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A little bit of history

The word ‘martingale’ was used in XVIIIth century in the context of
certain betting systems.
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A little bit of history

The word ‘martingale’ was used in XVIIIth century in the context of
certain betting systems.

- Some elements: Louis Bachelier (1900).

- The concept appears in the work of Paul Lévy (1934).

- The name coined by Jean Ville (1939). One of the pioneers.
- Theory was developed by Joseph Leo Doob (1940's - 1950's).
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A little bit of history

The word ‘martingale’ was used in XVIIIth century in the context of
certain betting systems.

- Some elements: Louis Bachelier (1900).

- The concept appears in the work of Paul Lévy (1934).

- The name coined by Jean Ville (1939). One of the pioneers.
- Theory was developed by Joseph Leo Doob (1940's - 1950's).

In this talk, we will be interested in martingale inequalities and their
applications outside probability theory. Two big names:

- Joseph Leo Doob,
- Donald Lyman Burkholder.
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A dyadic lattice in [0, 1]
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A dyadic martingale

Take an arbitrary integrable function f on [0,1] ...
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A dyadic martingale

...and consider its average with respect to Dy ...
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A dyadic martingale

...and consider its partial average with respect to D; ...
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A dyadic martingale

...and consider its partial average with respect to D, ...
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A dyadic martingale

...and consider its partial average with respect to Ds ...
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A dyadic martingale

The obtained sequence (f,)n>0 is a dyadic martingale (induced by f).

— —
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Towards the general case

One can consider other partitions or other measure spaces.
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Towards the general case

One can consider other partitions or other measure spaces.

Partition (Dp,)n=0 < (0(Dn))n=0 (called filtration).
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Towards the general case

One can consider other partitions or other measure spaces.

Partition (Dp,)n=0 < (0(Dn))n=0 (called filtration).

Definition
Let (Q2, F,P) be a probability space with a filtration (F,)p=0. A
sequence (f,)p=0 of random variables is a closed martingale, if

f,=E(f |F,), n=0,1,2,...

for some integrable random variable f.
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2. Unconditional constant of the Haar system
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The Haar system on [0, 1] (Haar, 1909)

ho
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The Haar system on [0, 1] (Haar, 1909)

hU 11,1
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The Haar system on [0, 1] (Haar, 1909)

ho hy ho
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The Haar system on [0, 1] (Haar, 1909)

ho - h1 ho " hg
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The Haar system on [0, 1] (Haar, 1909)

ho - h1 ho " hg
0 1 0 1 0 1 0 1
o }1,4

o 1
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The Haar system on [0, 1] (Haar, 1909)

ho - h1 ho " hg
0 1 0 1 0 1 0 1
o }74 o hs
o 1 0 1
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The Haar system on [0, 1] (Haar, 1909)

ho h1 ho " hg
0 1 0 1 0 1 0 1
o }14 7 hS h()
o 1 0 1 o 1
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The Haar system on [0, 1] (Haar, 1909)

ho h1 ho " hg
0 1 0 1 0 1 0 1
o hy — h\) he ~— hy
o 1 0 1 o 1 0 1
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Unconditional basis

The sequence (h,)p>0 is a basis of LP, 1 < p < co: for any f € LP,
[ee]
f= Z anhn (convergence in LP)
n=0

for some unique coefficients ag, a1, ao, .. ..
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Unconditional basis

The sequence (h,)p>0 is a basis of LP, 1 < p < co: for any f € LP,
[ee]
f= Z anhn (convergence in LP)
n=0

for some unique coefficients ag, a1, ao, .. ..

Theorem (Marcinkiewicz-Paley 1932)

For any 1 < p < o there is a finite constant c, such that
N N
Z e,,a,,h,, < Cp Z anhn
n=0 LP n=0 LP
for any N, ap, a1, a2, ...ay € R and eg, €1, €2, ...,eny € {—1,1}.

Adam Osekowski Martingale inequalities and their applications



Dyadic martingale differences

Let (f,)n=0 be the dyadic martingale induced by f € L1(0,1).

o — —
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Dyadic martingale differences

Let (f,)n=0 be the dyadic martingale induced by f € L1(0,1).

Differences:

h—fo
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Dyadic martingale differences

Let (f,)n=0 be the dyadic martingale induced by f € L1(0,1).

— e — ; /"\\

Differences:

h—f
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Dyadic martingale differences

Let (f,)n=0 be the dyadic martingale induced by f € L1(0,1).

—

Differences:

0 —_— -
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Dyadic martingale differences

Let (f,)n=0 be the dyadic martingale induced by f € L1(0,1).

— ; — \
\ \\
N
We have
271
fom ot (R =)+ (= ) ot (= foca) = 3 auhy
k=0
for some coefficients ag, a1, a2, ..., ax_1.
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A martingale inequality

Theorem (Burkholder 1966, 1984)

Suppose that (f,)n=0, (8n)n=0 are martingales such that
lgo| < |fo] and |gn—gn1| <|fa—faal, n=1,2,....
Then for 1 < p < o0 we have the sharp estimate
|&nlle < Bpllfale, n=20,1,2,...

with B, = max{p — 1, (p — 1) 1}.
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A martingale inequality

Theorem (Burkholder 1966, 1984)
Suppose that (f,)n=0, (8n)n=0 are martingales such that

lgo| < || and |gn—gn1l <|fo—fac1l, n=1,2,....
Then for 1 < p < o0 we have the sharp estimate
lgnler < Bplfallr,  n=0,1,2, ...,

with B, = max{p — 1, (p — 1) 1}.

This result immediately gives the estimate for the Haar system,
with ¢, = Bp.
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A martingale inequality

Theorem (Burkholder 1966, 1984)
Suppose that (f,)n=0, (8n)n=0 are martingales such that

lgo| < || and |gn—gn1l <|fo—fac1l, n=1,2,....
Then for 1 < p < o0 we have the sharp estimate
lgnler < Bplfallr,  n=0,1,2, ...,

with B, = max{p — 1, (p — 1) 1}.

This result immediately gives the estimate for the Haar system,
with ¢, = Bp.

It turns out that the constant is optimal for the Haar system —
this is the unconditional constant of (hp)n=o in LP.
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In summary

Suppose that (X, G, i) is a measure space, T is some operator
acting on measurable functions and we are interested in

I Tl eexy < Collfllex)

for a given function f € LP(X, G, u).
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In summary

Suppose that (X, G, i) is a measure space, T is some operator
acting on measurable functions and we are interested in

ITFlrx) < GollfllLoex)
for a given function f € LP(X, G, u).

The approach:
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In summary

Suppose that (X, G, i) is a measure space, T is some operator
acting on measurable functions and we are interested in

ITFlrx) < GollfllLoex)
for a given function f € LP(X, G, u).

The approach:
1. Find martingales (f,)n>0, (gn)n=0 such that f, ~ f, g, ~ Tf.
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In summary

Suppose that (X, G, i) is a measure space, T is some operator
acting on measurable functions and we are interested in

ITFlrx) < GollfllLoex)
for a given function f € LP(X, G, u).

The approach:

1. Find martingales (f,)n>0, (gn)n=0 such that f, ~ f, g, ~ Tf.
2. Prove the estimate | gs|1r < Cpl|fp||1» for each n.
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In summary

Suppose that (X, G, i) is a measure space, T is some operator
acting on measurable functions and we are interested in

ITFlrx) < GollfllLoex)
for a given function f € LP(X, G, u).

The approach:

1. Find martingales (f,)n>0, (gn)n=0 such that f, ~ f, g, ~ Tf.
2. Prove the estimate | gs|1r < Cpl|fp||1» for each n.

In 1., one searches for martingales such that the increments
gn — &n_1 are dominated by the increments f, — f,_;.
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3. Hardy and Sobolev inequalities
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Doob’s maximal inequality
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Doob’s maximal inequality

Theorem (Doob 1940’s)

For any 1 < p < o0 we have the estimate

5Up|fn|

n=0

p
< ——=[fle
w P-1

and the constant p/(p — 1) is the best possible.
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Application: Hardy inequality

Theorem (Hardy 1920, Landau 1926)

Suppose that a1, ap, ... is a sequence of nonnegative numbers.
Then

& ata+...+an P p P& p

Z S| —= 1 2 ah.

n=1 n p n=1
The constant is optimal.
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Application: Hardy inequality

Theorem (Hardy 1920, Landau 1926)

Suppose that a1, as, ... is a sequence of nonnegative numbers.
Then for any N,

N N
Z ait+ax+...+ap p< p pZap
n “\p-1 m

n=1 n=1

The constant is optimal.
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Reduction to Doob’s estimate

f — an
ao -
aq —_—
az ‘ . ‘ ‘—‘ an-1
0 1 2 k N-1N
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Reduction to Doob’s estimate

f — anN
ao S
aq _—
az . . ‘—‘ an-1
0 1 2 k N—-1N

Fix k > 1. On (k — 1, k), we have

a+ax+...+ak

sup |f,| =
nplnl .
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Reduction to Doob’s estimate

f — anN
ao _
aq —
as B - anN-—-1
0o 1 2 k N—-1N

Fix k > 1. On (k — 1, k), we have

ata+...+ak

sup |f,| =
nplnl P

Hence, summing over k,

N P N k
at+a+...+a
S (et n) S o

k=1
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Reduction to Doob’s estimate

f — anN
ao _
aq —
as B - anN-—-1
0o 1 2 k N—-1N

Fix k > 1. On (k — 1, k), we have

ata+...+ak
SUp|fn|> k :
n

Hence, summing over k,

N
Z ar4a+...+a p<JNsup|f|P< p \*
k ~ 0 " n ~ pi—].

k=1
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Reduction to Doob’s estimate

f — anN
ao _
aq —
as B - anN-—-1
0o 1 2 k N—-1N

Fix k > 1. On (k — 1, k), we have

ata+...+ak
SUp|fn|> k :
n

Hence, summing over k,

N p N p N
at+ax+...+ ak p p p
Z( > <L sup |fo| <(p_1> 2%

k=1 k
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Continuous-time extension

Theorem (Hardy 1920, Landau 1926)

For any 1 < p < o and f € LP(0,0) we have the sharp bound

0 P p \? [
dx < | —— f f(x)|Pdx.
J (2) ), e

oy
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Continuous-time extension

Theorem (Hardy 1920, Landau 1926)
For any 1 < p < o and f € LP(0,0) we have the sharp bound

JOOO " dx < (”)pf I (x)|Pdx.

p—1
Theorem (Bliss 1930)
Forl <p<gq, putaw=gq/p—1 and let f € LP(0,0). Then

foooxa (i LX |f()/)|dy>qu < Cpg <L°° |f(X)|”dx>q/p7

where the optimal constant is

oy

1 al(g/a) ’
Cpq = g—a—1 {I’(l/a)r((q - 1)/04)] '

Adam Osekowski Martingale inequalities and their applications



Application: Sobolev imbedding theorem

Theorem (Sobolev 1938, Talenti 1976)

Forany 1 < p < d and any ue C}(RY), we have

[ullaqrey < Cp,al Vllo(ra),

where q = pd/(d — p) and the best constant Cp, 4 is

e (PN L T dT(d) |V
Cod =T WPla= (d—p) (F(d/p)r(l +d— d/P)) .
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Application: Sobolev imbedding theorem

Theorem (Sobolev 1938, Talenti 1976)

Forany 1 < p < d and any ue C}(RY), we have

[ullaqrey < Cp,al Vllo(ra),

where q = pd/(d — p) and the best constant Cp, 4 is

e (PN L T dT(d) |V
Cod =T WPla= (d—p) (F(d/p)r(l +d— d/P)) .

Idea of proof: Suffices for u(x) = f(|x|) — Bliss" inequality.
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4. Estimates for analytic projections
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Analytic projection

Suppose that f is a trigonometric polynomial

FO) = > ™,  fe(—mm]
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Analytic projection

Suppose that f is a trigonometric polynomial

N

FO) = > ™,  fe(—mm]
n=—N

The analytic projection P, and the co-analytic projection P_ are

PLf(0) = Z cpe, P_f(0) = 2 cpe™.

n=0 n<0
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Why analytic/co-analytic 7

We may treat f as a function on the unit circle T < C:
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Why analytic/co-analytic 7

We may treat f as a function on the unit circle T < C:

FO) = > ae™ o Q=) ", (=e€’€eT.

n=—N n——

Then f extends to a harmonic function ur on the unit disc.
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Why analytic/co-analytic 7

We may treat f as a function on the unit circle T < C:
FO) = > ae™ o Q=) ", (=e€’€eT.
n=—N n——

Then f extends to a harmonic function ur on the unit disc.

We have ur(z) = up_r(z) + up,r(z) and up, ¢, Tp_r are analytic.
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Theorem (Riesz 1927)
If1 < p < o, then there is C, < oo such that

HPJerLP(—TrJr) < CP”fHLP(—W,ﬂ)'

If p<1 or p= 00, then the bound does not hold with any C, < 0.
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Theorem (Riesz 1927)
If1 < p < o, then there is C, < oo such that

HPJerLP(—TrJr) < CP”fHLP(—W,ﬂ)'

If p<1 or p= 00, then the bound does not hold with any C, < 0.

Theorem (Hollenbeck—Verbitsky 2000)

For1 < p < 0, the best C, is (sin(m/p)) L.
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A martingale proof

We consider an e-random walk (W,),=0 in C, started at 0 and
stopped upon leaving the unit disc.
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A martingale proof

We consider an e-random walk (W,),=0 in C, started at 0 and
stopped upon leaving the unit disc.

For a polynomial f, let f, = ur(W,) and g, = up, f(Wh).
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A martingale proof

We consider an e-random walk (W,),=0 in C, started at 0 and
stopped upon leaving the unit disc.

For a polynomial f, let f, = ur(W,) and g, = up, f(Wh).

(fn), (gn) are martingales; |go| < |fol, |gn — gn—1| < |fa — fa-1]-
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A martingale proof

We consider an e-random walk (W,),>0 in C, started at 0 and
stopped upon leaving the unit disc.

For a polynomial f, let f, = ur(W,) and g, = up, f(W,).

(fn), (gn) are martingales; |go| < |, |gn — gn—1| < |fn — fo1l-
Hence ||gn| e < Bpl|falle (Burkholder).
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A martingale proof

We consider an e-random walk (W,,)p>0 in C, started at 0 and
stopped upon leaving the unit disc.

For a polynomial f, let f, = ur(W,) and g, = up, ¢(W,).
(f2), (gn) are martingales; |go| < [fol, |gn — gn—1| < |fa — fo1].
Hence ||gn|» < (sin(m/p)) Y||fa] e (refined Burkholder).
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A martingale proof

We consider an e-random walk (W,,)p>0 in C, started at 0 and
stopped upon leaving the unit disc.

For a polynomial f, let f, = ur(W,) and g, = up, ¢(W,).
(f2), (gn) are martingales; |go| < [fol, |gn — gn—1| < |fa — fo1].
Hence [P f|p < (sin(m/p))~*[f].e.

Adam Osekowski Martingale inequalities and their applications



5. Some extensions
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular
integral operators and Fourier multipliers on RY.
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular
integral operators and Fourier multipliers on RY.

Riesz transforms on RY: for j=1,2, ..., d,

r () X = Y]
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular
integral operators and Fourier multipliers on RY.

Riesz transforms on RY: for j=1,2, ..., d

X~ Yi

= (112 e Tx — 971 f(y)dy.

Rif(x) = r(%) .V.J

Theorem (Calderén—Zygmund 1956, Iwaniec—Martin 1996,
Pichorides 1972)

We have

R tan %) ifl<p<2,
3 dy_s dy =
JllLP(RY)— LP(RY) cot 21p> if2 < p <.

Adam Osekowski
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular
integral operators and Fourier multipliers on RY.

Riesz transforms on RY: for j=1,2, ..., d,

r (%) X~ Y]

Theorem (Nazarov—Volberg 2001,

Geiss—Montgomery-Smith—Saksman 2010)

For j # k, we have

1 . _
HRJ'RkHLP(Rd)HLP(Rd) ) min{p —1,(p — 1) 1}-
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular
integral operators and Fourier multipliers on RY.

Riesz transforms on RY: for j=1,2, ..., d,

r(4) X~ Y

Theorem (Bafiuelos-0. (2013))

For arbitrary complex coefficients (aji)1<j,k<d, the norm

LP(R4)—LP(RY)

is equal to .. ..
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Weighted setting

The above problems can be studied in the presence of weights.
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Weighted setting

The above problems can be studied in the presence of weights.

A weight = a nonnegative locally integrable function w on RY.
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Weighted setting

The above problems can be studied in the presence of weights.

A weight = a nonnegative locally integrable function w on RY.

1/p
LP(w) = {f ‘RIS R 1l oy = (fRd |f(x)|pw(x)dx> < oo}.
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Weighted setting

The above problems can be studied in the presence of weights.

A weight = a nonnegative locally integrable function w on RY.

1/p
LP(w) = {f ‘RIS R 1l oy = (J |f(x)|pw(x)dx> < oo}.
Rd
Let T be a general singular integral operator on RY:

700 = . | Kx)F(y)dy.

with K satisfying some standard size and continuity assumptions.
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Weighted setting

The above problems can be studied in the presence of weights.

A weight = a nonnegative locally integrable function w on RY.

1/p
LP(w) = {f ‘RIS R 1l oy = (J |f(x)|pw(x)dx> < oo}.
Rd
Let T be a general singular integral operator on RY:

700 = . | Kx)F(y)dy.

with K satisfying some standard size and continuity assumptions.

Theorem (Coifman—Fefferman 1974, Hytonen 2012)

For any 1 < p < oo and any weight w satisfying Muckenhoupt’s
condition Ap, we have

HTHLP(W)*)LP(W) < Cp,w,T-
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Other function spaces

All the above problems can be studied in other function spaces
(weak-type estimates, Lorenz-norm estimates, LlogL inequalities,
BMO estimates, etc.).
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Towards noncommutative analysis

Given an n X n matrix A, its upper triangular projection is

a1 a2 a3 ... aip a1 d12 a13 ... ain
ax ax» a3 ... an 0 ax» axs ... axn
a31 4d32 4a33 ... asn —> 0 0 di33 ... asn
anl @ any ... ann 0 0 0 ... am
. ~ ~ v
A T(A)
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Towards noncommutative analysis

Given an n X n matrix A, its upper triangular projection is

a1 a2 a3 ... ain a1 d12 a13 ... ain
ax ax» a3 ... an 0 ax» axs ... axn
a31 4d32 4a33 ... asn —> 0 0 di33 ... asn
anl @ any ... ann 0 0 0 ... am
. ~ ~ v
A T(A)

Theorem (Kwapien—Petczynski 1970)

For any 1 < p < o0 there is a finite constant C, such that

IT(A)er < CollAl e
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Towards noncommutative analysis

Given an n X n matrix A, its upper triangular projection is

a1 a2 a3 ... ain a1 d12 a13 ... ain
ax ax» a3 ... an 0 ax» axs ... axn
a31 4d32 4a33 ... asn —> 0 0 di33 ... asn
anl @ any ... ann 0 0 0 ... am
. ~ ~ v
A T(A)

Theorem (Kwapien—Petczynski 1970)

For any 1 < p < o0 there is a finite constant C, such that

IT(A)er < CollAl e

— matrix martingales
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Towards noncommutative analysis

Given an n X n matrix A, its upper triangular projection is

a1 a2 a3 ... aip a1 d12 a13 ... ain
ax ax» a3 ... an 0 ax» axs ... axn
a31 4d32 4a33 ... asn —> 0 0 di33 ... asn
anl @ any ... ann 0 0 0 ... am
. ~ ~ v
A T(A)

Theorem (Kwapien—Petczynski 1970)

For any 1 < p < o0 there is a finite constant C, such that

IT(A)er < CollAl e

— matrix martingales — noncommutative harmonic analysis . ...
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The last slide

Thank you for your attention.

Adam Osekowski Martingale inequalities and their applications



