Heterogeneous gradient flows

Jan Peszek jointly with David Poyato

Institute of Applied Mathematics and Mechanics University of Warsaw

j.peszek@mimuw.edu.pl

Mar. 10, 2022

< ∃⇒

Heterogeneous phenomena; mixtures, multiple species

Jan Peszek (IMSIM UW)

∃ >

Outline

- Classical gradient flows from ODEs to curves in Hilbert and Polish spaces.
- **2** Gradient flows in Wasserstein topology and continuity equation.
- **③** Heterogeneous continuity equation and fibered Wasserstein space.
- Main result heterogeneous gradient flows and their applications.
- Further discussion.

Gradient flows in \mathbb{R}^d

$$\dot{x}(t) = -\nabla \mathcal{E}(x(t))$$

- $[0, T)
 i t \mapsto x(t) \in \mathbb{R}^d$ a curve,
- *E* : ℝ^d → [-∞, +∞] potential functional (usually required to satisfy some regularity or convexity assumptions).

Position x evolves along the vector field $-\nabla \mathcal{E}$ evaluated at x "in an attempt" to minimize $\mathcal{E}(x)$.

Gradient flows in Hilbert spaces – BREZIS, PAZY

 $\dot{x}(t) \in -\partial^{-}\mathcal{E}(x(t))$

[0, T) ∋ t ↦ x(t) ∈ H − a curve with values in a Hilbert space *E* − λ-convex, *i.e.*

$$egin{aligned} \mathcal{E}((1-t)x+ty) &\leq (1-t)\mathcal{E}(x)+t\mathcal{E}(y)-rac{\lambda}{2}t(1-t)|x-y|^2,\ \partial^-\mathcal{E}(x) &\coloneqq \left\{ v\in \mathcal{H}: \ orall y\in \mathcal{H}\ &\mathcal{E}(x)+ < v, y-x>+rac{\lambda}{2}|x-y|^2\leq \mathcal{E}(y)
ight\} \end{aligned}$$

٦

Equivalently - Evolutionary Variational Inequality

$$orall y \in H$$
 $rac{1}{2}rac{d}{dt}|x(t)-y|^2 + \mathcal{E}(x(t)) + rac{\lambda}{2}|x(t)-y|^2 \leq \mathcal{E}(y)$

Gradient flows in Polish spaces

$$\forall y \in X \quad rac{1}{2}rac{d}{dt} ext{dist}(x(t),y)^2 + \mathcal{E}(x(t)) + rac{\lambda}{2} ext{dist}(x(t),y)^2 \leq \mathcal{E}(y)$$

If $\mathcal{E} : X \to (-\infty, +\infty]$ is proper, coercive, lsc and λ -(geodesically) convex then the above EVI has only one absolutely continuous solution. The solution is exponentially stable

$$dist(x_1(t), x_2(t)) \le e^{-\lambda t} dist(x_1(0), x_2(0)).$$

Example: $X = \mathcal{P}_2(\mathbb{R}^d)$, dist $(\mu, \nu) = W_2(\mu, \nu)$, where

$$W_2^2(\mu,
u) = \inf_{\gamma} \int_{\mathbb{R}^{2d}} |x-x'|^2 d\gamma(x,x'),$$

where γ are all probability measures with x-marginal μ and x'-marginal $\nu.$

Weakly Riemannian structure of (\mathcal{P}_2, W_2) – OTTO, 2001

Wasserstein space (\mathcal{P}_2, W_2) has a weakly Riemannian structure (tangent space at $x \in \mathcal{P}_2$ is isomorphic to L_x^2). Thus, theory of gradient flows known for Hilbert spaces applies. We again have

 $\dot{x}(t) \in -\partial_{W_2} \mathcal{E}(x(t))$

Writing $x = \mu$ and interpreting \dot{x} as local velocity \boldsymbol{u} of the transport of μ . Then absolutely continuous curves satisfying the EVI

$$orall \sigma \in \mathcal{P}_2 \quad rac{1}{2} rac{d}{dt} W_2^2(\mu(t),\sigma) + \mathcal{E}(\mu(t)) + rac{\lambda}{2} W_2^2(\mu(t),\sigma) \leq \mathcal{E}(\sigma)$$

are equivalent to distributional solutions to

$$\partial_t \mu + \operatorname{div}(\boldsymbol{u}\mu) = 0,$$

 $\boldsymbol{u}(t) \in \partial_{W_2} \mathcal{E}(\mu(t)).$

If $\mathcal{E} : \mathcal{P}_2 \to (-\infty, +\infty]$ is proper, coercive, lsc and λ -convex (along generalized geodesics) then there exists a unique gradient flow $\mu \in AC(0, T; \mathcal{P}_2)$ issued at any $\mu_0 \in D(\mathcal{E})$. It satisfies continuity equation

$$\partial_t \boldsymbol{\mu} + \operatorname{div}(\boldsymbol{\mu}\boldsymbol{\mu}) = 0, \qquad u(t) \in -\partial_{W_2} \mathcal{E}(\mu(t))$$

in the sense of distributions.

We also get some more information for free e.g.

$$W_2(\mu_t^1, \mu_t^2) \lesssim e^{-\lambda t} W_2(\mu_0^1, \mu_0^2).$$

8/24

$$\partial_t \boldsymbol{\mu} + \operatorname{div}(\boldsymbol{\mu}\boldsymbol{\mu}) = 0, \qquad \boldsymbol{u}(t) \in -\partial_{W_2} \mathcal{E}(\boldsymbol{\mu}(t)).$$

- Absolutely continuous measure $\mu = g\mathcal{L}_1$.
- Entropy functional $\mathcal{E}(g) = \log g$.
- Subdifferential $\partial \mathcal{E}(g) = \frac{\nabla g}{g} = -u$.
- Continuity equation becomes the heat equation

$$\partial_t g - \Delta g = 0$$

• We further can consider such models as: Fokker-Planck, Vlasov, Keller-Segel, and many models of first-order collective dynamics (interaction potentials).

To give credit where credit is due

Left: David Poyato Right: Javier Morales

Heterogeneous continuity equation

Consider $(x, \omega) \in \mathbb{R}^{d_1+d_2}$ and the continuity equation for $\mu_t = \mu_t(x, \omega)$

 $\partial_t \boldsymbol{\mu} + \operatorname{div}_{\boldsymbol{X}}(\boldsymbol{u}\boldsymbol{\mu}) = 0$

We treat $\mu \in AC(0, T; (\mathcal{P}_{2,\nu}(\mathbb{R}^{d_1+d_2}), W_{2,\nu}))$ as a curve $t \in [0, T] \mapsto \mu_t \in \mathcal{P}_{2,\nu}.$

Equivalently

$$\partial_t \boldsymbol{\mu} + \operatorname{div}_{(\boldsymbol{x},\omega)}(\boldsymbol{v}\boldsymbol{\mu}) = 0, \quad \boldsymbol{v} = (\boldsymbol{u}, 0).$$

Any probability measure $\mu = \mu(x, \omega)$ on $\mathbb{R}^{d_1+d_2}$ can be decomposed with respect to its marginal $\nu \in \mathcal{P}(\mathbb{R}^{d_2})$ as

$$\mu[\phi] = \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} \phi(x,\omega) d\mu^{\omega}(x) \right) d\nu(\omega)$$

for all Borel-measurable $\phi.$ We denote this representation as $\mu(x,\omega)=\mu^\omega(x)\otimes\nu(\omega)$

$$\mathcal{P}_{2,\nu} := \{ \mu \in \mathcal{P} : \ (\pi_{\omega})_{\#} \mu = \nu, \ \int_{\mathbb{R}^{d_1+d_2}} |x|^2 d\mu(x,\omega) < \infty \}$$

$$W^2_{2,
u}(\mu,\sigma) := \int_{\mathbb{R}^{d_2}} W^2_2(\mu^\omega,\sigma^\omega) d
u(\omega)$$

• First we prove that the fibered Wasserstein space $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Polish space, and we get the EVI gradient flows for free.

- First we prove that the fibered Wasserstein space $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Polish space, and we get the EVI gradient flows for free.
- Second, following OTTO approach, we prove that $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Riemannian manifold.

- First we prove that the fibered Wasserstein space $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Polish space, and we get the EVI gradient flows for free.
- Second, following OTTO approach, we prove that $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Riemannian manifold.
- We develop a fibered subdifferential calculus with

$$\partial_{W_{2,\nu}} \mathcal{E}(\mu) = \left\{ \boldsymbol{u} \in L^2_{\mu} : \mathcal{E}[\sigma] - \mathcal{E}[\mu] \\ \geq \inf_{\gamma \in \Gamma_{o,\nu}(\mu,\sigma)} \int_{\mathbb{R}^{4d}} \boldsymbol{u}(x,\omega) \cdot (x'-x) \, d\gamma(x,x',\omega,\omega') \\ + o(W_{2,\nu}(\mu,\sigma)) \right\}.$$

- First we prove that the fibered Wasserstein space $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Polish space, and we get the EVI gradient flows for free.
- Second, following OTTO approach, we prove that $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Riemannian manifold.
- We develop a fibered subdifferential calculus.

- First we prove that the fibered Wasserstein space $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Polish space, and we get the EVI gradient flows for free.
- Second, following OTTO approach, we prove that $(\mathcal{P}_{2,\nu}, W_{2,\nu})$ is a Riemannian manifold.
- We develop a fibered subdifferential calculus.
- 'Assuming that $\mathcal{E}: \mathcal{P}_{2,\nu} \to (-\infty, +\infty]$ is proper, coercive, lsc and λ -convex (along fibered generalized geodesics) we prove that EVI is equivalent to the subdifferential notion of gradient flows

$$u_t \in -\partial_{W_{2,\nu}} \mathcal{E}(\mu_t)$$

where μ satisfies the parameterised continuity equation.

Main result

If $\mathcal{E}: \mathcal{P}_{2,\nu} \to (-\infty, +\infty]$ is proper, coercive, lsc and λ -convex (along fibered generalized geodesics), then there exists a unique gradient flow $\mu \in AC(0, T; \mathcal{P}_{2,\nu})$ issued at any $\mu_0 \in D(\mathcal{E})$. It satisfies continuity equation

$$\partial_t \boldsymbol{\mu} + \operatorname{div}_{\boldsymbol{X}}(\boldsymbol{u}\boldsymbol{\mu}) = 0, \qquad u_t \in -\partial_{W_{2,\nu}} \mathcal{E}(\mu_t)$$

in the sense of distributions.

We also get some more information for free e.g.

$$W_{2,\nu}(\mu_t^1,\mu_t^2) \lesssim e^{-\lambda t} W_{2,\nu}(\mu_0^1,\mu_0^2).$$

Applications

- Fokker Planck equations with various particles responding differently to the drag force and random motion.
- Vlasov equation for mixtures of different type of plasma.
- Multispecies first order collective dynamics.
- Kuramoto model of 1D synchronization.
- Lohe model of quantum coupled oscillators.
- Multispecies Keller-Segel model.

The fundamental example: Kuramoto-type equation

$$\mathcal{E}[\mu] = -\int_{\mathbb{R}^{2d}} \omega \cdot x d\mu + \int_{\mathbb{R}^{4d}} W(|x-x'|) d\mu d\mu',$$
 $W(|x-x'|) = rac{1}{2-lpha} rac{1}{1-lpha} |x-x'|^{2-lpha}, \quad lpha \in (0,1).$

Then the fibered subdifferential is given by

$$\partial_{W_{2,\nu}} \mathcal{E}[\mu_t] = \nabla_x W * \mu - \omega$$

and the corresponding continuity equation reads

$$\partial_t \mu + \operatorname{div}_x[(\omega - \nabla_x W * \mu)\mu] = 0.$$

16 / 24

Two misconceptions

Ha! Aren't you just stacking a couple of (e.g. continuum) independent continuity equations one atop another? By disintegration:

$$\partial_t \mu^{\omega}(x) + \operatorname{div}_x(u^{\omega}(x)\mu^{\omega}(x)) = 0,$$

 $u_t^{\omega} \in -\partial_{W_2} \mathcal{E}^{\omega}(\mu_t^{\omega})$

then just integrate with respect to ν .

Ax explained – **NO**. It is generally not true that u^{ω} depends only on μ^{ω} !

$$\partial_t \mu + \operatorname{div}_{\mathsf{X}}[(\omega - \nabla_{\mathsf{X}} W * \mu)\mu] = 0.$$

After disintegration we have $u_t^{\omega}(x) = \omega - \nabla W * \mu_t(x)$ and the velocity field clearly depends on the whole μ even with fixed ω .

Two misconceptions

Anyway... aren't all of the proofs you need following the same idea? Step 1: disintegrate the energy \mathcal{E} . Step 2: solve the problem on each fiber using classical theory. Step 3: Integrate with respect to ν .

- Works 50 % of the time.
- In prticular classical approach usually involves narrow topology, which fails in fibered problems.
- Again, reversing the disintegration theorem usually requires some thought such as using Kuratowski–Ryll-Nardzewski measurable selection theorem.

Sketch of the proof.

• By Prokhorov's theorem relative narrow compactness is equivalent to tightness.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \{\mu_n^1\}, \{\mu_n^2\}$ are tight.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \ \{\mu_n^1\}, \ \{\mu_n^2\}$ are tight.
- Tight marginals imply tight measures with those marginals (meaning $\{\gamma_n\}$ is tight).

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \ \{\mu_n^1\}, \ \{\mu_n^2\}$ are tight.
- Tight marginals imply tight measures with those marginals (meaning $\{\gamma_n\}$ is tight).
- Prokhorov $\Rightarrow \{\gamma_n\}$ is narrowly relatively compact.

Sketch of the proof.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \ \{\mu_n^1\}, \ \{\mu_n^2\}$ are tight.
- Tight marginals imply tight measures with those marginals (meaning $\{\gamma_n\}$ is tight).
- Prokhorov $\Rightarrow \{\gamma_n\}$ is narrowly relatively compact.
- Optimality of limits γ of γ_n follows from two pieces of information:
 - points in $\operatorname{supp}\gamma$ are limits of points in $\operatorname{supp}\gamma_n$.
 - I plans are optimal iff their supports are c-monotone (here:
 - $|\cdot|^2$ -monotone).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt}(\mu^1, \mu^2)$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Sketch of the proof.

• By Prokhorov's theorem relative narrow compactness is equivalent to tightness.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Sketch of the proof.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \{\mu_n^1\}, \{\mu_n^2\}$ are tight.

20 / 24

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \ \{\mu_n^1\}, \ \{\mu_n^2\}$ are tight.
- Tight marginals imply tight measures with those marginals (meaning $\{\gamma_n\}$ is tight).

Sketch of the proof.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \ \{\mu_n^1\}, \ \{\mu_n^2\}$ are tight.
- Tight marginals imply tight measures with those marginals (meaning $\{\gamma_n\}$ is tight).
- Prokhorov $\Rightarrow \{\gamma_n\}$ is narrowly relatively compact.

20 / 24

Sketch of the proof.

- By Prokhorov's theorem relative narrow compactness is equivalent to tightness.
- Prokhorov $\Rightarrow \ \{\mu_n^1\}, \ \{\mu_n^2\}$ are tight.
- Tight marginals imply tight measures with those marginals (meaning $\{\gamma_n\}$ is tight).
- Prokhorov $\Rightarrow \{\gamma_n\}$ is narrowly relatively compact.
- Optimality of limits γ of γ_n follows from two pieces of information:
 - points in $\operatorname{supp}\gamma$ are limits of points in $\operatorname{supp}\gamma_n$.
 - I plans are optimal iff their supports are c-monotone (here:
 - $|\cdot|^2$ -monotone).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

- Optimality of limits γ of γ_n follows from two pieces of information:
 - points in $\operatorname{supp}\gamma$ are limits of points in $\operatorname{supp}\gamma_n$.
 - I plans are optimal iff their supports are c-monotone (here:
 - $|\cdot|^2$ -monotone).

Sketch of the proof.

- Optimality of limits γ of γ_n follows from two pieces of information:
 - points in $\operatorname{supp}\gamma$ are limits of points in $\operatorname{supp}\gamma_n$.
 - **2** plans are optimal iff their supports are *c*-monotone (here: $|z|^2$ monotone)
 - $|\cdot|^2$ -monotone).
- The characterization of optimality by *c*-monotonicity of the support works only in two situations:
 - finitely valued costs (Ambrosio, Pratelli 2003)
 - infinitely valued but continuous costs (Pratelli 2008)

Sketch of the proof.

- Optimality of limits γ of γ_n follows from two pieces of information:
 - points in $\operatorname{supp}\gamma$ are limits of points in $\operatorname{supp}\gamma_n$.
 - **2** plans are optimal iff their supports are *c*-monotone (here: $|z|^2$
 - $|\cdot|^2$ -monotone).
- The characterization of optimality by *c*-monotonicity of the support works only in two situations:
 - finitely valued costs (Ambrosio, Pratelli 2003)
 - infinitely valued but continuous costs (Pratelli 2008)
- Our cost function is neither finitely valued nor continuous. Back to the drawing board.

イロト 不得 トイヨト イヨト

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt}(\mu^1, \mu^2)$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Sketch of the proof.

• Narrow convergence of μ_n^1 and μ_n^2 imply that for ν -a.a. ω we have $\mu_n^{1\omega} \to \mu^{1\omega}$ and $\mu_n^{2\omega} \to \mu^{2\omega}$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

- Narrow convergence of μ_n^1 and μ_n^2 imply that for ν -a.a. ω we have $\mu_n^{1\omega} \to \mu^{1\omega}$ and $\mu_n^{2\omega} \to \mu^{2\omega}$.
- Thus for ν -a.a. ω , by Prokhorov, γ_n^{ω} is narrowly compact.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

- Narrow convergence of μ_n^1 and μ_n^2 imply that for ν -a.a. ω we have $\mu_n^{1\omega} \to \mu^{1\omega}$ and $\mu_n^{2\omega} \to \mu^{2\omega}$.
- Thus for ν -a.a. ω , by Prokhorov, γ_n^{ω} is narrowly compact.
- Then we would like to use classical optimal stability for γ_n^{ω} . Done?

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

- Narrow convergence of μ_n^1 and μ_n^2 imply that for ν -a.a. ω we have $\mu_n^{1\omega} \to \mu^{1\omega}$ and $\mu_n^{2\omega} \to \mu^{2\omega}$.
- Thus for ν -a.a. ω , by Prokhorov, γ_n^{ω} is narrowly compact.
- Then we would like to use classical optimal stability for γ_n^{ω} . Done?
- No. The problem is we have a convergent subsequence fixed to match each ω (and there is continuum of ω).

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2$ narrowly. Then any sequence of opitmal plans $\gamma_n \in \Gamma_{opt}(\mu_n^1, \mu_n^2)$ is narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt}(\mu^1, \mu^2)$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2 \nu$ -random narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is ν -random narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2 \nu$ -random narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is ν -random narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

- The ν -random narrow convergence is tested with ν -random continuous functions ϕ :
 - **1** For all x the function $\omega \mapsto \phi(x, \omega)$ is Borel-measurable.
 - **2** For all ω the function $x \mapsto \phi(x, \omega)$ is bounded and continuous.
 - We have

$$\int_{\mathbb{R}^{d_2}} |\phi(\cdot,\omega)|_{\infty} d\nu(\omega) < \infty.$$

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2 \nu$ -random narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is ν -random narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Sketch of the proof.

- The ν-random narrow convergence is tested with ν-random continuous functions φ:
 - **1** For all x the function $\omega \mapsto \phi(x, \omega)$ is Borel-measurable.
 - **2** For all ω the function $x \mapsto \phi(x, \omega)$ is bounded and continuous.
 - We have

$$\int_{\mathbb{R}^{d_2}} |\phi(\cdot,\omega)|_{\infty} d\nu(\omega) < \infty.$$

• Then the idea of attempt 2 works...?

23 / 24

Let $\mu_n^1 \to \mu^1$ and $\mu_n^2 \to \mu^2 \nu$ -random narrowly. Then any sequence of optimal plans $\gamma_n \in \Gamma_{opt,\nu}(\mu_n^1, \mu_n^2)$ is ν -random narrowly relatively compact and any of its limit plans is belongs to $\Gamma_{opt,\nu}(\mu^1, \mu^2)$.

Sketch of the proof.

- The ν -random narrow convergence is tested with ν -random continuous functions ϕ :
 - **1** For all x the function $\omega \mapsto \phi(x, \omega)$ is Borel-measurable.
 - **2** For all ω the function $x \mapsto \phi(x, \omega)$ is bounded and continuous.
 - We have

$$\int_{\mathbb{R}^{d_2}} |\phi(\cdot,\omega)|_{\infty} d\nu(\omega) < \infty.$$

- Then the idea of attempt 2 works...?
- One still needs to proof a variant of "points in suppγ are limits of points in suppγ_n" that works for the so called ν-random sets. Which we did.

Jan Peszek (IMSIM UW)

Jan Peszek (IMSIM UW)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ →