

Gyárfás' path

Marcin Pilipczuk m.pilipczuk@mimuw.edu.pl

22.04.2021

Gyárfás' path 1/15

Graph theory

Algorithms

Graph theory

 $\chi(G)$: chromatic number

Algorithms

Graph theory

 $\chi(G)$: chromatic number

 $\omega(G)$: max clique

Algorithms

Gyárfás' path 2/15

Graph theory

 $\underline{\chi}(G)$: chromatic number $\underline{\omega}(G)$: max clique

 $\alpha(G)$: max ind. set

Algorithms

Gyárfás' path 2/15

Graph theory

Algorithms

- $\chi(G)$: chromatic number
- $\omega(G)$: max clique
- $\alpha(G)$: max ind. set

$$\omega(G)$$
 (G) $\chi(G)$ $\chi(G)$

Maybe $\omega(G) = 2$ but large

Gyárfás' path 2/15

Graph theory

 $\chi(G)$: chromatic number

 $\omega(G)$: max clique

 $\alpha(G)$: max ind. set

$$\omega(G)$$
, $\frac{|V(G)|}{\alpha(G)} \le \chi(G)$.

Maybe $\omega(G) = 2$ but large

 $\chi(G)$

Algorithms

Checking $\chi(G) = 3$ NP-hard

Graph theory

 $\chi(G)$: chromatic number $\omega(G)$: max clique $\alpha(G)$: max ind. set $\omega(G)$, $\frac{|V(G)|}{\alpha(G)} \leq \chi(G)$.

Maybe $\omega(G) = 2$ but large $\chi(G)$

Algorithms

Checking $\chi(G) = 3$ NP-hard $\alpha(G)$ and $\omega(G)$ hard to $|V(G)|^{0.999}$ -approximate.

$$\alpha = m^{0.01}$$
 $\alpha = 7/m^{0.85}$

Gyárfás' path 2/15

Planar graphs

Gyárfás' path 3/15

Planar graphs

$$\chi(G) \leq 4$$

Planar graphs

$$\chi(G) \leq 4$$

Checking
$$\chi(G) = 3$$
 NP-hard

Planar graphs

$$\chi(G) \leq 4$$

$$\omega(G) = 2 \Rightarrow \chi(G) \leq 3$$

Checking
$$\chi(G) = 3$$
 NP-hard

Planar graphs

$$\chi(G) \le 4$$

$$\omega(G) = 2 \Rightarrow \chi(G) \le 3$$

$$\omega(G) \le 4$$

$$\alpha(G) \ge \frac{|V(G)|}{4}$$

Checking
$$\chi(G) = 3$$
 NP-hard

Planar graphs

$$\chi(G) \le 4$$
 $\omega(G) = 2 \Rightarrow \chi(G) \le 3$
 $\omega(G) \le 4$
 $\alpha(G) \ge \frac{|V(G)|}{4}$

Checking
$$\chi(G) = 3$$
 NP-hard $\chi(G) \in \chi(G) \in$

Gyárfás' path 3/15

Perfect graphs

Gyárfás' path 4/15

Perfect graphs

$$\forall_{A \subseteq V(G)} \omega(\underline{G[A]}) = \chi(G[A])$$

Perfect graphs

4/15 Gyárfás' path

Perfect graphs

$$\chi(G) = \omega(G)$$

Perfect graphs

$$\chi(G) = \omega(G)$$
 closed under taking complements

Gyárfás' path 4/15

Perfect graphs

$$\chi(G) = \omega(G)$$
closed under taking complements

$$\left(\begin{array}{c} \alpha(G), \chi(G) \text{ poly-time} \\ \text{computable} \end{array}\right)$$

Gyárfás' path 4/15

- G graph class
 - closed under vertex deletion (hereditary);
 - (H) free graphs;
 - $\mathcal{H} = \{H\} \longrightarrow H$ -free.

- G graph class
 - closed under vertex deletion (hereditary);
 - *H*-free graphs;
 - $\mathcal{H} = \{H\} \longrightarrow H$ -free.

- G graph class
 - closed under vertex deletion (hereditary);
 - *H*-free graphs;
 - $\mathcal{H} = \{H\} \longrightarrow H$ -free.

Perfect graphs are $\{\underline{C}_5,\underline{C}_7,C_9,\ldots,\overline{C}_5,\overline{C}_7,\overline{C}_9,\ldots\}$ -free.

Gyárfás' path 5/15

- G graph class
 - closed under vertex deletion (hereditary);
 - *H*-free graphs;
 - $\mathcal{H} = \{H\} \longrightarrow H$ -free.

Perfect graphs are $\{C_5, C_7, C_9, \dots, \overline{C}_5, \overline{C}_7, \overline{C}_9, \dots\}$ -free.

For which \mathcal{H} , \mathcal{H} -free graphs have similar properties?

• Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): \mathcal{G} is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \ \forall_{G\in\mathcal{G}} \ \chi(G) \leq f(\omega(G)).$$

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): \mathcal{G} is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \ \forall_{G\in\mathcal{G}} \ \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): \mathcal{G} is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \, \forall_{G\in\mathcal{G}} \, \chi(G) \leq f(\omega(G)).$$

Geometric graphs

intersection graphs of parallel rectangles

Gyárfás' path 6/15

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): \mathcal{G} is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \, \forall_{G\in\mathcal{G}} \, \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- · outerstring graphs

Gyárfás' path 6/15

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): G is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \,\forall_{G\in\mathcal{G}}\,\chi(G)\leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- outerstring graphs
- not: intersection graphs of segments in the plane

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): \mathcal{G} is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \ \forall_{G\in\mathcal{G}} \ \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- · outerstring graphs
- **not**: intersection graphs of segments in the plane

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): G is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \ \forall_{G\in\mathcal{G}} \ \chi(G) \leq f(\omega(G)).$$

Geometric graphs

H-free graphs

- intersection graphs of parallel rectangles
- · outerstring graphs
- **not**: intersection graphs of segments in the plane

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): G is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \ \forall_{G\in\mathcal{G}} \ \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- · outerstring graphs
- **not**: intersection graphs of segments in the plane

H-free graphs

• P_t -free graphs are χ -bounded.

Gyárfás' path 6/15

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): G is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \, \forall_{G\in\mathcal{G}} \, \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- outerstring graphs
- **not**: intersection graphs of segments in the plane

H-free graphs

- P_t -free graphs are χ -bounded.
- Gyárfás-Sumner conjecture: $\forall_{\text{tree }T}$, T-free are χ -bounded.

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): G is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \, \forall_{G\in\mathcal{G}} \, \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- outerstring graphs
- **not**: intersection graphs of segments in the plane

H-free graphs

- P_t -free graphs are χ -bounded.
- Gyárfás-Sumner conjecture: $\forall_{\text{tree }T}$, T-free are χ -bounded.
- $C_{>t}$ -free χ -bounded.

Gyárfás' path 6/15

- Perfect graphs is the maximal hereditary graph class with $\chi(G) = \omega(G)$.
- Relaxation (Gyárfás, 1987): \mathcal{G} is χ -bounded if

$$\exists_{f:\mathbb{N}\to\mathbb{N}} \ \forall_{G\in\mathcal{G}} \ \chi(G) \leq f(\omega(G)).$$

Geometric graphs

- intersection graphs of parallel rectangles
- outerstring graphs
- **not**: intersection graphs of segments in the plane

H-free graphs

- P_t -free graphs are χ -bounded.
 - Gyárfás-Sumner conjecture: $\forall_{\text{tree }T}$, T-free are χ -bounded.
 - $C_{>t}$ -free χ -bounded.
 - $\{C_b, C_{a+b}, C_{2a+b}, C_{3a+b}, \ldots\}$ -free χ -bounded.

Gyárfás' path 6/15

χ -boundedness of P_t -free graphs

Gyárfás 1987: P_t -free are χ -bounded.

χ -boundedness of P_t -free graphs

Gyárfás 1987: P_t -free are χ -bounded.

Induction over $\omega(G)$: $\omega(G') < k \Longrightarrow \chi(G') \le \ell$. We have G, $\omega(G) = k$, we bound $\chi(G)$.

χ -boundedness of P_t -free graphs

X4) EX+ (t-1) &

Gyárfás 1987: P_t -free are χ -bounded.

Induction over $\omega(G)$: $\omega(G') < k \Longrightarrow \chi(G') \le \ell$.

X(W) = twa We have G, $\omega(G) = k$, we bound $\chi(G)$. $\forall_{v \in V(G)} \chi(G[N(v)]) \le \ell$.

•
$$hom(G) = max(\alpha(G), \omega(G))$$

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.
- Erdős-Hajnal conjecture: $\forall_H \exists_{\varepsilon>0} \forall_{H-\text{free } G} \text{hom}(G) \geq |V(G)|^{\varepsilon}$.

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.
- Erdős-Hajnal conjecture: $\forall_H \exists_{\varepsilon>0} \forall_{H-\text{free } G} \text{hom}(G) \geq |V(G)|^{\varepsilon}$.
- *Super-recent*: C₅-free (Chudnovsky, Scott, Seymour, Spirkl), *open*: P₅-free.

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.
- Erdős-Hajnal conjecture: $\forall_H \exists_{\varepsilon>0} \forall_{H-\text{free } G} \text{hom}(G) \geq |V(G)|^{\varepsilon}$.
- *Super-recent*: C₅-free (Chudnovsky, Scott, Seymour, Spirkl), *open*: P₅-free.
- Regularization: easier for $\{H, \overline{H}\}$ -free.

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.
- Erdős-Hajnal conjecture: $\forall_H \exists_{\varepsilon>0} \forall_{H-\text{free } G} \text{hom}(G) \geq |V(G)|^{\varepsilon}$.
- *Super-recent*: C₅-free (Chudnovsky, Scott, Seymour, Spirkl), *open*: P₅-free.
- Regularization: easier for $\{H, \overline{H}\}$ -free.
- $\{P_t, \overline{P}_t\}$ -free, (Bousquet, Lagoutte, Thomassé), 2015, 1 page.

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.
- Erdős-Hajnal conjecture: $\forall_H \exists_{\varepsilon>0} \forall_{H-\text{free } G} \text{hom}(G) \geq |V(G)|^{\varepsilon}$.
- *Super-recent*: C₅-free (Chudnovsky, Scott, Seymour, Spirkl), *open*: P₅-free.
- Regularization: easier for $\{H, \overline{H}\}$ -free.
- $\{P_t, \overline{P}_t\}$ -free, (Bousquet, Lagoutte, Thomassé), 2015, 1 page.
- $\{H, \overline{H}\}$ -free for caterpillars H, (Liebenau, P.) + (Seymour, Spirkl), 2017.

- $hom(G) = max(\alpha(G), \omega(G))$
- $hom(G) = \Omega(\log |V(G)|)$
 - $hom(G) = \theta(\log |V(G)|) \le G(n, \frac{1}{2})$ a.a.s.
- Erdős-Hajnal conjecture: $\forall_H \exists_{\varepsilon>0} \forall_{H-\text{free } G} \text{hom}(G) \geq |V(G)|^{\varepsilon}$.
- *Super-recent*: C₅-free (Chudnovsky, Scott, Seymour, Spirkl), *open*: P₅-free.
- Regularization: easier for $\{H, \overline{H}\}$ -free.
- $\{P_t, \overline{P}_t\}$ -free, (Bousquet, Lagoutte, Thomassé), 2015, 1 page.
- $\{H, \overline{H}\}$ -free for caterpillars H, (Liebenau, P.) + (Seymour, Spirkl), 2017.
- $\{H, \overline{H}\}$ -free for trees H, (Chudnovsky, Scott, Seymour, Spirkl), 2018.

Pure pairs

Theorem (CSSS 2018)

For every tree H there exists $\delta > 0$, such that in every H-free G there exist disjoint $A, B \subseteq V(G)$, $|A|, |B| \ge \delta |V(G)|$ so that there are none or all edges between A and B.

Pure pairs

Theorem (CSSS 2018)

For every tree H there exists $\delta > 0$, such that in every H-free G there exist disjoint $A, B \subseteq V(G)$, $|A|, |B| \ge \delta |V(G)|$ so that there are none or all edges between A and B.

Called *pure pair* (A, B).

Pure pairs

Theorem (CSSS 2018)

For every tree H there exists $\delta > 0$, such that in every H-free G there exist disjoint $A, B \subseteq V(G)$, $|A|, |B| \ge \delta |V(G)|$ so that there are none or all edges between A and B. Called **pure pair** (A, B).

For $H = P_t$; regularization \Longrightarrow max degree o(|V(G)|).

Theorem

Every graph G contains an induced path Q such that every connected component of G - N[Q] contains at most |V(G)|/2 vertices.

Theorem

Every graph G contains an induced path Q such that every connected component of G - N[Q] contains at most |V(G)|/2 vertices.

Theorem

Every graph G with vertex weights $w: V(G) \to \mathbb{R}_{\geq 0}$ contains an induced path Q such that every connected component of G - N[Q] has weight at most w(V(G))/2.

Theorem

Every graph G contains an induced path Q such that every connected component of G-N[Q] contains at most |V(G)|/2 vertices.

Theorem

Every graph G with vertex weights $w: V(G) \to \mathbb{R}_{\geq 0}$ contains an induced path Q such that every connected component of G - N[Q] has weight at most w(V(G))/2.

$$P_t$$
-free $\Longrightarrow |V(Q)| < t \Longrightarrow \text{treewidth}(G) = \mathcal{O}(\Delta(G) \cdot t).$

Theorem

Every graph G contains an induced path Q such that every connected component of G-N[Q] contains at most |V(G)|/2 vertices.

Theorem

Every graph G with vertex weights $w: V(G) \to \mathbb{R}_{\geq 0}$ contains an induced path Q such that every connected component of G - N[Q] has weight at most w(V(G))/2.

 P_t -free $\Longrightarrow |V(Q)| < t \Longrightarrow \text{treewidth}(G) = \mathcal{O}(\Delta(G) \cdot t).$

Remark: $C_{>t}$ -free \Longrightarrow can also get $|V(Q)| \le t$.

• NP-hard, hard to $|V(G)|^{0.999}$ -approximate.

- NP-hard, hard to $|V(G)|^{0.999}$ -approximate.
- NP-hard, APX-hard in max degree 3.

- NP-hard, hard to $|V(G)|^{0.999}$ -approximate.
- NP-hard, APX-hard in max degree 3.
- Obs.: $G \mapsto G'$ subdivide every edge twice, then $\alpha(G') = \alpha(G) + |E(G)|$.

- NP-hard, hard to $|V(G)|^{0.999}$ -approximate.
- NP-hard, APX-hard in max degree 3.
- Obs.: $G \mapsto G'$ subdivide every edge twice, then $\alpha(G') = \alpha(G) + |E(G)|$.

• NP-hard, APX-hard in H-free if one connected component of H is not a path nor a subdivision of $K_{1,3}$.

- NP-hard, hard to $|V(G)|^{0.999}$ -approximate.
- NP-hard, APX-hard in max degree 3.
- Obs.: $G \mapsto G'$ subdivide every edge twice, then $\alpha(G') = \alpha(G) + |E(G)|$.

• NP-hard, APX-hard in H-free if one connected component of H is not a path nor a subdivision of $K_{1,3}$.

- Polynomial-time algorithms:
 - P_4 -free (bounded cliquewidth)
 - P₅-free (Lokshtanov, Vatshelle, Villanger, 2014)
 - P₆-free (Grzesik, Klimosová, P., Pilipczuk, 2018)
 - K_{1.3}-free (Sbihi, Minty, 1980)
 - $S_{1,1,2}$ -free (Lozin, Milanic, 2006)
 - $C_{>4}$ -free (Abrishami, Chudnovsky, P., Rzążewski, Seymour, 2020)

Gyárfás' path


```
function MIS(G)

if V(G) = \emptyset then

return 0

if G disconnected then

return \sum_C MIS(C)

pick v \in V(G)

k_1 \leftarrow MIS(G - v)

k_2 \leftarrow 1 + MIS(G - N[v])

return \max(k_1, k_2)
```



```
function MIS(G)

if V(G) = \emptyset then

return 0

if G disconnected then

return \sum_C MIS(C)

pick v \in V(G)

k_1 \leftarrow MIS(G - v)

k_2 \leftarrow 1 + MIS(G - N[v])

return \max(k_1, k_2)
```

$$G-v$$
 $G-N[v]$

Crux: choice of the pivot v.

function MIS(
$$G$$
)

if $V(G) = \emptyset$ then

return 0

if G disconnected then

return \sum_C MIS(C)

pick $v \in V(G)$
 $k_1 \leftarrow$ MIS($G - v$)

 $k_2 \leftarrow 1 +$ MIS($G - N[v]$)

return $\max(k_1, k_2)$

$$G-v$$
 $G-N[v]$

Crux: choice of the pivot v.

Theorem (Gartland, Lokshtanov + P., Pilipczuk, Rzążewski, 2020)

In P_t -free graphs there is a way to choose the pivot that guarantees that the recursion tree has size $\exp(\mathcal{O}(t^3 \log^3 |V(G)|))$.

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Bucket $\mathcal{B}_{x,y}$:= induced subgraphs with endpoints x i y.

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Bucket $\mathcal{B}_{x,y}$:= induced subgraphs with endpoints x i y.

G connected \Longrightarrow every bucket nonempty.

G is P_t -free \Longrightarrow buckets of size $\leq |V(G)|^{t-1}$.

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Bucket $\mathcal{B}_{x,y}$:= induced subgraphs with endpoints x i y.

G connected \Longrightarrow every bucket nonempty.

G is P_t -free \Longrightarrow buckets of size $\leq |V(G)|^{t-1}$.

Key observation:

N[Q] intersects *all* paths in half of the buckets.

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Bucket $\mathcal{B}_{x,y}$:= induced subgraphs with endpoints x i y.

G connected \Longrightarrow every bucket nonempty.

G is P_t -free \Longrightarrow buckets of size $\leq |V(G)|^{t-1}$.

Key observation:

N[Q] intersects *all* paths in half of the buckets.

Exists $v \in V(Q)$ such that N[v] intersects $\frac{1}{t}$ paths in $\frac{1}{2t}$ buckets.

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Bucket $\mathcal{B}_{x,y}$:= induced subgraphs with endpoints x i y.

G connected \Longrightarrow every bucket nonempty.

G is P_t -free \Longrightarrow buckets of size $\leq |V(G)|^{t-1}$.

Key observation:

N[Q] intersects *all* paths in half of the buckets.

Exists $v \in V(Q)$ such that N[v] intersects $\frac{1}{t}$ paths in $\frac{1}{2t}$ buckets.

v as a pivot \Longrightarrow in the recursion tree, each upwards path has $\mathcal{O}(t^3 \log^2 |V(G)|)$ choices of G - N[v].

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp. of G - N[Q] has $\leq |V(G)|/2$ vertices.

Bucket $\mathcal{B}_{x,y}$:= induced subgraphs with endpoints x i y.

G connected \Longrightarrow every bucket nonempty.

G is P_t -free \Longrightarrow buckets of size $\leq |V(G)|^{t-1}$.

Key observation:

N[Q] intersects *all* paths in half of the buckets.

Exists $v \in V(Q)$ such that N[v] intersects $\frac{1}{t}$ paths in $\frac{1}{2t}$ buckets.

v as a pivot \Longrightarrow in the recursion tree, each upwards path has $\mathcal{O}(t^3 \log^2 |V(G)|)$ choices of G - N[v].

Theorem (Gartland, Lokshtanov + P., Pilipczuk, Rzążewski, 2020)

In P_t -free graphs there is a way to choose the pivot that guarantees that the recursion tree has size $\exp(\mathcal{O}(t^3 \log^3 |V(G)|))$.

Generalization

Theorem (Gartland, Lokshtanov, P., Pilipczuk, Rzążewski, STOC 2021)

For every d and t and MSO_2 formula ϕ , given a P_t -free graphf G with vertex weights, one can in time $\exp(\mathcal{O}_{d,t,\phi}(\log^4|V(G)|))$ find an induced subgraph H of G of maximum possible weight among all induced subgraphs that are d-degenerate and are models for ϕ .

- χ -boundedness:
 - Gyárfás-Sumner conjecture: *T*-free for any tree *T*.
 - Esperet conjecture: if \mathcal{G} is χ -bounded, then f is a polynomial.

- χ -boundedness:
 - Gyárfás-Sumner conjecture: *T*-free for any tree *T*.
 - Esperet conjecture: if \mathcal{G} is χ -bounded, then f is a polynomial.
- Erdős-Hajnal conjecture:
 - P_5 -free.
 - Directed case. /

- χ -boundedness:
 - Gyárfás-Sumner conjecture: *T*-free for any tree *T*.
 - Esperet conjecture: if G is χ -bounded, then f is a polynomial.
- Erdős-Hajnal conjecture:
 - P_5 -free.
 - · Directed case.
- Computing $\alpha(G)$:
 - Polynomial-time for P_t -free.
 - H-free for H being a subdivision of K_{1,3}.
 (QPTAS: Chudnovsky, P., Pilipczuk, Thomassé 2019)

- χ -boundedness:
 - Gyárfás-Sumner conjecture: *T*-free for any tree *T*.
 - Esperet conjecture: if G is χ -bounded, then f is a polynomial.
- Erdős-Hajnal conjecture:
 - P_5 -free.
 - · Directed case.
- Computing $\alpha(G)$:
 - Polynomial-time for P_t -free.
 - H-free for H being a subdivision of K_{1,3}.
 (QPTAS: Chudnovsky, P., Pilipczuk, Thomassé 2019)

Thanks!