 0, for all a ∈ g.
▶ δ is a derivation of g iff κ is an element of the centroid of g,

C(g) (Jacobson (1962)), i.e.

κ([a, b]) = [a, κ(b)],

for all a, b ∈ g.
▶ Note that there are no restrictions on s.



Isomorphisms

Theorem (RRA-TB-KR)
a(g; δ, λ, s) ∼= a(g′; δ′, λ′, s′) iff there exist a Lie algebra
isomorphism Ψ : g → g′ and q ∈ g such that

δ′ = Ψ(δ − adq)Ψ
−1,

λ′ = Ψ(λ− adq)Ψ
−1,

s′ = Ψ(s+ q − λ(q) + δ(q)).



Lie affgebras with simple fibres

▶ We look at a(g; δ, λ, s) with g simple and finite dimensional
over an algebraically closed field of characteristic 0.

▶ Leger and Luks (2000): QC(g) = C(g), hence δ is a
derivation and κ = λ− δ ∈ C(g).

▶ κ ∈ C(g) means that κ ◦ ad = ad ◦ κ, so by Schur’s lemma:
κ = γ id, γ ∈ F.

▶ All derivations of g are inner, so, up to isomorphism, δ = 0.
▶ Up to isomorphism

{a, b} = [a, b] + γb+ s.



Towards classification

▶ Use classification of Lie algebras and determine allowed
data δ, λ, s up to isomorphism.

▶ dim g = 1, [a, b] = 0 and no conditions on δ and λ.
▶ adq = 0, λ, δ are scalar multiples of identity, hence are not

affected by any Ψ.
▶ Choosing suitable q and Ψ one obtains two types of

isomorphism classes:

{a, b} = −δa+ λb,

{a, b} = (1− λ)a+ λb+ 1.



Classification of all a with tangent sl(2,C)

▶ I use the Chevalley basis h, e, f :

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

▶ Any automorphism of sl(2,C) is a conjugation by a special
linear matrix.

▶ Isomorphism classes of a such that Toa ∼= sl(2,C):

a(sl(2,C); γ id, γ id, e) : {x, y} = [x, y] + γy + e,

a(sl(2,C); γ id, γ id, σh) : {x, y} = [x, y] + γy + σh,

a(sl(2,C); γ id, γ id, f) : {x, y} = [x, y] + γy + f,

where γ, σ ∈ C.


