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Polish groups

A Polish group is a topological group whose topology is separable
and completely metrizable.

Examples:

I additive groups of separable Banach spaces (B,+);

I isometry groups of Polish metric spaces Iso(X );

I non-archimedeam groups G ≤ Sym(N);
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Orbit equivalence relations

Let α be a continuous action of a Polish group on a Polish space
X (i.e., X is a Polish G -space.) The orbit equivalence relation
Eα on X induced by α is defined by

x Eα y ↔ ∃g ∈ G g .x = y .

Examples:

I action by translation of a Polish(able) subgroup on a Polish
group;

I evaluation actions of transformation groups;

I Bernoulli shifts for non-archimedean groups: G ≤ Sym(N)
acts on RN by permuting coordinates.



Orbit equivalence relations

Let α be a continuous action of a Polish group on a Polish space
X (i.e., X is a Polish G -space.) The orbit equivalence relation
Eα on X induced by α is defined by

x Eα y ↔ ∃g ∈ G g .x = y .

Examples:

I action by translation of a Polish(able) subgroup on a Polish
group;

I evaluation actions of transformation groups;

I Bernoulli shifts for non-archimedean groups: G ≤ Sym(N)
acts on RN by permuting coordinates.



Complexity of equivalence relations

An equivalence relation E on a Polish space X is (Borel) reducible
to an equivalence relation F on a Polish space Y (denoted by
E ≤B F ) if there is a Borel mapping f : X → Y such that, for any
x , y ∈ X ,

x E y ↔ f (x)F f (y).

Important types of equivalence relations:

I smooth relations, e.g., relations reducible to the identity on
a Polish space;

I essentially countable relations, e.g., relations reducible to a
relation with countable classes.
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Topological structure of G and Borel reducibility

Fact: Orbit equivalence relations induced by compact Polish
groups are smooth.

Theorem (Solecki)

Every non-compact Polish group induces a non-smooth orbit
equivalence relation Eα (in fact, E0 reduces to Eα.)
Thus, a Polish group G is non-compact iff G induces a
non-smooth orbit equivalence relation.

Theorem (Kechris)

Orbit equivalence relations induced by locally compact Polish
groups are essentially countable.

Question: Does the converse to Kechris’ theorem hold?
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Partial answers

The converse is true for every:

I (Solecki) additive group of a separable Banach space;

I (Thompson) Polish non-CLI group (i.e., not admitting a
compatible complete left-invariant metric);

I (M.) abelian Polish group of isometries of a locally compact
Polish metric space (in particular, every abelian
non-archimedean group.)
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Structure of abelian non-archimedean groups

Theorem (M.)

Let G ≤
∏

n Gn be a non-locally compact Polish group, where Gn

are countable discrete abelian groups. Then there exist infinite
discrete groups Kn, n ∈ N, and a closed L ≤ G such that∏

n

Kn ≤ G/L

(in particular, EN0 reduces to Eα.)



Another partial answer

Theorem (Kechris, M., Panagiatopoulos, Zielinski)

Every non-locally compact Polish group of isometries of a locally
compact Polish metric space (in particular, every non-locally
compact non-archimedean group) induces a non-essentially
countable orbit equivalence relation.



Main ingredients of the proof

Theorem (Feldman, Ramsey)

Let G be a non-locally compact Polish group which has a free
Borel action α on a standard Borel space X admitting an invariant
probability Borel measure. Then Eα is not essentially countable.

Theorem (Kechris, M., Panagiatopoulos, Zielinski)

Let (X , µ) be standard non-atomic probability space and G a
spatial closed subgroup of Aut(X , µ) and denote by g · x the
corresponding action of G on X . Consider the diagonal action of
G on XN given by g · (xn) = (g · xn), which preserves the product
measure µN. Then there is a G -invariant Borel set Y ⊆ XNwith
µN(Y ) = 1 such that G acts freely on Y .
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Main ingredients of the proof
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For each sequence (Kn) of Polish locally compact groups, the
group

∏
n(S∞ n KNn ) can be embedded into Aut(X , µ).

Theorem (Gao, Kechris)

Up to topological group isomorphism, the isometry groups of
separable locally compact metric spaces are exactly the closed
subgroups of groups of the form

∏
n(S∞ n KNn ), where each Kn is

a Polish locally compact group.

Theorem (Kwiatkowska, Solecki)

Every probability measure preserving Boolean action of the
isometry group of a separable locally compact metric space has a
spatial realization.
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Games and non-reduction results

Recall that a Polish group is CLI if it admits a compatible
left-invariant and complete metric.

Let X be a Polish G -space, and let x , y ∈ X . In the
Becker-embedding game Emb(x , y), defined by Lupini and
Panagiatopoulous, Odd and Eve play as follows:

I in the 1-st turn, Odd plays an open nbhd U1 of y and an open
nbhd V1 of 1, and Eve responds with an element g0 ∈ G ;

I in the n-th turn, n > 1, Odd plays an open nbhd Un of y and
an open nbhd Vn of 1, and Eve responds with an element
gn−1 ∈ Vn−1.

Eve wins the game if gn−1 . . . g0.x ∈ Un for n > 1. We say that x
is Becker embeddable into y if Eve has a winning strategy for the
game Emb(x , y), and write x �B y .
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Games and non-reduction results

Lemma (Lupini, Panagiatopoulous)

Let X be a Polish G -space, and let d be a compatible
right-invariant metric on G . For any x , y ∈ X , the following
statements are equivalent:

1. x �B y ;

2. there exists a right Cauchy sequence (hn) in G such that
hn.x → y .

Remark: If G is CLI, then 2. implies that x ∈ [y ].

Theorem
Let G ,H be Polish groups, X a Polish G -space, and Y a Polish
H-space. Let f : X → Y be a Baire-measurable homomorphism of
the involved orbit equivalence relations. Then there is an invariant
comeager C ⊆ X such that c �B o implies f (c) �B f (o) for
c , o ∈ C .
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Games and non-reduction result

Theorem (Lupini, Panagiatopoulous)

Suppose that X is a Polish G -space. If for any invariant comeager
C ⊆ X there are c, o ∈ C such that c �B o but c 6∈ [o], then for
any invariant comeager C ⊆ X , the orbit equivalence relation on X
is not classifiable by an orbit equivalence relation induced by an
action of a CLI group.



A game theoretic criterion for non-essential countability

Let X be a Polish G -space, and let x , y ∈ X . Let V be an open
nbhd of 1 in G . We say that y admits a V-approximation from x
if there is g∗ ∈ G , and a sequence (gn) in V so that gng

∗.x → y .

Consider a game ApprV (x , y), where Odd and Eve play as follows:

I in the 1-st turn, Odd plays an open nbhd U1 of y , and Eve
responds with an element g∗ ∈ G ;

I in the n-th turn, n > 1, Odd plays an open nbhd Un of y , and
Eve responds with an element gn−1 ∈ V .

Eve wins the game if g∗.x ∈ U1, and gn−1g
∗.x ∈ Un for n > 1.

Clearly, Eve has a winning strategy in the game iff y admits a
V-approximation from x . We write then x �V y .

Remark: If V is compact, then x �V y implies that x ∈ [y ].
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A game theoretic criterion for non-essential countability

Theorem
Let G ,H be Polish groups, X a Polish G -space, and Y a Polish
H-space. Let f : X → Y be a Baire-measurable homomorphism of
the involved orbit equivalence relations. Then for every open nbhd
W of 1 in H there is an open nbhd V of 1 in G , an invariant
comeager C ⊆ X , and a non-meager O ⊆ X such that c �V o
implies f (c) �W f (o) for c ∈ C , o ∈ O. If W = H, one can put
V = G , and O can be chosen to be comeager.

Theorem (Kechris, M., Panagiatopoulos, Zielinski)

Let X be a Polish G -space. Assume that for every open nbhd V of
1, for every invariant comeager C ⊆ X , and for every non-meager
O ⊆ X , there are c ∈ C and o ∈ O such that c �V o but c 6∈ [o].
Then the induced orbit equivalence relation is not essentially
countable.
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Structure of non-archimedean grooups and Bernoulli shifts

Let G be a non-archimedean group.

Theorem
G is non-compact iff the Bernoulli shift for G has an invariant
subspace that is generically ergodic with meager orbits (in
particular, it is non-smooth).

Theorem (Kechris, M., Panagiatopoulos, Zielinski)

G is non-locally compact iff the Bernoulli shift for G satisfies the
assumptions of the above theorem (in particular, its orbit
equivalence relation is non-essentially countable).

Theorem
G is non-cli iff for the Bernoulli shift for G , and every invariant
comeager subset C of RN there are c , o ∈ C with different orbits
so that c �B o (i.e., o is Becker-embeddable in c .)
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Actions of Banach spaces

Theorem (Solecki)

Let Z be an infinite dimensional separable Banach space viewed as
a group under addition. Then there exists a Polish Z -space X
whose associated orbit equivalence relation is not essentially
countable.
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Let Z be an infinite dimensional separable Banach space viewed as
a group under addition. Then there exists a Polish Z -space X
whose associated orbit equivalence relation is Borel and not
essentially countable.
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