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Gradient flows in Rd

ẋ(t) = −∇E(x(t))

[0,T ) ∋ t 7→ x(t) ∈ Rd – a curve,

E : Rd → [−∞,+∞] – potential functional (usually required to
satisfy some regularity or convexity assumptions).

Position x evolves along the vector field −∇E evaluated at x ”in an
attempt” to minimize E(x).
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Gradient flows in Hilbert spaces – Brezis, Pazy

ẋ(t) ∈ −∂−E(x(t))

[0,T ) ∋ t 7→ x(t) ∈ H – a curve with values in a Hilbert space

E – λ-convex, i.e.

E((1− t)x + ty) ≤ (1− t)E(x) + tE(y)− λ

2
t(1− t)|x − y |2,

∂−E(x) :=
{
v ∈ H : ∀y ∈ H

E(x)+ < v , y − x > +
λ

2
|x − y |2 ≤ E(y)

}
Equivalently - Evolutionary Variational Inequality

∀y ∈ H
1

2

d

dt
|x(t)− y |2 + E(x(t)) + λ

2
|x(t)− y |2 ≤ E(y)
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Gradient flows in Polish spaces

∀y ∈ X
1

2

d

dt
dist(x(t), y)2 + E(x(t)) + λ

2
dist(x(t), y)2 ≤ E(y)

If E : X → (−∞,+∞] is proper, coercive, lsc and λ-(geodesically)
convex then the above EVI has only one absolutely continuous solution.
The solution is exponentially stable

dist(x1(t), x2(t)) ≤ e−λtdist(x1(0), x2(0)).

Example: X = P2(Rd), dist(µ, ν) = W2(µ, ν), where

W 2
2 (µ, ν) = inf

γ

∫
R2d

|x − x ′|2dγ(x , x ′),

where γ are all probability measures with x-marginal µ and x ′-marginal ν.
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Weakly Riemannian structure of (P2,W2) – Otto, 2001

Wasserstein space (P2,W2) has a weakly Riemannian structure (tan-
gent space at x ∈ P2 is isomorphic to L2x). Thus, theory of gradient
flows known for Hilbert spaces applies. We again have

ẋ(t) ∈ −∂W2E(x(t))

Writing x = µ and interpreting ẋ as local velocity u of the transport of µ.
Then absolutely continuous curves satisfying the EVI

∀σ ∈ P2
1

2

d

dt
W 2

2 (µ(t), σ) + E(µ(t)) + λ

2
W 2

2 (µ(t), σ) ≤ E(σ)

are equivalent to distributional solutions to

∂tµ+ div(uµ) = 0,

u(t) ∈ ∂W2E(µ(t)).
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Gradient flows in P2 and continuity equation

If E : P2 → (−∞,+∞] is proper, coercive, lsc and λ-convex (along
generalized geodesics) then there exists a unique gradient flow µ ∈
AC (0,T ;P2) issued at any µ0 ∈ D(E). It satisfies continuity equation

∂tµ+ div(uµ) = 0, u(t) ∈ −∂W2E(µ(t))

in the sense of distributions.

We also get some more information for free e.g.

W2(µ
1
t , µ

2
t ) ≲ e−λtW2(µ

1
0, µ

2
0).
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Applications

∂tµ+ div(uµ) = 0, u(t) ∈ −∂W2E(µ(t)).

Absolutely continuous measure µ = gL1.

Entropy functional E(g) = log g .

Subdifferential ∂E(g) = ∇g
g = −u.

Continuity equation becomes the heat equation

∂tg −∆g = 0

We further can consider such models as: Fokker-Planck, Vlasov,
Keller–Segel, and many models of first-order collective dynamics
(interaction potentials).
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To give credit where credit is due

Left: David Poyato
Right: Javier Morales
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Heterogeneous continuity equation

Consider (x , ω) ∈ Rd1+d2 and the continuity equation for µt = µt(x , ω)

∂tµ+ divx(uµ) = 0

We treat µ ∈ AC (0,T ; (P2,ν(Rd1+d2),W2,ν)︸ ︷︷ ︸
P2,ν

) as a curve

t ∈ [0,T ] 7→ µt ∈ P2,ν .

Equivalently

∂tµ+ div(x ,ω)(vµ) = 0, v = (u, 0).
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Fibered Wasserstein distance

Any probability measure µ = µ(x , ω) on Rd1+d2 can be decomposed
with respect to its marginal ν ∈ P(Rd2) as

µ[ϕ] =

∫
Rd2

(∫
Rd1

ϕ(x , ω)dµω(x)

)
dν(ω)

for all Borel-measurable ϕ. We denote this representation as µ(x , ω) =
µω(x)⊗ ν(ω)

P2,ν := {µ ∈ P : (πω)#µ = ν,

∫
Rd1+d2

|x |2dµ(x , ω) < ∞}

W 2
2,ν(µ, σ) :=

∫
Rd2

W 2
2 (µ

ω, σω)dν(ω)
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Heterogeneous gradient flow in P2,ν

First we prove that the fibered Wasserstein space (P2,ν ,W2,ν) is a
Polish space, and we get the EVI gradient flows for free.

Second, following Otto approach, we prove that (P2,ν ,W2,ν) is a
Riemannian manifold.
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Heterogeneous gradient flow in P2,ν

First we prove that the fibered Wasserstein space (P2,ν ,W2,ν) is a
Polish space, and we get the EVI gradient flows for free.

Second, following Otto approach, we prove that (P2,ν ,W2,ν) is a
Riemannian manifold.

We develop a fibered subdifferential calculus with

∂W2,νE(µ) =
{
u ∈ L2µ : E [σ]− E [µ]

≥ inf
γ∈Γo,ν(µ,σ)

∫
R4d

u(x , ω) · (x ′ − x) dγ(x , x ′, ω, ω′)

+ o(W2,ν(µ, σ))
}
.
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Heterogeneous gradient flow in P2,ν

First we prove that the fibered Wasserstein space (P2,ν ,W2,ν) is a
Polish space, and we get the EVI gradient flows for free.

Second, following Otto approach, we prove that (P2,ν ,W2,ν) is a
Riemannian manifold.

We develop a fibered subdifferential calculus.

‘Assuming that E : P2,ν → (−∞,+∞] is proper, coercive, lsc and
λ-convex (along fibered generalized geodesics) we prove that EVI is
equivalent to the subdifferential notion of gradient flows

ut ∈ −∂W2,νE(µt)

where µ satisfies the parameterised continuity equation.
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Main result

If E : P2,ν → (−∞,+∞] is proper, coercive, lsc and λ-convex (along
fibered generalized geodesics), then there exists a unique gradient flow
µ ∈ AC (0,T ;P2,ν) issued at any µ0 ∈ D(E). It satisfies continuity
equation

∂tµ+ divx(uµ) = 0, ut ∈ −∂W2,νE(µt)

in the sense of distributions.

We also get some more information for free e.g.

W2,ν(µ
1
t , µ

2
t ) ≲ e−λtW2,ν(µ

1
0, µ

2
0).
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Applications

Fokker Planck equations with various particles responding differently
to the drag force and random motion.

Vlasov equation for mixtures of different type of plasma.

Multispecies first order collective dynamics.

Kuramoto model of 1D synchronization.

Lohe model of quantum coupled oscillators.

Multispecies Keller-Segel model.
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The fundamental example: Kuramoto-type equation

E [µ] = −
∫
R2d

ω · xdµ+

∫
R4d

W (|x − x ′|)dµdµ′,

W (|x − x ′|) = 1

2− α

1

1− α
|x − x ′|2−α, α ∈ (0, 1).

Then the fibered subdifferential is given by

∂W2,νE [µt ] = ∇xW ∗ µ− ω

and the corresponding continuity equation reads

∂tµ+ divx [(ω −∇xW ∗ µ)µ] = 0.
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Two misconceptions

Ha! Aren’t you just stacking a couple of (e.g.
continuum) independent continuity equations one
atop another? By disintegration:

∂tµ
ω(x) + divx(u

ω(x)µω(x)) = 0,

uωt ∈ −∂W2E
ω(µω

t )

then just integrate with respect to ν.

Ax explained – NO. It is generally not true that uω depends only on µω!

∂tµ+ divx [(ω −∇xW ∗ µ)µ] = 0.

After disintegration we have uωt (x) = ω −∇W ∗ µt(x) and the velocity
field clearly depends on the whole µ even with fixed ω.
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Two misconceptions

Anyway... aren’t all of the proofs you need
following the same idea? Step 1: disin-
tegrate the energy E . Step 2: solve the
problem on each fiber using classical theory.
Step 3: Integrate with respect to ν.

Works 50 % of the time.

In prticular classical approach usually involves narrow topology, which
fails in fibered problems.

Again, reversing the disintegration theorem usually requires some
thought such as using Kuratowski–Ryll-Nardzewski measurable
selection theorem.
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Stability of optimality (classical)

Let µ1
n → µ1 and µ2

n → µ2 narrowly. Then any sequence of opitmal
plans γn ∈ Γopt(µ

1
n, µ

2
n) is narrowly relatively compact and any of its

limit plans is belongs to Γopt(µ
1, µ2).

Sketch of the proof.

By Prokhorov’s theorem relative narrow compactness is equivalent to
tightness.

Prokhorov ⇒ {µ1
n}, {µ2

n} are tight.

Tight marginals imply tight measures with those marginals (meaning
{γn} is tight).

Prokhorov ⇒ {γn} is narrowly relatively compact.

Optimality of limits γ of γn follows from two pieces of information:
1 points in suppγ are limits of points in suppγn.
2 plans are optimal iff their supports are c-monotone (here:

| · |2-monotone).
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Stability of optimality (fibered – attempt 1)
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Optimality of limits γ of γn follows from two pieces of information:
1 points in suppγ are limits of points in suppγn.
2 plans are optimal iff their supports are c-monotone (here:

| · |2-monotone).

The characterization of optimality by c-monotonicity of the support
works only in two situations:

1 finitely valued costs (Ambrosio, Pratelli 2003)
2 infinitely valued but continuous costs (Pratelli 2008)

Our cost function is neither finitely valued nor continuous. Back to
the drawing board.
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2
n) is narrowly relatively compact and any of its

limit plans is belongs to Γopt,ν(µ
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Stability of optimality (fibered – attempt 2)

Let µ1
n → µ1 and µ2

n → µ2 narrowly. Then any sequence of opitmal
plans γn ∈ Γopt(µ

1
n, µ

2
n) is narrowly relatively compact and any of its

limit plans is belongs to Γopt(µ
1, µ2).

Sketch of the proof.

Narrow convergence of µ1
n and µ2

n imply that for ν-a.a. ω we have
µ1ω
n → µ1ω and µ2ω

n → µ2ω.

Thus for ν-a.a. ω, by Prokhorov, γωn is narrowly compact.

Then we would like to use classical optimal stability for γωn . Done?

No. The problem is we have a convergent subsequence fixed to match
each ω (and there is continuum of ω).
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Stability of optimality (fibered – attempt 3)

Let µ1
n → µ1 and µ2

n → µ2 narrowly. Then any sequence of opitmal
plans γn ∈ Γopt(µ

1
n, µ

2
n) is narrowly relatively compact and any of its

limit plans is belongs to Γopt(µ
1, µ2).

Sketch of the proof.

The ν-random narrow convergence is tested with ν-random
continuous functions ϕ:

1 For all x the function ω 7→ ϕ(x , ω) is Borel-measurable.
2 For all ω the function x 7→ ϕ(x , ω) is bounded and continuous.
3 We have ∫

Rd2

|ϕ(·, ω)|∞dν(ω) < ∞.

Then the idea of attempt 2 works...?

One still needs to proof a variant of ”points in suppγ are limits of
points in suppγn” that works for the so called ν-random sets. Which
we did.
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