
Nevanlinna Prize 2018:
How hard is it to compute Nash equilibrium?
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Nevanlinna Prize 2018

Awarded to Constantinos
Daskalakis (MIT)

For transforming our understanding of the computational complexity of
fundamental problems in markets, auctions, equilibria, and other
economic structures. His work provides both efficient algorithms and
limits on what can be performed efficiently in these domains.
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Nevanlinna Prize

Prize in mathematical aspects of information
sciences
Named in honor of Rolf Nevanlinna
(1895-1980), president of the International
Mathematical Union (1959-1963) and
president of the International Congress of
Mathematicians (1962)
Awarded every 4 years since 1982
Presented at International Congress of
Mathematicians (along with Fields Medal)
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Nevanlinna Prize
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Complexity of Computing Nash Equilibrium
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Rational choice (single player)

Rational choice is characterized by
One player

Set of strategies S over which the choice is made
Utility function: u : S→ R
Objective: maximise the value of u on S
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Games

A game: Model of rational choice for multiple players

Γ =
〈
N, (Si)i∈N , (ui)i∈N

〉
where

N – set of players
Si – set of strategies of player i ∈ N

Strategy profile: s ∈
∏

i∈N Si, S =
∏

i∈N Si

ui : S → R; Given s ∈ S, ui(s) – payoff of i from s

Finite game: There is finite number of players and each has finite
set of strategies
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Solution concepts

Games specify possible choices of the players and their payoffs
They do not specify the outcomes that will result from players’
choices
Game solution provides systematic description of what outcomes
might emerge
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Solution concepts

C D

C 3,3 -1,4

D 4,-1 1,1

D is the best choice no matter what the other player is choosing
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Solution concepts

C D

C 3,3 -1,4

D -1,4 1,1

D is the best response to any strategy of the other player
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Nash equilibrium

H L

H 5,5 0,0

L 0,0 2,2

No strategy is a best response to all strategies of the other player
(H,H) and (L,L) are stable: no player can benefit from changing
individually

Definition (Nash equilibrium)
Strategy profile such that no player can benefit from changing his
strategy individually
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Mixed strategies

H T

H 1,-1 -1,1

T -1,1 1,-1

Problem: Nash equilibrium may not exist

Extension: allow players to choose probability distributions over
set of strategies (mixed strategies)
((12 ,

1
2 ), (12 ,

1
2 )) is stable: no one can benefit from changing his

(mixed) strategy individually
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Nash equilibrium

Theorem (Nash (1951))
Every finite game has (Nash) equilibrium in mixed strategies
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Computation of Nash equilibria

Input (the game):
Set of players, N = {1, . . . ,n}
Strategies of each player: Si = {s1, . . . , smi } for i ∈ N
Utilities of players: us

i , for each s ∈
∏

i∈N Si and i ∈ N
Output (Nash equilibrium):

For each player i his mixed strategy: xi = (xs1
i , . . . , x

smi
i )

Problem: Irrational numbers
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Computation of Nash equilibria

Definition (ε-Nash equilibrium)
Strategy profile such that no player can benefit more than ε > 0 from
changing his strategy individually

Definition (Problem NASH)
Input (the game):

Set of players, N = {1, . . . ,n}
Strategies of each player: Si = {s1, . . . , smi } for i ∈ N
Utilities of players: us

i , for each s ∈
∏

i∈N Si and i ∈ N
(Integer) a > 0

Output (1/a-Nash equilibrium):
For each player i his mixed strategy: xi = (xs1

i , . . . , x
smi
i )
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Computation of Nash equilibria: what was known

Nash (1951): Every finite game has (Nash) equilibrium in mixed
strategies

Lemke and Howson (1964): algorithm for computing NE in
2-player games (seems efficient in practice)

Rosenmüller (1971) and Wilson (1971): extension to more than 2
players
May require exponentially many steps (Savani and von Stengel
(2004))

Bubelis (1979): efficient reduction of NE computation for k-player
games (k > 3) to NE computation in 3-player games
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Computation of Nash equilibria: complexity
considerations

NASH is a search problem

Given a strategy profile we can verify whether it is a Nash
equilibrium in polynomial time→ NASH is in NP
NASH is a particular type of search problem: it always has a
solution

→ total search problem

TFNP (NP for total functions)
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Class PPAD: completeness
END OF THE LINE Problem: Given a directed graph over 2n

vertices with in-degree and out-degree ≤ 1 and a source vertex
find a sink or another source
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vertices with in-degree and out-degree ≤ 1 and a source vertex
find a sink or another source
Graph is represented succinctly and input has size O(nk)

Vertices are 0-1 strings of length n
Edges are represented by two functions S and P encoded as
boolean circuits of polynomial size
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Class PPAD: completeness

Definition (Problem END OF THE LINE)
Input: (graph of in- and out-degree at most 1)

Functions S and P representing edges of the graph over 2n vertices
such that (0, . . . , 0) is a source vertex

Output
Source vertex different to (0, . . . , 0) or a sink vertex
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Class PPAD: completeness

PPAD complete

We can translate an instance of the problem to an instance of END
OF THE LINE in polynomial time
We can translate the solution of the instance of END OF THE LINE
back to the solution of the instance of the problem in polynomial
time
We can translate an instance of END OF THE LINE to an instance of
the problem in polynomial time
We can translate the solution of instance of the problem back to the
solution of the instance of END OF THE LINE in polynomial time
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Complexity of NASH

Theorem (Daskalakis, Goldberg, Papadimitriou (2006))
NASH is PPAD-complete
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Proof
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From NASH to BROUWER
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From NASH to BROUWER

Nash’s equilibrium existence theorem essentially relies on
Brouwer fix point theorem

Theorem (Brouwer (1910))
Any continuous map from a compact and convex subset of the
Euclidean space into itself has a fix point
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From NASH to BROUWER
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From NASH to BROUWER

Nash’s equilibrium existence theorem essentially relies on
Brouwer fix point theorem

Theorem (Brouwer (1910))
Any continuous map from a compact and convex subset of the
Euclidean space into itself has a fix point

BROUWER: Given F find a fix point of F
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From BROUWER to END OF THE LINE

F : [0, 1]m
→ [0, 1]m satisfies Lipschitz condition with constant K

For all x1, x2 ∈ [0, 1]m, d(F(x1),F(x2)) ≤ K · d(x1, x2)

Definition (Problem BROUWER)
Input: Efficient algorithm ΠF computing F : [0, 1]m

→ [0, 1]m,
Lipschitz constant K of F, and accuracy a

Output: x such that d(F(x), x) ≤ 1/a
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From END OF THE LINE to BROUWER
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From BROUWER to NASH
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Summary

The result by Daskalakis et al. (2006) established computational
complexity of finding ε-Nash equilibria for finite games with at
least 3 players

Few months after the result was published, Chen and Deng
(2007) extended the result to 2-player games
The problem of finding exact Nash equilibria (or approximating
them) was studied by Etessami and Yannakakis (2007)
It is at least as hard as finding ε-Nash equilibria
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