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Section of Biomathematics and Game Theory,
Institute of Applied Mathematics and Mechanics,

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw

Colloquium MIM

March, 7th, 2024



Beginnings

25 years ago

In Oberwolfach Research Institute for Mathematics
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Beginnings

EU programmes

“Using Mathematical Modelling and Computer Simulation to
Improve Cancer Therapy”, No. HPRN-CT-2000-00105, in the
framework of the 5th EU Programme, 2000–2003;

“Modelling, Mathematical Methods and Computer Simulation
of Tumour Growth and Therapy”, No. MRTN-CT-2004-503661,
in the framework of 6th EU Programme, 2004–2008.
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Mathematical oncology: idea

Mathematical oncology

This is a term that began to gain popularity
with the establishment of centers around the world
in which scientists of various specialities,
including mathematicians
working on mathematical modeling
of the studied processes and therapies,
started to comprehensively deal with the problem of cancer.
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Mathematical oncology:
Institute for Medical Biomathematics, Israel
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Mathematical oncology: Moffitt Cancer Center, USA
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Mathematical oncology: MOLAB, Spain
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Modeling: PART I

Underlying tumor growth law

PROBLEM:
there is no universal law...

Basic laws:
exponential growth
Ṫ = rT;

Gompertz growth
Ṫ = −rT ln T

K ;

logistic growth
Ṫ = rT

(
1 − T

K

)
.

and many others...
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Modeling: PART I

Underlying tumor growth law:
case of the prostate cancer (PC)

Ṗ = Pf (P),

f (P) =

a, for P ∈ [0,PR],
a
(
1 + b ln P

PR

)γ
, for P > PR,

P(t) – amount of the PSA
(tumor marker) at time t.

U.F., A. Nahshony, M. Elishmereni,
Mathematical model of hormone
sensitive prostate cancer treatment
using leuprolide: A small step
towards personalization,
Plos one 17(2), 2022, e0263648.

Example
of the clinical data
from Mayo clinic
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Modeling: PART II (specific treatment)

Androgen deprivation
therapy for hormone
sensitive PC patients
Drugs used during ADT
eventually lead to acquired
drug resistance, HSPC
evolves to
castrate-resistant prostate
cancer (CRPC).

Our interest lies mainly in
the prediction of time to
biochemical failure of ADT.

A underlying growth law of the
tumor;

B PK-PD model for leuprolide;

C testosteron secretion;

D influence of resistance.
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Modeling: ADT for HSPC

B PK model for leuprolide

The mechanism of the drug release (PK) is based on polymer
micro-spheres.
We consider diffusion of the drug out of the spheres,

∂ρ

∂t
= D∇2ρ,

where ρ is the drug concentration and D is the diffusion coefficient.
Under some symplifying assumptions, we solve this equation and
then the concentration can be integrated to obtain the amount Min

of the drug within the sphere

Min (t) = 4π

R∫
0

ρ (r, t) r2dr =
∞∑

n=1

8ρ0R3

n2π
e−

n2π2D
R2 t

.
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Modeling: ADT for HSPC

B PK model for leuprolide

Once the drug leaves the micro-sphere, it is cleared from the body
at a rate dL, therefore

Ṁout = −Ṁin − dLMout,

where Mout is the amount of the drug outside the sphere.

The final equation for leuprolide within the patients body

L̇ = kψ
(
αt
M0

)
− dLL,

ψ (x) =
∑∞

n=1 e−π
2n2x and M0 =

4
3πR3ρ0 is the initial mass of the drug

within the sphere.

U. Foryś (IMSM UW) Mathematical oncology: my perspective Colloquium March 2024 14 / 36



Modeling: ADT for HSPC

B PK model for leuprolide

The function L was fitted to FDA data
on leuprolide.

B PD model for leuprolide

We take into account a kind of the competition between one of the
hormons in the testosteron secretion path (LHRH) and the drug.
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Modeling: ADT for HSPC

C Modeling of testosterone secretion

Testosteron secretion is regulated by a three-component feedback
network consisting with three hormones:

luteinizing hormone releasing hormone LHRH;

luteinizing hormone LH;

testosterone TES.

However, we found that the intermediate hormone LH can be
omitted in the model.
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Modeling: ADT for HSPC

C Modeling of testosterone secretion

ẋ = h1(z) − d1x,

ż = p3x − d3z,

where

x(t), z(t) are concentrations of LHRH and TES at time t,

h1 is a smooth positive decreasing function.

Influence of leuprolide on testosterone secretion

Instead of linear production term p3x we take

h3(x,L) =
p3x

1 + b3(x + L)
.
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Modeling: ADT for HSPC

The model without resistance

Ṗ = Pf (P) + dP(z − z̄0)P,

ẋ = h1(z) − d1x,

ż = h3(x,L) − d3z,

where z̄0 is the testosteron steady state without the treatment, and
general functions f , h1, h3 satisfy:

1 f is of class C1 and has positive values on some interval
(0,K), where either K < ∞ and then it reflects maximal tumor
size or K = ∞ and then tumor growth is unbounded;

2 h1 and h3 are positive bounded functions of class C1;

3 dh1
dz < 0, ∂h3

∂x > 0, ∂h3
∂(x+L) < 0.
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Modeling: ADT for HSPC

D Influence of resistance
The last step in the model development is to include resistance.
We distinguish two different mechanisms:

resistance to the drug, that causes testosterone to rise in the
presence of ADT,

emerging independence from testosterone, which causes
PSA to rise even though the testosterone is low.

Including resistance we introduce two additional variables ri, i = 1,
2, reflecting the strength of resistance, described by

ṙi = βiL
(
1 −

ri

li

)
.
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Modeling: ADT for HSPC

The model with resistance
The first variable r1 influences the level of PSA and therefore
is included into the first equation.

The second variable r2 influences the level of TES due to the
presence of the drug, so we include it into the third equation.

Ṗ = Pf (P) + dP
(
z − z̄0 + g1(r1)

)
P,

ẋ = h1(z) − d1x,

ż = h3 (x, g2(r2)) − d3z,

ṙ1 = β1L
(
1 −

r1

l1

)
,

ṙ2 = β2L
(
1 −

r2

l2

)
,

g1(0) = 0 and g1 is increasing;

g2(0) = L and g2 is decreasing.
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Modeling: immunotherapy of glioma

Articles
N. Kronik et al., Improving alloreactive CTL immunotherapy for
malignant gliomas using a simulation model of their interactive
dynamics, Cancer Immunol Immunother, 2008 57: 425–439.

Y. Kogan, U.F. et al., Cellular immunotherapy for high grade
gliomas: mathematical analysis deriving infusion rates based
on patients requirements, SIAM J. APPL. MATH., 2010 70(6):
1953–1976.
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Modeling: immunotherapy of glioma

Model of immunotherapy of MG/GBM

We model interactions between immune
system and tumour cells.

Immune system is stimulated by
external influx of ex vivo activated
alloreactive cytotoxic-T-lymphocytes
(aCTL).

There are 6 variables taken into
account:

tumor cells (T),

CTLs (C),

cytokines: TGF-β (Fβ), INF-γ (Fγ),

major histocompatibility complex:
class I (MI) and class II (MII).

Scheme of the model:
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Modeling: immunotherapy of glioma

Model of immunotherapy of MG/GBM

Ṫ = r(T)T − fT (Fβ)gT (MI)h(T)CT ,

Ċ = fC(TMII)gC(Fβ) − µCC + S(t),

Ḟβ = fβ(T) − µβFβ,

Ḟγ = fγ(C) − µγFγ,

ṀI = fI(Fγ) − µIMI ,

ṀII = fII(Fβ)gII(Fγ) − µIIMII ,

with non-negative functions r, fT , gT , h, fC, gC, S, fβ, fγ, fI , fII ,
having appropriate properties,
and positive coefficients µC, µβ, µγ, µI , µII .
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Modeling: immunotherapy of glioma

Results of modeling

Using the model we are able to retrive
the results of clinical trials conducted by
Prof. Carol Kruse (Sidney Kimmel
Cancer Center) on MG grade III
(successful) and GBM (unsuccessful).

The clinically administered total aCTL
dosage to GBM patients, ca. 12 × 108

aCTL, was about 20-fold smaller than
that predicted by the model to be
effective (27 × 109).
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Modeling: immunotherapy of glioma

Results of modeling

We are able to find a condition for cure
analytically:

S
µC

gT


fI

(
fγ(S/µC)

µγ

)
µI

 > r0

fT
(

fβ(0)
µβ

) ,
and for the estimated parameters and
specific functions used in the original
article by Kronik et al. we have

S ≈ 30.4 cells/h for MG grade III,

S ≈ 84.7 cells/h for GBM.

Estimation of time to cure

Basins of attraction for two
steady states
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Modeling: control theory

The role of control theory

Using control theory we are able to propose optimal treatment
schedule assuming some constraints.

In general, the goal of optimal control applied to cancer models is
to minimize the size of cancer (at the end and during the treatment
duration) and the amount of drug (cost of therapy and side effects)
used in this treatment.

It occurs that for homogeneous populations of cancer cells the
structure of optimal control is typically bang-bang, meaning:

either maximal tolerated dose (MTD) is applied,

or no dose is applied.
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Modeling: control theory

Control theory for heterogeneous cancers

Malignant cancer are not homogeneous.

Is it optimal to use standard treatment schemes based on MTD?

Singularity of controls in a simple model of acquired chemotherapy
resistance, DCDS-Series B 2019 24(5): p2039.

Numerical optimisation of chemotherapy dosage under
antiangiogenic treatment in the presence of drug resistance,
Mathematical Methods in the Applied Sciences 2020 43(18):
10671–10689.

Angiogenesis and chemotherapy resistance: optimizing
chemotherapy scheduling using mathematical modeling, Journal of
Cancer Research and Clinical Oncology 2021 147(8) 2281–2299.

Competition between populations: preventing domination of
resistant population using optimal control, Applied Mathematical
Modelling 2023 114: 671–693.
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Modeling: control theory

Control theory for heterogeneous cancers

Common research with:

Piotr Bajger – my former PhD student,

Mariusz Bodzioch (University of Warmia and Mazury in
Olsztyn)
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Modeling: control theory for heterogeneous cancers

Control theory: simple model of heterogeneous cancer

We consider a population of cancer cells divided into two
subpopulations:
sensitive and resistant to the drug which is applied.

ṅ1 = γ1n1 (1 − n1 − n2) − τ1n1 + τ2n2 − n1u(t),

ṅ2 = γ2n2 (1 − n2 − n1) + τ1n1 − τ2n2,

where:

n1, n2 are the non-dimensional volumes of cells respectively
sensitive and resistant to chemotherapy,

u : [0,T]→ [0, 1] is the non-dimensional chemotherapy dose
(or control).
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Modeling: control theory for heterogeneous cancers

Control theory: objective functional for heterogeneous cancer

We aim, aside from penalising tumour size, to penalise
drug-resistant phenotype.

J(u(·)) = M (n1(T) + n2(T)) +
∫ T

0
L (n1(t), n2(t), u(t)) dt

= ω1n1(T) + ω2n2(T)

+

∫ T

0

(
η1n1(t) + η2n2(t) + ξG

(
n2−n1
ε

)
+ θu(t)

)
dt

and the problem becomes
to minimise J over all measurable functions u : [0,T]→ [0, 1].
Here ω1 < ω2, η1, η2, ξ and θ are non-negative weights.
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Modeling: control theory for heterogeneous cancers

Control theory: objective functional for heterogeneous cancer

The only non-standard part of the functional J is related to the
function G.

Formally, we require G to
have the following properties:

G(x)→ 0 as x→ −∞,

G(x)→ 1 as x→ +∞,

G′(x) > 0 for all x,

xG′′(x) < 0 for x , 0,

G(0) = 0.5 and
G′(0) = 0.5.

Typical choice for a resistance
penalty: G(z) = 1

2 (1 + tanh(z)) .
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Modeling: control theory for heterogeneous cancers

Control theory: results for heterogeneous cancer

We found that the scheme of optimal control is the following:
MTD singular control MTD

The singular interval in the middle – during which the control is
applied at about 10% of the MTD dose – is crucial in preserving
the sensitive phenotype.
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Modeling: control theory for heterogeneous cancers

Metronomic for heterogeneous cancer

Optimality of metronomic treatment (low-dose long-term) for
malignant cancers is a hypothesis discussed intensively last years.

The results of our analysis support the hypothesis that inclusion of
explicit resistance penalty in the objective functional leads to the
low-dose metronomic-type protocols being optimal.
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Personalized treatment

“In the last decade, we have witnessed a paradigm shift in
medicine, from the one-size-fits-all concept to precision medicine.”

Z. Agur, M. Elishmereni, U.F., Y. Kogan, Accelerating the
development of personalized cancer immunotherapy by
integrating molecular patients’ profiles with dynamic
mathematical models, Clinical Pharmacology & Therapeutics
2020 108(3): 515–527.

To achieve the goal of fighting cancer we need to join two
approaches:

statistical methods evaluating the relationships between static
patient profiling (e.g., genomic and proteomic) and a simple
clinically motivated output (e.g., yes/no responder),

dynamic interactions in the patient-disease-drug system
described by appropriate model.
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Personalized treatment

Idea of virtual patient
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Personalized treatment

Hoping we will benefit from such methods in the nearest future, not
only in cancer diseases...

Thank you for your attention!
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