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Plan of the talk

1) a motivation: representation theory

2) full matrix monoid Mn(K ) over a field K
I structure of Mn(K)
I Rees matrix semigroups
I an application: semisimplicity of the algebra C[Mn(Fq)]

3) monoid of tropical matrices Mn(T) over the tropical semiring T
I how Mn(T) differs from Mn(K) and why it might be useful
I an application: representing plactic monoids
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1. Classical representation theory
Groups G (more generally semigroups S) are studied via homomorphisms

φ : S −→ Mn(K ),

called linear representations.

φ is faithful if it is injective.
φ is irreducible if K n has no φ(S)-invariant subspaces.

If S is a semigroup with operation written multiplicatively, then the
semigroup algebra K [S] of S we mean the K -algebra with basis S and
with multiplication (uniquely) extending the operation in S.

Every φ extends to a homomorphism of the semigroup algebra

φ : K [S] −→ Mn(K )

and φ is irreducible iff φ is onto, provided that K is algebraically closed.
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Significance of faithul representations
Two examples: celebrated theorems on group representations

1. The class of linear groups does not allow pathological properties. For
example:

‘Tits alternative’ (J.Tits, 1972):
if G ⊆ GLn(K ) is a finitely generated subgroup, then either G is almost
solvable (has a solvable subgroup of finite index) or G contains a free
noncommutative subgroup.

2. Concrete important classes of groups: ‘braid groups Bn are linear’:

Bn ↪→ GLn(n−1)/2(C)

(Bigelow, 2001, J. AMS; Krammer; 2002, Annals of Math.)
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Significance of irreducible representations
Two fundamental results (on finite groups).

Definition
A finite dimensional algebra A is semisimple if it has no nonzero nilpotent
ideals (ideals I such that Ik = 0 for some k).

Theorem (Wedderburn)
A (finite dimensional) algebra A over C is semisimple if and only if
A ∼= Mn1(C)× · · · ×Mnk (C) for some k and some n1, . . . , nk .

Theorem (Maschke)
For every finite group G the algebra C[G ] is semisimple.
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Conclusion:
in semisimple algebras one can apply a rich blend of methods of linear
algebra, group theory, ring theory, topology (including Zariski topology),
analysis, geometry and algebraic number theory (by replacing C[G ] by
K [G ], where K is an appropriately chosen finite field extension of Q).
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2. Structure of the monoid Mn(K ); K - an arbitrary field

Let Mj = {a ∈ Mn(K ) | rank(a) ≤ j}, j = 0, 1, . . . , n. Then

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Mn(K )

and these are the only ideals of the monoid Mn(K ).

Let Yj= the set of matrices of rank j that are in the reduced row echelon
form, and let Xj = Y t

j (the transpose).
Let (in the block form)

Gj =

{(
z 0
0 0

)
| z ∈ GLj(K )

}

Then the elements a ∈ Mj \Mj−1 can be written uniquely in the from

a = xgy , where x ∈ Xj , g ∈ Gj , y ∈ Yj

(use elementary row- and column- reductions).
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In block matrix form such elements multiply as follows:

xgy · x ′g ′y ′ =(
∗ 0
∗ 0

)
︸ ︷︷ ︸

x

(
∗ 0
0 0

)
︸ ︷︷ ︸

g

(
∗ ∗
0 0

)
·
(
∗ 0
∗ 0

)
︸ ︷︷ ︸

yx ′

(
∗ 0
0 0

)
︸ ︷︷ ︸

g ′

(
∗ ∗
0 0

)
︸ ︷︷ ︸

y ′

if rank(yx ′) = j then the entire product is of rank j ;
so that the product xgy · x ′g ′y ′ lies in Mj \Mj−1.

Let Pj = (pyx ) be the Yj ×Xj - matrix with coefficients in Gj ∪{0}, where

pyx =

{
yx if rank(yx) = j
0 otherwise .
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Then Mj/Mj−1 := (Mj \Mj−1) ∪ {0} ∼=M(Gj ,Xj ,Yj ; Pj)
(called a Rees matrix semigroup),

where the nonzero elements are the triples (x , g , y), with multiplication

(x , g , y) ◦ (x ′, g ′, y ′) = (x , gpyx ′g ′, y ′),

while all triples (x , 0, y) are identified with the zero element of
M(Gj ,Xj ,Yj ; Pj).

Identifying (x , g , y) with the Xj ×Yj - matrix with the only nonzero entry
g in position (x , y), we see that the operation inM =M(Gj ,Xj ,Yj ; Pj)
takes the form

A ◦ B = APjB.

A classical observation (in caseM =M(G ,X ,Y ; P) is finite) :
the algebra C[M] is semisimple if and only if |X | = |Y | and P is
invertible as a matrix in the algebra M|X |(C[G ]).
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An example of applying this strategy

Conjecture:

(D.K.Faddeev, 1976): For every finite field Fq the algebra C[Mn(Fq)] is
semisimple.
(Here q = pk for a prime p and some k ≥ 1; and |Fq| = q.)

In fact, Faddeev claimed that this is true, but later he admitted that he
never had a correct proof.
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An approach: groups and monoids of Lie type

Groups of Lie type form a class of axiomatically defined groups.
A model example: G = GLn(K ).

Reminder: Classification of finite simple groups
cyclic groups Cp, p - a prime,
alternating groups An, n ≥ 5,
16 infinite families of groups of Lie type,
26 ‘sporadic’ simple groups.

There are two parallel worlds:
- certain algebraic groups (groups admitting a structure of an algebraic
variety; for example Zariski closed subgroups of GLn(C))
- and their finite counterparts, such as GLn(Fq).
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Monoids of Lie type
They are defined axiomatically. There are three groups of axioms:

1. there is a group of Lie type G such that

G = the group of invertible elements in the monoid M,

2. M =
⋃

e∈E GeG , where E ⊆ M is a set of idempotents of M,

3. (roughly speaking) the properties of M reflect the structure of the
group G
(relations between idempotents in M and certain ‘parabolic subgroups’
of the group G are imposed).

The most prominent example: G = GLn(K ) and M = Mn(K ).
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Note: again there are two parallel worlds, namely:
- algebraic monoids of Lie type (closed in Zariski topology); such as
Mn(C)
- and their finite counterparts; such as Mn(Fq).

A class of such monoids that arises in a natural way:

Theorem (M.Putcha)
If G ⊆ GLn(C) is a reductive algebraic group and M is the Zariski closure
of G in Mn(C), then M is a monoid of Lie type.

13



Theorem (M.Putcha, JO; 1991)
If M is a finite monoid of Lie type then the algebra C[M] is semisimple.
In particular, all algebras C[Mn(Fq)] are semisimple.

The proof uses an induction of certain type (‘parabolic induction’), based
on the notion of ‘cuspidal representations’ (Harish-Chandra, Lusztig) for
reductive groups.

This naturally requires considering a much wider class of monoids (those
of Lie type), since this induction is not possible within Mn(Fq).

The main difficulty in the proof is to show that all matrices Pj are
invertible as matrices in Mnj (K [GLj(Fq)]), where nj = |Xj |, j = 1, . . . , n.
One proves this more generally for similar matrices arising from M.
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3. Tropical matrices
By the tropical semiring we mean the set T = R∪ {−∞} considered with
the operations of maximum and summation, namely

a ⊕ b = max{a, b} and a � b = a + b for a, b ∈ T.

Then (T,⊕,�) is a (commutative) semiring; meaning that (T,⊕) is a
semigroup (as opposed to ‘a group’ in case of a ring).
Note that −∞ is the zero element and 0 is the unity of T.

For every nonnegative integer n the set Mn(T) of all n × n matrices over
T is considered as a multiplicative semigroup, with the operation defined
in the standard way in terms of the operations ⊕ and �.

It is then natural to refer to the set

Un(T) = {(aĳ) ∈ Mn(T) | aĳ = −∞ for i > j}

as the subsemigroup of all upper triangular matrices in Mn(T).
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So, how do we multiply tropical matrices?

(
a b
c d

)
·
(

a′ b′
c ′ d ′

)
=

(
max{a + a′, b + c ′} max{a + b′, b + d ′}
max{c + a′, d + c ′} max{c + b′, d + d ′}

)
in ∈ M2(T).

Tropical matrices (introduced in the 1970’) have been used in a variety of
contexts: combinatorics, algebraic geometry, phylogenetics, convex
geometry, optimization, control theory, formal language and automata
theory, ...

Structure of Mn(T) has been studied in the recent 10 years, but is not
yet completely understood. Several aspects of ‘tropical algebra’ over T
(analogous to linear algebra) have also been studied.

Note: potential applications may involve tropical matrices over semirings
other than T = R ∪ {−∞}.
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Mn(K ) versus Mn(T)

Let A =

(
−1 1
−∞ 1

)
and B =

(
1 1
−∞ −1

)
∈ M2(T). Then we get

E = AB =

(
0 0
−∞ 0

)
, BA =

(
0 2
−∞ 0

)
,

and
EA = A = AE , EB = B = BE , E 2 = E .

Conclusion
In the monoid EMn(T)E ⊆ Mn(T) (with identity E ) we have elements
A,B such that AB = E ,BA 6= E .

(In this case, one says that Mn(T) is not von Neumann finite.)
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Theorem (Y.Shitov; 2012)
Every subgroup of Mn(T) embeds into the semidirect product

(R× · · · × R︸ ︷︷ ︸
n

) o Sn (Sn acting on Rn by permutation ).

Hence, H has an abelian normal subgroup of finite index ≤ n!.
(One says that H is abelian-by-finite.)

A few aspects of the comparison

Mn(K ) Mn(T)

von Neumann finite NOT von Neumann finite
(AB = 1⇒ BA = 1)

if n ≥ 2, it contains free all subgroups are
noncommutaive subgroups abelian-by-finite
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Conclusion: perhaps tropical representation theory should be developed,
as the properties of tropical matrices differ dramatically from the
properties of matrices in Mn(K ).

So, tropical representations might be useful for testing/applying other
properties than those detected by standard representations.

We will present a supporting example.
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Young tableaux
Informally speaking, a (semistandard) Young tableau is a planar object
with decreasing columns and non-decreasing rows. An example:

5
3
2
1

4 4
3 3
1 2

3
2 2 3

The so called ‘column reading’ of this tableau yields the word

w = x5x3x2x1 · x4x3x1 · x4x3x2 · x3x2 · x2 · x3

in the free monoid Fn = 〈x1, . . . , xn〉 (if the entries are taken from the set
{1, . . . , n}).

Such tableaux can be multiplied (via the so called ‘insertion algorithm’),
and the product yields another tableaux (involving the same set of
generators x1, . . . , xn). And this product is associative.
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Key algebraic tool - plactic monoids
The set of semistandard Young tableaux on generators x1, . . . , xn, with
this operation is called the plactic monoid Pn of rank n.

For an integer n ≥ 1 we consider the finitely generated monoid
Mn = 〈a1, . . . , an〉 defined by the relations

aiakaj = akaiaj for i ≤ j < k,
ajaiak = ajakai for i < j ≤ k.

The crucial result is that the elements of Mn can be written in a
canonical form, and these canonical forms are in a one-to-one
correspondence with semistandard Young tableaux. Even more:

Theorem (D.Knuth)
The monoids Pn and Mn are isomorphic (via xi 7→ ai , i = 1, . . . , n).
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These monoids originated from certain problems in combinatorics
(Schensted).

Because of deep connections to Young tableaux, the plactic monoids
have proved to be a very powerful tool in several aspects of
representation theory, algebraic combinatorics, geometry, quantum
groups, statistical mechanics, ...

For example: the Littlewood-Richardson rule, which yields the formula for
the decomposition of the tensor product of representations of the full
linear groups into irreducible components, is proved (and can be
expressed) in terms of the plactic monoid.

Two observations:
- all finite dimensional irreducible representations of Pn are 1-dimensional,
- if n > 1 then Pn does not admit any faithful representation in Mt(K ).

So, ordinary (over a field) finite dimensional representations are not
useful in the context of Pn.
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Conjecture
The plactic monoid Pn satisfies a nontrivial identity vn ≡ wn, where
vn,wn are (distinct) words in the free monoid 〈x , y〉.

Theorem (Ł.Kubat, JO; 2014)
If n ≤ 3 then Pn satisfies an identity.

This was a byproduct of the description of all irreducible (infinite
dimensional) representations of P3. Such a description is not known for
n ≥ 4.

Theorem (Z.Izhakian; 2014/2016 and JO; 2015)
Un(T) satisfies a nontrivial identity (depending on n).

Theorem (M.Johnson, M.Kambites; 2020)
There is an embedding Pn −→ U2n(T). So the conjecture holds.
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dimensional) representations of P3. Such a description is not known for
n ≥ 4.

Theorem (Z.Izhakian; 2014/2016 and JO; 2015)
Un(T) satisfies a nontrivial identity (depending on n).

Theorem (M.Johnson, M.Kambites; 2020)
There is an embedding Pn −→ U2n(T). So the conjecture holds.
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