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Difficult graph questions

Graph theory

χ(G): chromatic number
ω(G): max clique
α(G): max ind. set

ω(G), |V(G)|
α(G)

≤ χ(G).
Maybe ω(G) = 2 but large
χ(G)

Algorithms

Checking χ(G) = 3 NP-hard
α(G) and ω(G) hard to
|V(G)|0.999-approximate.
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Restricting graph class

Planar graphs

χ(G) ≤ 4
ω(G) = 2⇒ χ(G) ≤ 3
ω(G) ≤ 4

α(G) ≥ |V(G)|
4

Checking χ(G) = 3 NP-hard
PTAS for α(G).
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Restricting graph class

Perfect graphs

∀A⊆V(G)ω(G[A]) = χ(G[A])

. . .

. . .

χ(G) = ω(G)

closed under taking
complements

α(G), χ(G) poly-time
computable
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Tractability boundaries

• G — graph class
• closed under vertex deletion (hereditary);
• H-free graphs;
• H = {H} −→ H-free.

P6 P6-free not P6-free

Perfect graphs are {C5, C7, C9, . . . , C5, C7, C9, . . .}-free.

For whichH,H-free graphs have similar properties?
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χ-boundedness

• Perfect graphs is the maximal hereditary graph class with
χ(G) = ω(G).

• Relaxation (Gyárfás, 1987): G is χ-bounded if

∃f :N→N ∀G∈G χ(G) ≤ f (ω(G)).

Geometric graphs

• intersection graphs of
parallel rectangles

• outerstring graphs
• not: intersection graphs of

segments in the plane

H-free graphs

• Pt-free graphs are
χ-bounded.

• Gyárfás-Sumner conjecture:
∀tree T, T-free are
χ-bounded.

• C>t-free χ-bounded.
• {Cb, Ca+b, C2a+b, C3a+b, . . .}

-free χ-bounded.
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χ-boundedness of Pt-free graphs

Gyárfás 1987: Pt-free are χ-bounded.

Induction over ω(G): ω(G′) < k =⇒ χ(G′) ≤ `.
We have G, ω(G) = k, we bound χ(G). ∀v∈V(G)χ(G[N(v)]) ≤ `.
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Erdős-Hajnal conjecture

• hom(G) = max(α(G), ω(G))

• hom(G) = Ω(log |V(G)|)

• hom(G) = θ(log |V(G)|) w G(n, 1
2 ) a.a.s.

• Erdős-Hajnal conjecture: ∀H∃ε>0∀H−free Ghom(G) ≥ |V(G)|ε.
• Super-recent: C5-free (Chudnovsky, Scott, Seymour, Spirkl),

open: P5-free.
• Regularization: easier for {H, H}-free.
• {Pt, Pt}-free,

(Bousquet, Lagoutte, Thomassé), 2015, 1 page.
• {H, H}-free for caterpillars H,

(Liebenau, P.) + (Seymour, Spirkl), 2017.
• {H, H}-free for trees H,

(Chudnovsky, Scott, Seymour, Spirkl), 2018.
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Pure pairs

Theorem (CSSS 2018)

For every tree H there exists δ > 0, such that in every H-free G
there exist disjoint A, B ⊆ V(G), |A|, |B| ≥ δ|V(G)| so that there
are none or all edges between A and B.

Called pure pair (A, B).
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Separators in H-free graphs

Theorem
Every graph G contains an induced path Q such that every
connected component of G−N[Q] contains at most |V(G)|/2
vertices.

Theorem
Every graph G with vertex weights w : V(G)→ R≥0 contains an
induced path Q such that every connected component of G−N[Q]
has weight at most w(V(G))/2.

Pt-free =⇒ |V(Q)| < t =⇒ treewidth(G) = O(∆(G) · t).
Remark: C>t-free =⇒ can also get |V(Q)| ≤ t.
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Computing α(G)

• NP-hard, hard to |V(G)|0.999-approximate.

• NP-hard, APX-hard in max degree 3.

•
Obs.: G 7→ G′ subdivide every edge
twice, then α(G′) = α(G) + |E(G)|.

• NP-hard, APX-hard in H-free if one connected component
of H is not a path nor a subdivision of K1,3.

P6 S2,3,5

• Polynomial-time algorithms:
• P4-free (bounded cliquewidth)

• P5-free (Lokshtanov, Vatshelle, Villanger, 2014)

• P6-free (Grzesik, Klimosová, P., Pilipczuk, 2018)

• K1,3-free (Sbihi, Minty, 1980)

• S1,1,2-free (Lozin, Milanic, 2006)

• C>4-free (Abrishami, Chudnovsky, P., Rzążewski, Seymour, 2020)
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QP for α(G) in Pt-free

function MIS(G)
if V(G) = ∅ then

return 0
if G disconnected then

return ∑C MIS(C)
pick v ∈ V(G)
k1 ← MIS(G− v)
k2 ← 1+ MIS(G−N[v])
return max(k1, k2)

G

G− v G−N[v]

Crux: choice of the pivot v.

Theorem (Gartland, Lokshtanov + P., Pilipczuk, Rzążewski, 2020)

In Pt-free graphs there is a way to choose the pivot that guarantees
that the recursion tree has size exp(O(t3 log3 |V(G)|)).
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In Pt-free graphs there is a way to choose the pivot that guarantees
that the recursion tree has size exp(O(t3 log3 |V(G)|)).

GYÁRFÁS’ PATH 12/15



QP for α(G) in Pt-free

function MIS(G)
if V(G) = ∅ then

return 0
if G disconnected then

return ∑C MIS(C)
pick v ∈ V(G)
k1 ← MIS(G− v)
k2 ← 1+ MIS(G−N[v])
return max(k1, k2)

G

G− v G−N[v]

Crux: choice of the pivot v.

Theorem (Gartland, Lokshtanov + P., Pilipczuk, Rzążewski, 2020)
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QP for α(G) in Pt-free

Recall: Induced path Q, |V(Q)| < t, so that each conn. comp.
of G−N[Q] has ≤ |V(G)|/2 vertices.

Bucket Bx,y := induced subgraphs with endpoints x i y.
G connected =⇒ every bucket nonempty.
G is Pt-free =⇒ buckets of size ≤ |V(G)|t−1.
Key observation:
N[Q] intersects all paths in half of the buckets.
Exists v ∈ V(Q) such that N[v] intersects 1

t paths in 1
2t buckets.

v as a pivot =⇒ in the recursion tree, each upwards path has
O(t3 log2 |V(G)|) choices of G−N[v].

Theorem (Gartland, Lokshtanov + P., Pilipczuk, Rzążewski, 2020)

In Pt-free graphs there is a way to choose the pivot that guarantees
that the recursion tree has size exp(O(t3 log3 |V(G)|)).
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Generalization

Theorem (Gartland, Lokshtanov, P., Pilipczuk, Rzążewski, STOC 2021)

For every d and t and MSO2 formula φ, given a Pt-free graphf G
with vertex weights, one can in time exp(Od,t,φ(log4 |V(G)|)) find
an induced subgraph H of G of maximum possible weight among all
induced subgraphs that are d-degenerate and are models for φ.
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Open questions

• χ-boundedness:
• Gyárfás-Sumner conjecture: T-free for any tree T.
• Esperet conjecture: if G is χ-bounded, then f is a

polynomial.

• Erdős-Hajnal conjecture:
• P5-free.
• Directed case.

• Computing α(G):
• Polynomial-time for Pt-free.
• H-free for H being a subdivision of K1,3.

(QPTAS: Chudnovsky, P., Pilipczuk, Thomassé 2019)

Thanks!
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