Martingale inequalities and their applications

Adam Osękowski

University of Warsaw, Poland

Colloquium WMIM
December 9th, 2021

1. Introduction
2. Unconditional constant of the Haar system
3. Hardy and Sobolev inequalities
4. Estimates for analytic projections
5. Some extensions

1. Introduction

A little bit of history

The word 'martingale' was used in XVIIIth century in the context of certain betting systems.

A little bit of history

The word 'martingale' was used in XVIIIth century in the context of certain betting systems.

- Some elements: Louis Bachelier (1900).
- The concept appears in the work of Paul Lévy (1934).
- The name coined by Jean Ville (1939). One of the pioneers.
- Theory was developed by Joseph Leo Doob (1940's - 1950's).

A little bit of history

The word 'martingale' was used in XVIIIth century in the context of certain betting systems.

- Some elements: Louis Bachelier (1900).
- The concept appears in the work of Paul Lévy (1934).
- The name coined by Jean Ville (1939). One of the pioneers.
- Theory was developed by Joseph Leo Doob (1940's - 1950's).
-. .

In this talk, we will be interested in martingale inequalities and their applications outside probability theory. Two big names:

- Joseph Leo Doob,
- Donald Lyman Burkholder.

A dyadic lattice in $[0,1]$

A dyadic martingale

Take an arbitrary integrable function f on $[0,1] \ldots$

A dyadic martingale

... and consider its average with respect to $\mathcal{D}_{0} \ldots$

A dyadic martingale

.... and consider its partial average with respect to $\mathcal{D}_{1} \ldots$

A dyadic martingale

.... and consider its partial average with respect to $\mathcal{D}_{2} \ldots$

A dyadic martingale

\ldots and consider its partial average with respect to $\mathcal{D}_{3} \ldots$

A dyadic martingale

The obtained sequence $\left(f_{n}\right)_{n \geqslant 0}$ is a dyadic martingale (induced by f).

Towards the general case

One can consider other partitions or other measure spaces.

Towards the general case

One can consider other partitions or other measure spaces.
Partition $\left(\mathcal{D}_{n}\right)_{n \geqslant 0} \leftrightarrow\left(\sigma\left(\mathcal{D}_{n}\right)\right)_{n \geqslant 0}$ (called filtration).

Towards the general case

One can consider other partitions or other measure spaces.
Partition $\left(\mathcal{D}_{n}\right)_{n \geqslant 0} \leftrightarrow\left(\sigma\left(\mathcal{D}_{n}\right)\right)_{n \geqslant 0}$ (called filtration).

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$. A sequence $\left(f_{n}\right)_{n \geqslant 0}$ of random variables is a closed martingale, if

$$
f_{n}=\mathbb{E}\left(f \mid \mathcal{F}_{n}\right), \quad n=0,1,2, \ldots
$$

for some integrable random variable f.

2. Unconditional constant of the Haar system

The Haar system on $[0,1]$ (Haar, 1909)

$0 \quad 1$

The Haar system on $[0,1]$ (Haar, 1909)

| h_{0} | |
| :--- | :--- | :--- |
| 0 | h_{1} |
| 0 | \square |

The Haar system on $[0,1]$ (Haar, 1909)

			h_{1}		h_{2}
0	1	0	1	0	1

The Haar system on $[0,1]$ (Haar, 1909)

Unconditional basis

The sequence $\left(h_{n}\right)_{n \geqslant 0}$ is a basis of $L^{p}, 1 \leqslant p<\infty$: for any $f \in L^{p}$,

$$
f=\sum_{n=0}^{\infty} a_{n} h_{n} \quad \text { (convergence in } L^{p} \text {) }
$$

for some unique coefficients $a_{0}, a_{1}, a_{2}, \ldots$

Unconditional basis

The sequence $\left(h_{n}\right)_{n \geqslant 0}$ is a basis of $L^{p}, 1 \leqslant p<\infty$: for any $f \in L^{p}$,

$$
f=\sum_{n=0}^{\infty} a_{n} h_{n} \quad \text { (convergence in } L^{p} \text {) }
$$

for some unique coefficients $a_{0}, a_{1}, a_{2}, \ldots$

Theorem (Marcinkiewicz-Paley 1932)

For any $1<p<\infty$ there is a finite constant c_{p} such that

$$
\left\|\sum_{n=0}^{N} \varepsilon_{n} a_{n} h_{n}\right\|_{L^{p}} \leqslant c_{p}\left\|\sum_{n=0}^{N} a_{n} h_{n}\right\|_{L^{p}}
$$

for any $N, a_{0}, a_{1}, a_{2}, \ldots a_{N} \in \mathbb{R}$ and $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{N} \in\{-1,1\}$.

Dyadic martingale differences

Let $\left(f_{n}\right)_{n \geqslant 0}$ be the dyadic martingale induced by $f \in L^{1}(0,1)$.

Dyadic martingale differences

Let $\left(f_{n}\right)_{n \geqslant 0}$ be the dyadic martingale induced by $f \in L^{1}(0,1)$.

Differences:
$f_{1}-f_{0}$

Dyadic martingale differences

Let $\left(f_{n}\right)_{n \geqslant 0}$ be the dyadic martingale induced by $f \in L^{1}(0,1)$.

Differences:

$$
f_{2}-f_{1}
$$

Dyadic martingale differences

Let $\left(f_{n}\right)_{n \geqslant 0}$ be the dyadic martingale induced by $f \in L^{1}(0,1)$.

Differences:
$f_{3}-f_{2}$

Dyadic martingale differences

Let $\left(f_{n}\right)_{n \geqslant 0}$ be the dyadic martingale induced by $f \in L^{1}(0,1)$.

We have

$$
f_{n}=f_{0}+\left(f_{1}-f_{0}\right)+\left(f_{2}-f_{1}\right)+\ldots+\left(f_{n}-f_{n-1}\right)=\sum_{k=0}^{2^{n}-1} a_{k} h_{k}
$$

for some coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{2^{n}-1}$.

A martingale inequality

Theorem (Burkholder 1966, 1984)

Suppose that $\left(f_{n}\right)_{n \geqslant 0},\left(g_{n}\right)_{n \geqslant 0}$ are martingales such that

$$
\left|g_{0}\right| \leqslant\left|f_{0}\right| \quad \text { and } \quad\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|, \quad n=1,2, \ldots
$$

Then for $1<p<\infty$ we have the sharp estimate

$$
\left\|g_{n}\right\|_{L^{p}} \leqslant B_{p}\left\|f_{n}\right\|_{L^{p}}, \quad n=0,1,2, \ldots,
$$

with $B_{p}=\max \left\{p-1,(p-1)^{-1}\right\}$.

A martingale inequality

Theorem (Burkholder 1966, 1984)

Suppose that $\left(f_{n}\right)_{n \geqslant 0},\left(g_{n}\right)_{n \geqslant 0}$ are martingales such that

$$
\left|g_{0}\right| \leqslant\left|f_{0}\right| \quad \text { and } \quad\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|, \quad n=1,2, \ldots
$$

Then for $1<p<\infty$ we have the sharp estimate

$$
\left\|g_{n}\right\|_{L^{p}} \leqslant B_{p}\left\|f_{n}\right\|_{L^{p}}, \quad n=0,1,2, \ldots,
$$

with $B_{p}=\max \left\{p-1,(p-1)^{-1}\right\}$.
This result immediately gives the estimate for the Haar system, with $c_{p}=B_{p}$.

A martingale inequality

Theorem (Burkholder 1966, 1984)

Suppose that $\left(f_{n}\right)_{n \geqslant 0},\left(g_{n}\right)_{n \geqslant 0}$ are martingales such that

$$
\left|g_{0}\right| \leqslant\left|f_{0}\right| \quad \text { and } \quad\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|, \quad n=1,2, \ldots
$$

Then for $1<p<\infty$ we have the sharp estimate

$$
\left\|g_{n}\right\|_{L^{p}} \leqslant B_{p}\left\|f_{n}\right\|_{L^{p}}, \quad n=0,1,2, \ldots
$$

with $B_{p}=\max \left\{p-1,(p-1)^{-1}\right\}$.
This result immediately gives the estimate for the Haar system, with $c_{p}=B_{p}$.
It turns out that the constant is optimal for the Haar system \rightarrow this is the unconditional constant of $\left(h_{n}\right)_{n \geqslant 0}$ in L^{p}.

In summary

Suppose that (X, \mathcal{G}, μ) is a measure space, T is some operator acting on measurable functions and we are interested in

$$
\|T f\|_{L^{p}(X)} \leqslant C_{p}\|f\|_{L^{p}(X)}
$$

for a given function $f \in L^{p}(X, \mathcal{G}, \mu)$.

In summary

Suppose that (X, \mathcal{G}, μ) is a measure space, T is some operator acting on measurable functions and we are interested in

$$
\|T f\|_{L^{p}(X)} \leqslant C_{p}\|f\|_{L^{p}(X)}
$$

for a given function $f \in L^{p}(X, \mathcal{G}, \mu)$.
The approach:

In summary

Suppose that (X, \mathcal{G}, μ) is a measure space, T is some operator acting on measurable functions and we are interested in

$$
\|T f\|_{L^{p}(X)} \leqslant C_{p}\|f\|_{L^{p}(X)}
$$

for a given function $f \in L^{p}(X, \mathcal{G}, \mu)$.
The approach:

1. Find martingales $\left(f_{n}\right)_{n \geqslant 0},\left(g_{n}\right)_{n \geqslant 0}$ such that $f_{n} \sim f, g_{n} \sim T f$.

In summary

Suppose that (X, \mathcal{G}, μ) is a measure space, T is some operator acting on measurable functions and we are interested in

$$
\|T f\|_{L^{p}(X)} \leqslant C_{p}\|f\|_{L^{p}(X)}
$$

for a given function $f \in L^{p}(X, \mathcal{G}, \mu)$.
The approach:

1. Find martingales $\left(f_{n}\right)_{n \geqslant 0},\left(g_{n}\right)_{n \geqslant 0}$ such that $f_{n} \sim f, g_{n} \sim T f$.
2. Prove the estimate $\left\|g_{n}\right\|_{L^{p}} \leqslant C_{p}\left\|f_{n}\right\|_{L^{p}}$ for each n.

In summary

Suppose that (X, \mathcal{G}, μ) is a measure space, T is some operator acting on measurable functions and we are interested in

$$
\|T f\|_{L^{p}(X)} \leqslant C_{p}\|f\|_{L^{p}(X)}
$$

for a given function $f \in L^{p}(X, \mathcal{G}, \mu)$.
The approach:

1. Find martingales $\left(f_{n}\right)_{n \geqslant 0},\left(g_{n}\right)_{n \geqslant 0}$ such that $f_{n} \sim f, g_{n} \sim T f$.
2. Prove the estimate $\left\|g_{n}\right\|_{L^{p}} \leqslant C_{p}\left\|f_{n}\right\|_{L^{p}}$ for each n.

In 1., one searches for martingales such that the increments $g_{n}-g_{n-1}$ are dominated by the increments $f_{n}-f_{n-1}$.

3. Hardy and Sobolev inequalities

Doob's maximal inequality

Doob's maximal inequality

Theorem (Doob 1940's)

For any $1<p \leqslant \infty$ we have the estimate

$$
\left\|\sup _{n \geqslant 0}\left|f_{n}\right|\right\|_{L^{p}} \leqslant \frac{p}{p-1}\|f\|_{L^{p}}
$$

and the constant $p /(p-1)$ is the best possible.

Application: Hardy inequality

Theorem (Hardy 1920, Landau 1926)

Suppose that a_{1}, a_{2}, \ldots is a sequence of nonnegative numbers. Then

$$
\sum_{n=1}^{\infty}\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

The constant is optimal.

Application: Hardy inequality

Theorem (Hardy 1920, Landau 1926)

Suppose that a_{1}, a_{2}, \ldots is a sequence of nonnegative numbers. Then for any N,

$$
\sum_{n=1}^{N}\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{N} a_{n}^{p}
$$

The constant is optimal.

Partitions

Reduction to Doob's estimate

Reduction to Doob's estimate

Fix $k \geqslant 1$. On $(k-1, k)$, we have

$$
\sup _{n}\left|f_{n}\right| \geqslant \frac{a_{1}+a_{2}+\ldots+a_{k}}{k} .
$$

Reduction to Doob's estimate

Fix $k \geqslant 1$. On $(k-1, k)$, we have

$$
\sup _{n}\left|f_{n}\right| \geqslant \frac{a_{1}+a_{2}+\ldots+a_{k}}{k}
$$

Hence, summing over k,

$$
\sum_{k=1}^{N}\left(\frac{a_{1}+a_{2}+\ldots+a_{k}}{k}\right)^{p} \leqslant \sum_{k=1}^{N} \int_{k-1}^{k} \sup _{n}\left|f_{n}\right|^{p}
$$

Reduction to Doob's estimate

Fix $k \geqslant 1$. On $(k-1, k)$, we have

$$
\sup _{n}\left|f_{n}\right| \geqslant \frac{a_{1}+a_{2}+\ldots+a_{k}}{k} .
$$

Hence, summing over k,

$$
\sum_{k=1}^{N}\left(\frac{a_{1}+a_{2}+\ldots+a_{k}}{k}\right)^{p} \leqslant \int_{0}^{N} \sup _{n}\left|f_{n}\right|^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} \int_{0}^{N} f^{p}
$$

Reduction to Doob's estimate

Fix $k \geqslant 1$. On $(k-1, k)$, we have

$$
\sup _{n}\left|f_{n}\right| \geqslant \frac{a_{1}+a_{2}+\ldots+a_{k}}{k}
$$

Hence, summing over k,

$$
\sum_{k=1}^{N}\left(\frac{a_{1}+a_{2}+\ldots+a_{k}}{k}\right)^{p} \leqslant \int_{0}^{N} \sup _{n}\left|f_{n}\right|^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} \sum_{k=1}^{N} a_{k}^{p}
$$

Continuous-time extension

Theorem (Hardy 1920, Landau 1926)

For any $1<p<\infty$ and $f \in L^{p}(0, \infty)$ we have the sharp bound

$$
\int_{0}^{\infty}\left|\frac{1}{x} \int_{0}^{x}\right| f(y)|d y|^{p} d x \leqslant\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}|f(x)|^{p} d x .
$$

Continuous-time extension

Theorem (Hardy 1920, Landau 1926)

For any $1<p<\infty$ and $f \in L^{p}(0, \infty)$ we have the sharp bound

$$
\int_{0}^{\infty}\left|\frac{1}{x} \int_{0}^{x}\right| f(y)|d y|^{p} d x \leqslant\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}|f(x)|^{p} d x .
$$

Theorem (Bliss 1930)

For $1<p<q$, put $\alpha=q / p-1$ and let $f \in L^{p}(0, \infty)$. Then

$$
\int_{0}^{\infty} x^{\alpha}\left(\frac{1}{x} \int_{0}^{x}|f(y)| d y\right)^{q} d x \leqslant C_{p, q}\left(\int_{0}^{\infty}|f(x)|^{p} d x\right)^{q / p}
$$

where the optimal constant is

$$
C_{p, q}=\frac{1}{q-\alpha-1}\left[\frac{\alpha \Gamma(q / \alpha)}{\Gamma(1 / \alpha) \Gamma((q-1) / \alpha)}\right]^{\alpha} .
$$

Application: Sobolev imbedding theorem

Theorem (Sobolev 1938, Talenti 1976)

For any $1 \leqslant p<d$ and any $u \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$, we have

$$
\|u\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leqslant C_{p, d}\|\nabla u\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

where $q=p d /(d-p)$ and the best constant $C_{p, d}$ is

$$
C_{p, d}=\pi^{-1 / 2} d^{-1 / p}\left(\frac{p-1}{d-p}\right)^{1-1 / p}\left(\frac{\Gamma(1+d / 2) \Gamma(d)}{\Gamma(d / p) \Gamma(1+d-d / p)}\right)^{1 / d}
$$

Application: Sobolev imbedding theorem

Theorem (Sobolev 1938, Talenti 1976)

For any $1 \leqslant p<d$ and any $u \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$, we have

$$
\|u\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leqslant C_{p, d}\|\nabla u\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

where $q=p d /(d-p)$ and the best constant $C_{p, d}$ is

$$
C_{p, d}=\pi^{-1 / 2} d^{-1 / p}\left(\frac{p-1}{d-p}\right)^{1-1 / p}\left(\frac{\Gamma(1+d / 2) \Gamma(d)}{\Gamma(d / p) \Gamma(1+d-d / p)}\right)^{1 / d}
$$

Idea of proof: Suffices for $u(x)=f(|x|) \rightarrow$ Bliss' inequality.
4. Estimates for analytic projections

Analytic projection

Suppose that f is a trigonometric polynomial

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta}, \quad \theta \in(-\pi, \pi]
$$

Analytic projection

Suppose that f is a trigonometric polynomial

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta}, \quad \theta \in(-\pi, \pi]
$$

The analytic projection P_{+}and the co-analytic projection P_{-}are

$$
P_{+} f(\theta)=\sum_{n \geqslant 0} c_{n} e^{i n \theta}, \quad P_{-} f(\theta)=\sum_{n<0} c_{n} e^{i n \theta}
$$

Why analytic/co-analytic?

We may treat f as a function on the unit circle $\mathbb{T} \subset \mathbb{C}$:

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \quad \rightarrow \quad \sum_{n=-N}^{N} c_{n} \zeta^{n}, \quad \zeta=e^{i \theta} \in \mathbb{T}
$$

Why analytic/co-analytic?

We may treat f as a function on the unit circle $\mathbb{T} \subset \mathbb{C}$:
$f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \quad \rightarrow \quad f(\zeta)=\sum_{n=-N}^{N} c_{n} \zeta^{n}, \quad \zeta=e^{i \theta} \in \mathbb{T}$.
Then f extends to a harmonic function u_{f} on the unit disc.

Why analytic/co-analytic?

We may treat f as a function on the unit circle $\mathbb{T} \subset \mathbb{C}$:

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \quad \rightarrow \quad f(\zeta)=\sum_{n=-N}^{N} c_{n} \zeta^{n}, \quad \zeta=e^{i \theta} \in \mathbb{T}
$$

Then f extends to a harmonic function u_{f} on the unit disc.
We have $u_{f}(z)=u_{P_{-} f}(z)+u_{P_{+} f}(z)$ and $u_{P_{+} f}, \overline{u_{P_{-} f}}$ are analytic.

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \quad \rightarrow \quad P_{+} f(\theta)=\sum_{n=0}^{N} c_{n} e^{i n \theta}
$$

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \quad \rightarrow \quad P_{+} f(\theta)=\sum_{n=0}^{N} c_{n} e^{i n \theta}
$$

Theorem (Riesz 1927)

If $1<p<\infty$, then there is $C_{p}<\infty$ such that

$$
\left\|P_{+} f\right\|_{L^{\rho}(-\pi, \pi)} \leqslant C_{p}\|f\|_{L^{p}(-\pi, \pi)} .
$$

If $p \leqslant 1$ or $p=\infty$, then the bound does not hold with any $C_{p}<\infty$.

$$
f(\theta)=\sum_{n=-N}^{N} c_{n} e^{i n \theta} \quad \rightarrow \quad P_{+} f(\theta)=\sum_{n=0}^{N} c_{n} e^{i n \theta}
$$

Theorem (Riesz 1927)

If $1<p<\infty$, then there is $C_{p}<\infty$ such that

$$
\left\|P_{+} f\right\|_{L^{p}(-\pi, \pi)} \leqslant C_{p}\|f\|_{L^{p}(-\pi, \pi)} .
$$

If $p \leqslant 1$ or $p=\infty$, then the bound does not hold with any $C_{p}<\infty$.

Theorem (Hollenbeck-Verbitsky 2000)

For $1<p<\infty$, the best C_{p} is $(\sin (\pi / p))^{-1}$.

A martingale proof

We consider an ε-random walk $\left(W_{n}\right)_{n \geqslant 0}$ in \mathbb{C}, started at 0 and stopped upon leaving the unit disc.

A martingale proof

We consider an ε-random walk $\left(W_{n}\right)_{n \geqslant 0}$ in \mathbb{C}, started at 0 and stopped upon leaving the unit disc.

For a polynomial f, let $f_{n}=u_{f}\left(W_{n}\right)$ and $g_{n}=u_{P_{+} f}\left(W_{n}\right)$.

A martingale proof

We consider an ε-random walk $\left(W_{n}\right)_{n \geqslant 0}$ in \mathbb{C}, started at 0 and stopped upon leaving the unit disc.

For a polynomial f, let $f_{n}=u_{f}\left(W_{n}\right)$ and $g_{n}=u_{P_{+} f}\left(W_{n}\right)$.
$\left(f_{n}\right)$, $\left(g_{n}\right)$ are martingales; $\left|g_{0}\right| \leqslant\left|f_{0}\right|,\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|$.

A martingale proof

We consider an ε-random walk $\left(W_{n}\right)_{n \geqslant 0}$ in \mathbb{C}, started at 0 and stopped upon leaving the unit disc.

For a polynomial f, let $f_{n}=u_{f}\left(W_{n}\right)$ and $g_{n}=u_{P_{+} f}\left(W_{n}\right)$.
$\left(f_{n}\right)$, $\left(g_{n}\right)$ are martingales; $\left|g_{0}\right| \leqslant\left|f_{0}\right|,\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|$.
Hence $\left\|g_{n}\right\|_{L^{p}} \leqslant B_{p}\left\|f_{n}\right\|_{L^{p}}$ (Burkholder).

A martingale proof

We consider an ε-random walk $\left(W_{n}\right)_{n \geqslant 0}$ in \mathbb{C}, started at 0 and stopped upon leaving the unit disc.

For a polynomial f, let $f_{n}=u_{f}\left(W_{n}\right)$ and $g_{n}=u_{P_{+} f}\left(W_{n}\right)$.
$\left(f_{n}\right)$, $\left(g_{n}\right)$ are martingales; $\left|g_{0}\right| \leqslant\left|f_{0}\right|,\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|$.
Hence $\left\|g_{n}\right\|_{L^{p}} \leqslant(\sin (\pi / p))^{-1}\left\|f_{n}\right\|_{L^{p}}$ (refined Burkholder).

A martingale proof

We consider an ε-random walk $\left(W_{n}\right)_{n \geqslant 0}$ in \mathbb{C}, started at 0 and stopped upon leaving the unit disc.

For a polynomial f, let $f_{n}=u_{f}\left(W_{n}\right)$ and $g_{n}=u_{P_{+} f}\left(W_{n}\right)$.
$\left(f_{n}\right)$, $\left(g_{n}\right)$ are martingales; $\left|g_{0}\right| \leqslant\left|f_{0}\right|,\left|g_{n}-g_{n-1}\right| \leqslant\left|f_{n}-f_{n-1}\right|$.
Hence $\left\|P_{+} f\right\|_{L^{p}} \leqslant(\sin (\pi / p))^{-1}\|f\|_{L^{p}}$.

5. Some extensions

Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular integral operators and Fourier multipliers on \mathbb{R}^{d}.

Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular integral operators and Fourier multipliers on \mathbb{R}^{d}.

Riesz transforms on \mathbb{R}^{d} : for $j=1,2, \ldots, d$,

$$
R_{j} f(x)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1) / 2}} \text { p.v. } \int_{\mathbb{R}^{d}} \frac{x_{j}-y_{j}}{|x-y|^{d+1}} f(y) \mathrm{d} y
$$

Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular integral operators and Fourier multipliers on \mathbb{R}^{d}.
Riesz transforms on \mathbb{R}^{d} : for $j=1,2, \ldots, d$,

$$
R_{j} f(x)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1) / 2}} \text { p.v. } \int_{\mathbb{R}^{d}} \frac{x_{j}-y_{j}}{|x-y|^{d+1}} f(y) \mathrm{d} y
$$

Theorem (Calderón-Zygmund 1956, Iwaniec-Martin 1996,
Pichorides 1972)
We have

$$
\left\|R_{j}\right\|_{L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)}= \begin{cases}\tan \left(\frac{\pi}{2 p}\right) & \text { if } 1<p \leqslant 2 \\ \cot \left(\frac{\pi}{2 p}\right) & \text { if } 2 \leqslant p<\infty\end{cases}
$$

Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular integral operators and Fourier multipliers on \mathbb{R}^{d}.
Riesz transforms on \mathbb{R}^{d} : for $j=1,2, \ldots, d$,

$$
R_{j} f(x)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1) / 2}} \text { p.v. } \int_{\mathbb{R}^{d}} \frac{x_{j}-y_{j}}{|x-y|^{d+1}} f(y) \mathrm{d} y
$$

Theorem (Nazarov-Volberg 2001,
 Geiss-Montgomery-Smith-Saksman 2010)

For $j \neq k$, we have

$$
\left\|R_{j} R_{k}\right\|_{L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)}=\frac{1}{2} \min \left\{p-1,(p-1)^{-1}\right\}
$$

Singular integrals and Fourier multipliers

Martingale approach can be used to study wider classes of singular integral operators and Fourier multipliers on \mathbb{R}^{d}.

Riesz transforms on \mathbb{R}^{d} : for $j=1,2, \ldots, d$,

$$
R_{j} f(x)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1) / 2}} \text { p.v. } \int_{\mathbb{R}^{d}} \frac{x_{j}-y_{j}}{|x-y|^{d+1}} f(y) \mathrm{d} y
$$

Theorem (Bañuelos-O. (2013))

For arbitrary complex coefficients $\left(a_{j k}\right)_{1 \leqslant j, k \leqslant d}$, the norm

$$
\left\|\sum_{j, k} a_{j k} R_{j} R_{k}\right\|_{L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)}
$$

is equal to

Weighted setting

The above problems can be studied in the presence of weights.

Weighted setting

The above problems can be studied in the presence of weights. A weight \equiv a nonnegative locally integrable function w on \mathbb{R}^{d}.

Weighted setting

The above problems can be studied in the presence of weights. A weight \equiv a nonnegative locally integrable function w on \mathbb{R}^{d}.

$$
L^{p}(w)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}:\|f\|_{L^{p}(w)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{1 / p}<\infty\right\}
$$

Weighted setting

The above problems can be studied in the presence of weights. A weight \equiv a nonnegative locally integrable function w on \mathbb{R}^{d}.

$$
L^{p}(w)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}:\|f\|_{L^{p}(w)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{1 / p}<\infty\right\}
$$

Let T be a general singular integral operator on \mathbb{R}^{d} :

$$
T f(x)=\text { p.v. } \int_{\mathbb{R}^{d}} K(x, y) f(y) \mathrm{d} y
$$

with K satisfying some standard size and continuity assumptions.

Weighted setting

The above problems can be studied in the presence of weights. A weight \equiv a nonnegative locally integrable function w on \mathbb{R}^{d}.

$$
L^{p}(w)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}:\|f\|_{L^{p}(w)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{1 / p}<\infty\right\}
$$

Let T be a general singular integral operator on \mathbb{R}^{d} :

$$
T f(x)=\text { p.v. } \int_{\mathbb{R}^{d}} K(x, y) f(y) \mathrm{d} y
$$

with K satisfying some standard size and continuity assumptions.

Theorem (Coifman-Fefferman 1974, Hÿtonen 2012)

For any $1<p<\infty$ and any weight w satisfying Muckenhoupt's condition A_{p}, we have

$$
\|T\|_{L^{p}(w) \rightarrow L^{p}(w)} \leqslant C_{p, w, T} .
$$

Other function spaces

All the above problems can be studied in other function spaces (weak-type estimates, Lorenz-norm estimates, LlogL inequalities, $B M O$ estimates, etc.).

Towards noncommutative analysis

Given an $n \times n$ matrix A, its upper triangular projection is

$$
\underbrace{\left(\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)}_{A} \mapsto \underbrace{\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)}_{T(A)}
$$

Towards noncommutative analysis

Given an $n \times n$ matrix A, its upper triangular projection is

$$
\underbrace{\left(\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)}_{A} \mapsto \underbrace{\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)}_{T(A)}
$$

Theorem (Kwapień-Pełczyński 1970)

For any $1<p<\infty$ there is a finite constant C_{p} such that

$$
\|T(A)\|_{L^{p}} \leqslant C_{p}\|A\|_{L^{p}}
$$

Towards noncommutative analysis

Given an $n \times n$ matrix A, its upper triangular projection is

$$
\underbrace{\left(\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)}_{A} \mapsto \underbrace{\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)}_{T(A)}
$$

Theorem (Kwapień-Pełczyński 1970)

For any $1<p<\infty$ there is a finite constant C_{p} such that

$$
\|T(A)\|_{L^{p}} \leqslant C_{p}\|A\|_{L^{p}} .
$$

\rightarrow matrix martingales

Towards noncommutative analysis

Given an $n \times n$ matrix A, its upper triangular projection is

$$
\underbrace{\left(\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)}_{A} \mapsto \underbrace{\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)}_{T(A)}
$$

Theorem (Kwapień-Pełczyński 1970)

For any $1<p<\infty$ there is a finite constant C_{p} such that

$$
\|T(A)\|_{L^{p}} \leqslant C_{p}\|A\|_{L^{p}} .
$$

\rightarrow matrix martingales \rightarrow noncommutative harmonic analysis

Thank you for your attention.

