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w(G): max clique

a(G): max ind. set
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Difficult graph questions S

Graph theory

X (G): chromatic number
w(G): max clique

a(G): max ind. set
w(6), &) < x(G).

«(G)
Maybe w(G) = 2 but large

x(G)
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Checking x(G) = 3 NP-hard

#(G) and w(G) hard to
|V(G)|*9?-approximate.
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Restricting graph class

Planar graphs
x(G) <4
w(G)=2=x(G) <3
w(G) <4
2(G) > |V(4G)|
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Perfect graphs
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closed under taking
complements
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Perfect graphs — ——
Yacy(c)w(G[A]) = x(G[A])
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x(G) = w(G) [Dé(G), X(G) poly-time
/ closed under taking computable
complements
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* G — graph class
* closed under vertex deletion (hereditary);
* ‘H-free graphs;
= {H} — H-free.
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Ps-free not Ps-free

I /4
Perfect graphs are {25, C7,Cy,...,Cs5,Cy,Co, ... }-free.
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Tractability boundaries o e

* G — graph class
* closed under vertex deletion (hereditary);
* ‘H-free graphs;
={H} — H—free.

&

Ps-free not Ps-free

Perfect graphs are {Cs,C7,Co, . ..,Cs,Cy,Co, .. .}-free.
—

For which H, H-free graphs have similar properties?
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* Perfect graphs is the maximal hereditary graph class with
x(G) = w(G).
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x(G) = w(G).
* Relaxation (Gyérfas, 1987): G is x-bounded if

NN Veeg X(G) < f(w(G)).
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* Perfect graphs is the maximal hereditary graph class with

x(G) = w(G).
* Relaxation (Gyérfas, 1987): G is x-bounded if

FrnoN Voeg 1(G) < f(w(G)).

Geometric graphs
* intersection graphs of
parallel rectangles
* outerstring graphs

* not: intersection graphs of
segments in the plane
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* Perfect graphs is the maximal hereditary graph class with

x(G) = w(G).
* Relaxation (Gyérfas, 1987): G is x-bounded if

FrnoN Voeg 1(G) < f(w(G)).

Geometric graphs H-free graphs
* intersection graphs of
parallel rectangles
* outerstring graphs

* not: intersection graphs of
segments in the plane
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* Perfect graphs is the maximal hereditary graph class with

x(G) = w(G).
* Relaxation (Gyérfas, 1987): G is x-bounded if

FrnoN Voeg 1(G) < f(w(G)).

Geometric graphs H-free graphs
* intersection graphs of * Pi-free graphs are
parallel rectangles Xx-bounded.

* outerstring graphs
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* Perfect graphs is the maximal hereditary graph class with

x(G) = w(G).
* Relaxation (Gyérfas, 1987): G is x-bounded if

FrnoN Voeg 1(G) < f(w(G)).

Geometric graphs H-free graphs
* intersection graphs of * Pi-free graphs are
parallel rectangles Xx-bounded.
* outerstring graphs * Guydrfds-Sumner conjecture:
* not: intersection graphs of Viree , T-free are
segments in the plane Xx-bounded.
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x-boundedness ads ey

* Perfect graphs is the maximal hereditary graph class with

x(G) = w(G).
* Relaxation (Gyérfas, 1987): G is x-bounded if

FrnoN Voeg 1(G) < f(w(G)).

Geometric graphs H-free graphs
* intersection graphs of (' Pi-free graphs are
parallel rectangles Xx-bounded.
* outerstring graphs * Guydrfds-Sumner conjecture:
* not: intersection graphs of Viree , T-free are
segments in the plane Xx-bounded.

* C-free x-bounded.

%! * {Cb/ Ca+b/ C2a+hr C3a+b/ .. }
. -free x-bounded.
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X-boundedness of P;-free graphs W

Gyarfas 1987: P;-free are xy-bounded.
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X-boundedness of P;-free graphs o e
<
Gyarfas 1987: P;-free are xy-bounded.
Induction over w(G): w(G') < k = x(G') < «.
We have G, w(G) = k, we bound x(G). E
- 1 @a Q>' = - E
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X-boundedness of P;-free graphs W e

« - ét"’lx
Gyarfas 1987: Pt/free are x-bounded. e é;\ ()< {. |
Induction over w (G):w(G) <k= X(G’) </ :C,
We have G, w(G) = k we bound x(G). Yyev ()X (G[N(v)]) < L.
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Erdés-Hajnal conjecture Sl

* hom(G) = max(«(G),w(G))
+ hom(G) = O(log |V(G)])
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* hom(G) = max(a(G),w(G))
)

* hom(G) = O(log |V(G)])
* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
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* hom(G) = max(«(G),w(G))
* hom(G) = Q(log |V (G)|)

* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
* Erd6s-Hajnal conjecture: Vg3¢=0VH—_free chom(G) > |V(G)[°.

e,
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Erdés-Hajnal conjecture Sl wmsy

hom(G) = max(«(G), w(G))
hom(G) = Q(log |V/(G)))
* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
* Erdds-Hajnal conjecture: Yi3e~0VH—free chom(G) > |V(G)|%.
* Super-recent: Cs-free (Chudnovsky, Scott, Seymour, Spirkl),

open: Ps-free.
N

/N
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* hom(G) = max(«(G),w(G))
* hom(G) = Q(log |V (G)|)
* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
* Erdds-Hajnal conjecture: Yi3e~0VH—free chom(G) > |V(G)|%.

* Super-recent: Cs-free (Chudnovsky, Scott, Seymour, Spirkl),
open: Ps-free.

* Regularization: easier for {H, H }-free.
B
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* hom(G) = max(«(G),w(G))
* hom(G) = O(log |V(G)])
* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
* Erdds-Hajnal conjecture: Yi3e~0VH—free chom(G) > |V(G)|%.
* Super-recent: Cs-free (Chudnovsky, Scott, Seymour, Spirkl),
open: Ps-free.
* Regularization: easier for {H, H }-free.
* {P;, P;}-free,
(Bousquet, Lagoutte, Thomassé), 2015, 1 page.
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* hom(G) = max(«(G),w(G))
* hom(G) = O(log |V(G)])
* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
* Erdds-Hajnal conjecture: Yi3e~0VH—free chom(G) > |V(G)|%.
* Super-recent: Cs-free (Chudnovsky, Scott, Seymour, Spirkl),
open: Ps-free.
* Regularization: easier for {H, H }-free.
* {P;, P;}-free,
(Bousquet, Lagoutte, Thomassé), 2015, 1 page.

* {H, H}-free for caterpillars H,
(Liebenau, P.) + (Seymour, Spirkl), 2017.
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Erd6s-Hajnal conjecture S

hom(G) = max(«(G), w(G))
hom(G) = Q(log |V(G)])
* hom(G) = 0(log |V(G)|) w G(n, }) a.as.
Erd6s-Hajnal conjecture: Vy3e~0Vh_free chom(G) > |V(G)|.
Super-recent: Cs-free (Chudnovsky, Scott, Seymour, Spirkl),
open: Ps-free.
Regularization: easier for {H, H }-free.
{P;, P;}-free,
(Bousquet, Lagoutte, Thomassé), 2015, 1 page.
{H, H}-free for caterpillars H,
(Liebenau, P.) + (Seymour, Spirkl), 2017.
{H, H}-free for trees H,
(Chudnovsky, Scott, Seymour, Spirkl), 2018.
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Pure pairs ST s

Theorem (CSSS 2018)

For every tree H there exists 6 > 0, such that in every H-free G
there exist disjoint A,B C V(G), |A|, |B| > 6|V(G)| so that there
are none or all edges between A and B.
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Theorem (CSSS 2018)

For every tree H there exists 6 > 0, such that in every H-free G
there exist disjoint A,B C V(G), |A|, |B| > 6|V (G)| so that there
are none or all edges between A and B.

Called pure pair (A, B).
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Pure pairs A e

Theorem (CSSS 2018)

For every tree H there exists 6 > 0, such that in every H-free G
there exist disjoint A,B C V(G), |A|, |B| > 6|V(G)| so that there
are none or all edges between A and B.

Called pure pair (A, B).

For H = P;; regularization = max degree o(|V(G)|).
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Theorem

Every graph G contains an induced path Q such that every

connected component of G — N[Q] contains at most |V (G)|/2
vertices.
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Theorem

Every graph G contains an induced path Q such that every

connected component of G — N[Q] contains at most |V (G)|/2
vertices.

Theorem

Every graph G with vertex weights w : V(G) — Rx( contains an
induced path Q such that every connected component of G — N|[Q]
has weight at most w(V(G))/2.
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Theorem

Every graph G contains an induced path Q such that every

connected component of G — N[Q] contains at most |V (G)|/2
vertices.

Theorem

Every graph G with vertex weights w : V(G) — Rx( contains an
induced path Q such that every connected component of G — N|[Q]
has weight at most w(V(G))/2.

Pi-free = |V(Q)| < t = treewidth(G) = O(A(G) - t).
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Separators in H-free graphs S ey

Theorem

Every graph G contains an induced path Q such that every
connected component of G — N[Q] contains at most |V (G)|/2

vertices.

Theorem

Every graph G with vertex weights w : V(G) — Rx( contains an
induced path Q such that every connected component of G — N|[Q]
has weight at most w(V(G))/2.

Pi-free = |V(Q)| < t = treewidth(G) = O(A(G) - t).
Remark: C-;-free => can also get |V(Q)| < ¢.
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. Obs.: G+ G’ subdivide every edge ~ ® l haN
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* NP-hard, hard to |V(G)|***°-approximate.
* NP-hard, APX-hard in max degree 3.

\
. Obs.: G+ G’ subdivide every edge ~ ® . o
twice, then a(G') = a(G) + |E(G)|. IS S
/ AN

* NP-hard, APX-hard in H-free if one connected component
of H is not a path nor a subdivision of Kj 3.

P ° S
6 \.\.\ 235
o900 0o o ® O ® 0o
— o
/\__"M
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Computing «(G) A o

* NP-hard, hard to |V(G)|***°-approximate.
* NP-hard, APX-hard in max degree 3.

\
. Obs.: G+ G’ subdivide every edge ~ ® . o
twice, then a(G') = a(G) + |E(G)|. IS S
/ AN

* NP-hard, APX-hard in H-free if one connected component
of H is not a path nor a subdivision of Kj 3.

Pg ® o 5235
o0 0 0 0 ©° :>.7.7.7.7.7.
o
. Polynomlal -time algorithms:
* P4-free pounded cliquewidth)

® Ps-free (Lokshtanov, Vatshelle, Villanger, 2014)

° Pé—free (Grzesik, Klimosova, P., Pilipczuk, 2018)

* Kj 3-free (svini, Minty, 1980)
S51,1,2-free (Lozin, Milanic, 2006)
C- 4-free (Abrishami, Chudnovsky, P, Rzazewski, Seymour, 2020)
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QP for a(G) in Ps-free o e

function MIS(G)

if V(G) = @ then G
return 0

if G disconnected then G—ov / \G — N[v]
return ) - MIS(C)

pickv € V(G)

ki < MIS(G —v)

ky < 14+ MIS(G — N|[v])

return max(ky, k)
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QP for a(G) in Ps-free o e

function MIS(G)

if V(G) = @ then G
return 0

if G disconnected then G_ov / \G — N[t]
return ) - MIS(C)

pickv € V(G)

k1 <+ MIS(G — v) Crux: choice of the pivot v.

ky < 14+ MIS(G — N|[v])

return max(ky, k)
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QP for oégg/) in P;-free o e

I~

function MIS(G)
if V(G) = @ then G

return 0 / \

if G disconnected then
= G—N
return ) - MIS(C) C-v 2

pickv € V(G)

k1 <+ MIS(G — v) Crux: choice of the pivot v.
ky < 14+ MIS(G — N|[v])

return max(ky, k)

Theorem (Gartland, Lokshtanov + P,, Pilipczuk, Rzazewski, 2020)

In Py-free graphs there is a way to choose the pivot that guarantees
that the recursion tree has size exp(O(t*1log” |V (G)|)).

€
e
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Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.
of G — N[Q] has < |V(G)|/2 vertices.
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Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.

of G — N[Q] has < |V(G)|/2 vertices.
Bucket B, := induced subgraphs with endpoints xiy.
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Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.
of G — N[Q] has < |V(G)|/2 vertices.

Bucket B, := induced subgraphs with endpoints xiy.

G connected = every bucket nonempty.
G is P;-free = buckets of size < |V(G)['~ L.
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Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.
of G — N[Q] has < |V(G)|/2 vertices.

Bucket B, := induced subgraphs with endpoints xiy.

G connected = every bucket nonempty.
G is P;-free = buckets of size < |V(G)['~ L.

Key observation:
N[Q] intersects all paths in half of the buckets.
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Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.
of G — N[Q] has < |V(G)|/2 vertices.

Bucket B, := induced subgraphs with endpoints xiy.

G connected = every bucket nonempty.
G is P;-free = buckets of size < |V(G)['~ L.

Key observation:
N[Q] intersects all paths in half of the buckets.
Exists v € V(Q) such that N[v] intersects } paths in 5 buckets.
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Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.
of G — N[Q] has < |V(G)|/2 vertices.

Bucket B, := induced subgraphs with endpoints xiy.

G connected = every bucket nonempty.
G is P;-free = buckets of size < |V(G)['~ L.

Key observation:
N[Q] intersects all paths in half of the buckets.
Exists v € V(Q) such that N[v] intersects } paths in 5 buckets.

v as a pivot = in the recursion tree, each upwards path has
O(flog? |V(G)]|) choices of G — N[v].
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QP for a(G) in Ps-free o e

Recall: Induced path Q, |V(Q)| < ¢, so that each conn. comp.
of G — N[Q] has < |V(G)|/2 vertices.

Bucket B, := induced subgraphs with endpoints xiy.

G connected = every bucket nonempty.
G is P;-free = buckets of size < |V(G)['~ L.

Key observation:
N[Q] intersects all paths in half of the buckets.
Exists v € V(Q) such that N[v] intersects } paths in 5 buckets.

v as a pivot = in the recursion tree, each upwards path has
O(flog? |V(G)]|) choices of G — N[v].

Theorem (Gartland, Lokshtanov + P,, Pilipczuk, Rzazewski, 2020)

In Py-free graphs there is a way to choose the pivot that guarantees
that the recursion tree has size exp(O(t*1log” [V (G)|)).
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Generalization W gy

Theorem (Gartland, Lokshtanov, P, Pilipczuk, Rzazewski, STOC 2021)

For every d and t and MSO, formula ¢, given a Py-free graphf G
with vertex weights, one can in time exp((?,jl/,g,q,,(lofc;4 |[V(G)|)) find
an induced subgraph H of G of maximum possible weight among all
induced subgraphs that are d-degenerate and are models for ¢.
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Open questions Rl

¢ x-boundedness:

* Gyarfas-Sumner conjecture: T-free for any tree T.
* Esperet conjecture: if G is x-bounded, then f is a
polynomial.
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¢ x-boundedness:
* Gyarfas-Sumner conjecture: T-free for any tree T.
* Esperet conjecture: if G is x-bounded, then f is a
polynomial. 3
* Erd6s-Hajnal conjecture:
* Directed case. /
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Open questions e

¢ x-boundedness:

* Gyarfas-Sumner conjecture: T-free for any tree T.
* Esperet conjecture: if G is x-bounded, then f is a

polynomial.
* Erd6s-Hajnal conjecture:
* Ps-free.
¢ Directed case. R

 Computing a(G):
* Polynomial-time for P;-free. /

* H-free for H being a subdivision of K 3.
(QPTAS: chudnovsky, P, Pilipczuk, Thomassé 2019))
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Open questions Sl wmsy

¢ x-boundedness:
* Gyarfas-Sumner conjecture: T-free for any tree T.
* Esperet conjecture: if G is x-bounded, then f is a
polynomial.
* Erd6s-Hajnal conjecture:
* Ps-free.
¢ Directed case.
 Computing a(G):
* Polynomial-time for P;-free.
* H-free for H being a subdivision of Kj 3.
(QPTAS: chudnovsky, P, Pilipczuk, Thomassé 2019)

Thanks!
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