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A little bit of history

The word `martingale' was used in XVIIIth century in the context of

certain betting systems.

� Some elements: Louis Bachelier (1900).

� The concept appears in the work of Paul Lévy (1934).

� The name coined by Jean Ville (1939). One of the pioneers.

� Theory was developed by Joseph Leo Doob (1940's - 1950's).

� . . .

In this talk, we will be interested in martingale inequalities and their

applications outside probability theory. Two big names:

� Joseph Leo Doob,

� Donald Lyman Burkholder.
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A dyadic lattice in r0, 1s

. . .

Adam Os¦kowski Martingale inequalities and their applications



A dyadic martingale

Take an arbitrary integrable function f on r0, 1s . . .
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A dyadic martingale

. . . and consider its average with respect to D0 . . .
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A dyadic martingale

. . . and consider its partial average with respect to D1 . . .
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A dyadic martingale

. . . and consider its partial average with respect to D2 . . .
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A dyadic martingale

. . . and consider its partial average with respect to D3 . . .
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A dyadic martingale

The obtained sequence pfnqn¥0 is a dyadic martingale (induced by f ).
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Towards the general case

One can consider other partitions or other measure spaces.

Partition pDnqn¥0 Ø pσpDnqqn¥0 (called �ltration).

De�nition

Let pΩ,F ,Pq be a probability space with a �ltration pFnqn¥0. A

sequence pfnqn¥0 of random variables is a closed martingale, if

fn � Epf |Fnq, n � 0, 1, 2, . . .

for some integrable random variable f .
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2. Unconditional constant of the Haar system
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The Haar system on r0, 1s (Haar, 1909)
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The Haar system on r0, 1s (Haar, 1909)
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Unconditional basis

The sequence phnqn¥0 is a basis of Lp, 1 ¤ p   8: for any f P Lp,

f �
8̧

n�0

anhn (convergence in Lpq

for some unique coe�cients a0, a1, a2, . . ..

Theorem (Marcinkiewicz-Paley 1932)

For any 1   p   8 there is a �nite constant cp such that�����
Ņ

n�0

εnanhn

�����
Lp

¤ cp

�����
Ņ

n�0

anhn

�����
Lp

for any N, a0, a1, a2, . . . aN P R and ε0, ε1, ε2, . . . , εN P t�1, 1u.
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Dyadic martingale di�erences

Let pfnqn¥0 be the dyadic martingale induced by f P L1p0, 1q.
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Dyadic martingale di�erences

Let pfnqn¥0 be the dyadic martingale induced by f P L1p0, 1q.

Di�erences:

f1 � f0
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Dyadic martingale di�erences

Let pfnqn¥0 be the dyadic martingale induced by f P L1p0, 1q.

Di�erences:

f2 � f1
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Dyadic martingale di�erences

Let pfnqn¥0 be the dyadic martingale induced by f P L1p0, 1q.

Di�erences:

f3 � f2
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Dyadic martingale di�erences

Let pfnqn¥0 be the dyadic martingale induced by f P L1p0, 1q.

We have

fn � f0 � pf1 � f0q � pf2 � f1q � . . .� pfn � fn�1q �
2n�1̧

k�0

akhk

for some coe�cients a0, a1, a2, . . ., a2n�1.
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A martingale inequality

Theorem (Burkholder 1966, 1984)

Suppose that pfnqn¥0, pgnqn¥0 are martingales such that

|g0| ¤ |f0| and |gn � gn�1| ¤ |fn � fn�1|, n � 1, 2, . . . .

Then for 1   p   8 we have the sharp estimate

}gn}Lp ¤ Bp}fn}Lp , n � 0, 1, 2, . . . ,

with Bp � maxtp � 1, pp � 1q�1u.

This result immediately gives the estimate for the Haar system,

with cp � Bp.

It turns out that the constant is optimal for the Haar system Ñ
this is the unconditional constant of phnqn¥0 in Lp.
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In summary

Suppose that pX ,G, µq is a measure space, T is some operator

acting on measurable functions and we are interested in

}Tf }LppX q ¤ Cp}f }LppX q

for a given function f P LppX ,G, µq.

The approach:

1. Find martingales pfnqn¥0, pgnqn¥0 such that fn � f , gn � Tf .
2. Prove the estimate }gn}Lp ¤ Cp}fn}Lp for each n.

In 1., one searches for martingales such that the increments

gn � gn�1 are dominated by the increments fn � fn�1.
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3. Hardy and Sobolev inequalities
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Doob's maximal inequality

Theorem (Doob 1940's)

For any 1   p ¤ 8 we have the estimate����sup
n¥0

|fn|

����
Lp
¤

p

p � 1
}f }Lp

and the constant p{pp � 1q is the best possible.
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Application: Hardy inequality

Theorem (Hardy 1920, Landau 1926)

Suppose that a1, a2, . . . is a sequence of nonnegative numbers.

Then

8̧

n�1

�
a1 � a2 � . . .� an

n


p

¤

�
p

p � 1


p 8̧

n�1

apn .

The constant is optimal.
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Application: Hardy inequality

Theorem (Hardy 1920, Landau 1926)

Suppose that a1, a2, . . . is a sequence of nonnegative numbers.

Then for any N,

Ņ

n�1

�
a1 � a2 � . . .� an

n


p

¤

�
p

p � 1


p Ņ

n�1

apn .

The constant is optimal.
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Partitions
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Reduction to Doob's estimate
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Reduction to Doob's estimate

Fix k ¥ 1. On pk � 1, kq, we have

sup
n
|fn| ¥

a1 � a2 � . . .� ak
k

.
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Reduction to Doob's estimate

Fix k ¥ 1. On pk � 1, kq, we have

sup
n
|fn| ¥

a1 � a2 � . . .� ak
k

.

Hence, summing over k ,

Ņ

k�1

�
a1 � a2 � . . .� ak

k


p

¤
Ņ

k�1

» k

k�1

sup
n
|fn|

p.
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Continuous-time extension

Theorem (Hardy 1920, Landau 1926)

For any 1   p   8 and f P Lpp0,8q we have the sharp bound» 8
0

����1x
» x

0

|f pyq|dy

����p dx ¤
�

p

p � 1


p » 8
0

|f pxq|pdx .

Theorem (Bliss 1930)

For 1   p   q, put α � q{p � 1 and let f P Lpp0,8q. Then

» 8
0

xα
�
1

x

» x

0

|f pyq|dy


q

dx ¤ Cp,q

�» 8
0

|f pxq|pdx


q{p

,

where the optimal constant is

Cp,q �
1

q � α� 1

�
αΓpq{αq

Γp1{αqΓppq � 1q{αq

�α
.
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Application: Sobolev imbedding theorem

Theorem (Sobolev 1938, Talenti 1976)

For any 1 ¤ p   d and any u P C 1
0 pRdq, we have

}u}LqpRd q ¤ Cp,d}∇u}LppRd q,

where q � pd{pd � pq and the best constant Cp,d is

Cp,d � π�1{2d�1{p

�
p � 1

d � p


1�1{p � Γp1� d{2qΓpdq

Γpd{pqΓp1� d � d{pq


1{d

.

Idea of proof: Su�ces for upxq � f p|x |q Ñ Bliss' inequality.
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4. Estimates for analytic projections
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Analytic projection

Suppose that f is a trigonometric polynomial

f pθq �
Ņ

n��N

cne
inθ, θ P p�π, πs.

The analytic projection P� and the co-analytic projection P� are

P�f pθq �
¸
n¥0

cne
inθ, P�f pθq �

¸
n 0

cne
inθ.
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Ņ

n��N

cne
inθ, θ P p�π, πs.

The analytic projection P� and the co-analytic projection P� are

P�f pθq �
¸
n¥0

cne
inθ, P�f pθq �

¸
n 0

cne
inθ.

Adam Os¦kowski Martingale inequalities and their applications



Why analytic/co-analytic ?

We may treat f as a function on the unit circle T � C:

f pθq �
Ņ

n��N

cne
inθ Ñ f pζq �

Ņ

n��N

cnζ
n, ζ � e iθ P T.

Then f extends to a harmonic function uf on the unit disc.

We have uf pzq � uP�f pzq � uP�f pzq and uP�f , uP�f are analytic.
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Lp norms

f pθq �
Ņ

n��N

cne
inθ Ñ P�f pθq �

Ņ

n�0

cne
inθ.

Theorem (Riesz 1927)

If 1   p   8, then there is Cp   8 such that

}P�f }Lpp�π,πq ¤ Cp}f }Lpp�π,πq.

If p ¤ 1 or p � 8, then the bound does not hold with any Cp   8.

Theorem (Hollenbeck�Verbitsky 2000)

For 1   p   8, the best Cp is psinpπ{pqq�1.
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A martingale proof

We consider an ε-random walk pWnqn¥0 in C, started at 0 and

stopped upon leaving the unit disc.

For a polynomial f , let fn � uf pWnq and gn � uP�f pWnq.

pfnq, pgnq are martingales; |g0| ¤ |f0|, |gn � gn�1| ¤ |fn � fn�1|.
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5. Some extensions
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular

integral operators and Fourier multipliers on Rd .
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Riesz transforms on Rd : for j � 1, 2, . . . , d ,

Rj f pxq �
Γ
�
d�1
2

�
πpd�1q{2
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|x � y |d�1

f pyqdy .

Adam Os¦kowski Martingale inequalities and their applications



Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular

integral operators and Fourier multipliers on Rd .

Riesz transforms on Rd : for j � 1, 2, . . . , d ,

Rj f pxq �
Γ
�
d�1
2

�
πpd�1q{2

p.v.

»
Rd

xj � yj
|x � y |d�1

f pyqdy .

Theorem (Calderón�Zygmund 1956, Iwaniec�Martin 1996,

Pichorides 1972)

We have

}Rj}LppRd qÑLppRd q �

$&
%

tan
�
π
2p

	
if 1   p ¤ 2,

cot
�
π
2p

	
if 2 ¤ p   8.
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular

integral operators and Fourier multipliers on Rd .

Riesz transforms on Rd : for j � 1, 2, . . . , d ,

Rj f pxq �
Γ
�
d�1
2

�
πpd�1q{2

p.v.

»
Rd

xj � yj
|x � y |d�1

f pyqdy .

Theorem (Nazarov�Volberg 2001,

Geiss�Montgomery-Smith�Saksman 2010)

For j � k , we have

}RjRk}LppRd qÑLppRd q �
1

2
mintp � 1, pp � 1q�1u.
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Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular

integral operators and Fourier multipliers on Rd .

Riesz transforms on Rd : for j � 1, 2, . . . , d ,

Rj f pxq �
Γ
�
d�1
2

�
πpd�1q{2

p.v.

»
Rd

xj � yj
|x � y |d�1

f pyqdy .

Theorem (Bañuelos�O. (2013))

For arbitrary complex coe�cients pajkq1¤j ,k¤d , the norm������
¸
j , k

ajkRjRk

������
LppRd qÑLppRd q

is equal to . . ..
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Weighted setting

The above problems can be studied in the presence of weights.

A weight � a nonnegative locally integrable function w on Rd .

Lppwq �

#
f : Rd Ñ R : }f }Lppwq :�

�»
Rd

|f pxq|pwpxqdx


1{p

  8

+
.

Let T be a general singular integral operator on Rd :

Tf pxq � p.v.

»
Rd

K px , yqf pyqdy ,

with K satisfying some standard size and continuity assumptions.

Theorem (Coifman�Fe�erman 1974, H¸tonen 2012)

For any 1   p   8 and any weight w satisfying Muckenhoupt's

condition Ap, we have

}T }LppwqÑLppwq ¤ Cp,w ,T .
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Other function spaces

All the above problems can be studied in other function spaces

(weak-type estimates, Lorenz-norm estimates, LlogL inequalities,

BMO estimates, etc.).
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Towards noncommutative analysis

Given an n � n matrix A, its upper triangular projection is�
�����

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
. . . . . . . . . . . . . . .
an1 an2 an3 . . . ann

�
����

loooooooooooooooooomoooooooooooooooooon
A

ÞÑ

�
�����

a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
. . . . . . . . . . . . . . .
0 0 0 . . . ann

�
����

loooooooooooooooooomoooooooooooooooooon
T pAq

Theorem (Kwapie«�Peªczy«ski 1970)

For any 1   p   8 there is a �nite constant Cp such that

}T pAq}Lp ¤ Cp}A}Lp .

Ñ matrix martingales Ñ noncommutative harmonic analysis . . . .
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The last slide

Thank you for your attention.
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