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EXTENSION OPERATORS AND TWISTED SUMS

OF c0 AND C(K) SPACES

WITOLD MARCISZEWSKI AND GRZEGORZ PLEBANEK

Abstract. We investigate the following problem posed by Cabello Sanchéz, Castillo,

Kalton, and Yost:

Let K be a nonmetrizable compact space. Does there exist a nontrivial twisted sum

of c0 and C(K), i.e., does there exist a Banach space X containing a non-complemented

copy Z of c0 such that the quotient space X/Z is isomorphic to C(K)?

Using additional set-theoretic assumptions we give the first examples of compact spaces

K providing a negative answer to this question. We show that under Martin’s axiom and

the negation of the continuum hypothesis, if either K is the Cantor cube 2ω1 or K is a

separable scattered compact space of height 3 and weight ω1, then every twisted sum of

c0 and C(K) is trivial.

We also construct nontrivial twisted sums of c0 and C(K) for K belonging to several

classes of compacta. Our main tool is an investigation of pairs of compact spaces K ⊆ L

which do not admit an extension operator C(K) → C(L).

1. Introduction

A twisted sum of Banach spaces Z and Y is a short exact sequence

0 → Z → X → Y → 0,

where X is a Banach space and the maps are bounded linear operators. Such a twisted sum

is called trivial if the exact sequence splits, i.e. if the map Z → X admits a left inverse (in

other words, if the map X → Y admits a right inverse). This is equivalent to saying that

the range of the map Z → X is complemented in X ; in this case, X ∼= Y ⊕ Z. We can,

informally, say that X is a nontrivial twisted sum of Z and Y if Z can be isomorphically

embedded onto an uncomplemented copy Z ′ ofX so that X/Z ′ is isomorphic to Y . Twisted

sums of Banach spaces and their connection with injectivity-like properties are discussed

in a recent monograph [3].

The classical Sobczyk theorem asserts that every isomorphic copy of c0 is complemented

in every separable superspace. This implies that Z = c0 admits a nontrivial twisted sum

with no separable Banach space Y . In particular, there is no nontrivial twisted sum of c0
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and C(K), whenever K is a compact metric space. Castillo [7] and Correa and Tausk [9]

investigated the following problem originated in [5] and [6].

Problem 1.1. Given a nonmetrizable compact space K, does there exist a nontrivial twisted

sum of c0 and C(K)?

There are several classes of nonmetrizable compacta for which Problem 1.1 has a positive

answer, cf. [7], [9]. The question is, however, open in its full generality.

Twisted sums of c0 and C(K) spaces are related to compactifications of the discrete

space of natural numbers or, more generally, to discrete extensions of compacta. Let L be

a compact space and K ⊆ L its closed subspace; write C(L|K) = {f ∈ C(L) : f |K ≡ 0}.

Note that if L \ K is countable and discrete then C(L|K) is isometric to c0 so C(L) is

a twisted sum of c0 and C(K). Such a twisted sum is trivial if and only if there is an

extension operator E : C(K) → C(L), that is a bounded operator such that Eg|K = g for

every g ∈ C(K).

If, in the above setting, L\K is countable and discrete then we say that L is a countable

discrete extension of K. Hence the natural way of constructing a nontrivial twisted sum

of c0 and C(K) is to find a countable discrete extension L of K without a corresponding

extension operator. We shall explore this approach and construct nontrivial twisted sums

of c0 and C(K) for several classes of nonmetrizable compacta: dyadic spaces (section 7),

linearly ordered compact spaces (section 8), scattered compacta of finite height (section 9).

In this way we extend results from Castillo [7] and Correa and Tausk [9] or present their

alternative proofs.

There are twisted sums of c0 and C(K) spaces that cannot be obtained in the above

manner. For instance, there is a nontrivial twisted sum of c0 and C(2c) ([9]) but for every

countable discrete extension L of 2c there is an extension operator E : C(2c) → C(L)

simply because there is a retraction L → 2c. In section 3 we investigate the following

more general construction: Let L denote the unit ball in C(K)∗ equipped with the weak∗

topology. Then C(K) embeds into C(L) and if L′ is a countable discrete extension of L

then C(L′) contains, in a canonical way, a twisted sum of c0 and C(K). This enables us to

formulate a sufficient condition under which every twisted sum of c0 and C(K) is trivial, see

Theorem 3.4. Then in section 5 we prove that under Martin’s axiom and the negation of

the continuum hypothesis (CH) every twisted sum of c0 and C(2ω1) is trivial, hence giving

the first consistent negative solution to Problem 1.1. We also show an analogous result

for K being the scattered compactum defined by an almost disjoint family in ω of size ω1.

Our results are based on an auxiliary theorem on approximating nearly additive functions

on Boolean algebras by finitely additive signed measures — this is Theorem 4.6. We prove

it in section 4; here the use of Martin’s axiom is essential and our argument makes use of

several technical lemmas on extensions of finitely additive measures. Some of them build

on a result from [4] and are discussed in Appendix.

Section 6 contains related results on the unit ball in C(K)∗; we show that such a ball

of signed measures on K is never an absolute retract (and is even not a Dugundji space)

whenever K is not metrizable.
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The second author is very grateful to the anonymous referee of [12] who pointed out

interesting connection of the results presented there with Problem 1.1.

2. Preliminaries

If K is a compact space then C(K) is the familiar Banach space of continuous real-valued

functions on K. We always identify C(K)∗ with the spaceM(K) of signed Radon measures

on K with finite variation. M1(K) stands for the unit ball of M(K), equipped with the

weak∗ topology inherited from C(K)∗. The symbol P (K) denotes the subspace of M1(K)

consisting of all probability measures; given x ∈ K, δx ∈ P (K) is the Dirac measure, a

point mass concentrated at the point x.

It will be convenient to use the following notion.

Definition 2.1. If L is a compact space then a compact superspace L′ ⊇ L will be called

a discrete countable extension of L if L′ \ L is countable and discrete.

We shall write L′ ∈ CDE(L) to say that L′ is such an extension of L. Typically, when

L′ \L is dense in L′, L′ is a compactification of ω such that its remainder is homeomorphic

to L. Unless stated otherwise, if L′ ∈ CDE(L) and L′\L is infinite, then we usually identify

L′ \ L with the set of natural numbers ω.

For the future reference we state the following simple observations on countable discrete

extensions of compacta.

Lemma 2.2. If L′ ∈ CDE(L) and h1, h2 ∈ C(L′) agree on L then limn(h1(n)−h2(n)) = 0.

Proof. Otherwise, |h1(n)−h2(n)| ≥ ε for ε > 0 and n from some infinite set N ⊆ ω. Taking

an accumulation point x of N ⊆ L′ we get x ∈ L and h1(x) 6= h2(x), a contradiction. �

Lemma 2.3. Let L′ ∈ CDE(L) and let f1, . . . , fk ∈ C(L′) for some k. Then for every

ε > 0 there is n0 such that for every n ≥ n0 there is x ∈ L such that |fi(x)− fi(n)| < ε for

every i ≤ k.

Proof. For every x ∈ L take an open set Vx ⊆ L′ such that |fi(x) − fi(y)| < ε for every

y ∈ Vx and i ≤ k. Then L ⊆ V =
⋃
j≤m Vxj for some m and x1, . . . , xm ∈ L. Then L′ \ V

must be finite and we are done. �

Given compact spaces L, L′ with L ⊆ L′, an extension operator E : C(L) → C(L′) is

a bounded linear operator such that Eg|L = g for every g ∈ C(L). Recall the following

standard facts (see e.g. [12], Corollary 2.3 and Lemma 2.4).

Lemma 2.4. If L′ ∈ CDE(L) and there is no extension operator E : C(L) → C(L′) then

C(L′) is a nontrivial twisted sum of c0 and C(L).

Proof. Note that L′ \ L must be infinite; we can identify it with ω. Define an embedding

i : c0 → C(L′), sending the unit vector en ∈ c0 to χn ∈ C(L′). Then Z = i[c0] is

the subspace of C(L′) of all functions vanishing on L and hence C(L′)/Z is isomorphic

to C(L). The subspace Z of C(L′) is not complemented. Indeed, supposing that P is a
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projection from C(L′) onto Z one can easily define an extension operator E : C(L) → C(L′)

by Eg = ĝ−P ĝ, where ĝ is any extension of g ∈ C(L) to a continuous function on L′ with

the same norm. The point is that if g̃ ∈ C(L′) also extends g ∈ C(L) then ĝ − g̃ vanishes

on L so P (ĝ − g̃) = ĝ − g̃, and therefore E is well-defined. �

Remark 2.5. Let L′ ∈ CDE(L) be as in Lemma 2.4 and K be a compact space containing

L and such that K ∩ (L′ \ L) = ∅. Then we can treat K ′ = K ∪ (L′ \ L) as a countable

discrete extension of K. If we additionally assume that there exists a extension operator

E : C(L) → C(K) then it can be easily observed that there is no extension operator

E : C(K) → C(K ′), hence C(K ′) is a nontrivial twisted sum of c0 and C(K).

Following [12] we say that a compactification γω of the discrete space ω is tame if the

natural copy of c0 in C(γω), consisting of all functions from vanishing on the remainder

K = γω\ω, is complemented in C(γω). This is equivalent to saying that γω ∈ CDE(K)

and there is a corresponding extension operator. We include an easy observation related

to Lemma 2.4.

Proposition 2.6. Let L be a separable compact space and L′ ∈ CDE(L) be such that there

is no extension operator E : C(L) → C(L′). Then there exists a non-tame compactification

γω with the remainder γω \ ω homeomorphic to L.

Proof. Let {dn : n ∈ ω} be a countable dense subset of L. Consider the following subset of

the product L′ × [0, 1]:

K = L′ × {0} ∪

{(
dn,

1

n+ k + 1

)
: k, n ∈ ω

}
.

Obviously, C = (L′ \L)×{0}∪{(dn, 1/(n+k+1)) : k, n ∈ ω} is a countable discrete space

and K is a compactification of C with the required properties. �

The following standard fact reduces the problem of defining an extension operator for

L′ ∈ CDE(L) to a problem of finding a suitable sequence of measures.

Lemma 2.7. Let L′ = L ∪ ω be a countable discrete extension of a compact space L. The

following are equivalent

(i) there is a extension operator E : C(L) → C(L′) with ‖E‖ ≤ r;

(ii) there is a continuous map ϕ : L′ → rM1(L) such that ϕ(x) = δx for any x ∈ L;

(iii) there is a sequence (νn)n in M(L) such that ‖νn‖ ≤ r for every n and νn − δn → 0 in

the weak∗ topology of M(L′).

Proof. (i) → (ii). Let ϕ(x) = E∗δx, for x ∈ L′. Clearly, the map ϕ is continuous and

takes values in rM1(L). If x ∈ L then, for any f ∈ C(L), E∗δx(f) = Ef(x) = f(x), hence

ϕ(x) = δx.

(ii) → (iii). Define νn = ϕ(n). Take any f ∈ C(L′) and g = f |L ∈ C(L). Then

νn(f)− δn(f) = νn(g)− f(n) = ϕ(n)(g)− f(n) → 0.
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Indeed, if the set N = {n ∈ ω : |ϕ(n)(g)− f(n)| ≥ ε} were infinite then it would have an

accumulation point t ∈ L and |ϕ(t)(g)− f(t)| = |g(t)− f(t)| ≥ ε, a contradiction.

(iii) → (i). We can extend a function g ∈ C(L) to Eg ∈ C(L′) setting Eg(n) = νn(g)

for n ∈ ω. By (ii) Eg is indeed continuous, and E is a bounded operator since νn are

bounded. �

The following result is essentially due to Kubís, see [20].

Theorem 2.8. (a) If γω is a tame compactification of ω then its remainder γω\ω supports

a strictly positive measure.

(b) Let K be a compact space if weight ω1 which does not support a measure. Then there

is a nontrivial twisted sum of c0 and C(K).

Proof. The first assertion follows from Lemma 2.7, see [20, Theorem 17.3] or [12, Theorem

5.1].

By the Parovicenko theorem, K satisfying the assumptions from (b) is a continuous

image of βω\ω so there is a compactification γω which remainder is homeomorphic to K.

It follows from (a) that the compactification γω is not tame so by Lemma 2.4 C(γω) is a

nontrivial twisted sum of c0 and C(K). �

Recall that a compact space K is an absolute retract if K is a retract of any compact

space L containing K (equivalently, of any completely regular space X containing K).

Clearly, if L′ ∈ CDE(L) and L is an absolute retract that, taking a retraction r : L′ → L,

we get a norm-one extension operator E : C(L) → C(L′), where Eg = g ◦ r.

We shall often discuss Boolean algebras and their Stone spaces, using the classical Stone

duality. Given an algebra A; its Stone space (of all ultrafilters on A) is denoted by ult(A).

If K is compact and zerodimensional then Clop(K) is the algebra of clopen subsets of K.

We write M(A) for the space of all signed finitely additive functions on an algebra A;

likewise, for any r ≥ 0, Mr(A) denotes the family of µ ∈ M(A) for which ‖µ‖ ≤ r. Here,

as usual, ‖µ‖ = |µ|(X) and |µ| is the variation of µ. Recall that M(A) may be identified

with M(ult(A)) because every µ ∈ M(A) defines via the Stone isomorphism an additive

function on Clop(A) and such a function extends uniquely to a Radon measure.

Given any subfamily F of an algebra A, we denote by 〈F〉 the subalgebra of A generated

by F .

3. On twisted sums

We show here that Lemma 2.4 can be, to some extend, reversed.

Definition 3.1. We shall say that a compact space K has property (#) if for every L′ ∈

CDE(M1(K)) there is a bounded operator E : C(K) → C(L′) such that Eg(ν) = ν(g) for

every g ∈ C(K) and ν ∈M1(K).

Let us note that C(K) may be seen as a subspace of C(M(K)) by the usual identification

of an element of a Banach space with the corresponding element of its second dual. The
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operator E as in Definition 3.1 will be called an ∗extension operator, the one that extends

g ∈ C(K) treated as an element of C(M(K)) to C(L′).

Lemma 3.2. Given K and L′ ∈ CDE(M1(K)), the following are equivalent

(i) there is an ∗extension operator E : C(K) → C(L′);

(ii) there is a bounded sequence (νn)n inM(K) such that for every g ∈ C(K), if ĝ ∈ C(L′)

is any function extending g, treated as a function on M1(K), then

lim
n
(νn(g)− ĝ(n)) = 0.

Proof. (i) → (ii). Consider an ∗extension operator E : C(K) → C(L′) and the conjugate

operator E∗ :M(L′) →M(K). We put νn = E∗δn for n ∈ ω ⊆ L′; then (νn)n is a bounded

sequence in M(K).

Take any g ∈ C(K) and its extension ĝ ∈ C(L′). Then νn(g) = Eg(n) so

νn(g)− ĝ(n) = Eg(n)− ĝ(n) → 0,

by Lemma 2.2, since Eg and ĝ are two continuous extensions of the same function, of g

acting on M1(K), and L′ ∈ CDE(M1(K)).

For (ii) → (i) take any g ∈ C(K), put Eg(ν) = ν(g), for ν ∈ M1(K), and define

Eg(n) = νn(g), for n ∈ ω. Then the function Eg is continuous on L′. �

We shall also need the following general fact.

Lemma 3.3. Let T : X → Y be a bounded linear surjection between Banach spaces X and

Y . Then

T ∗[Y ∗] = ker(T )⊥ = {x∗ ∈ X∗ : x∗| ker(T ) ≡ 0}.

Theorem 3.4. If a compact space K has property (#) then every twisted sum of c0 and

C(K) is trivial.

Proof. Take an isomorphic embedding i : c0 → X ; let Z = i[c0] and suppose that T : X →
C(K) is a bounded linear surjection such that Z = ker(T ).

Write en for the n-th unit vector in c0 and e∗n ∈ ℓ1 = (c0)
∗ be the corresponding dual

functional. Let xn = i(en) for every n. Then there is a norm bounded sequence (x∗n)n in

X∗ such that i∗x∗n = e∗n. Suppose that ‖x∗n‖ ≤ r0 for every n.

Note that the set {x∗n : n ∈ ω} is weak∗ is discrete. Let

L = T ∗[r ·M1(K)] ⊆ X∗,

where r > 0 is taken big enough so that L contains {x∗ ∈ Z⊥ : ‖x∗‖ ≤ r0}.

We now consider L′ = L ∪ {x∗n : n ∈ ω} and equip L′ with the weak∗ topology.

Claim. L′ is a countable discrete extension of L.

Indeed, it is enough to notice that if x∗ is an accumulation point of {x∗n : n ∈ ω} then

x∗ ∈ Z⊥ but this follows from the fact that for n > k

x∗n(i(ek)) = i∗x∗n(ek) = e∗n(ek) = 0.
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Consider a mapping

h : L′′ =M1(K) ∪ ω → L′ = T ∗[Mr(K)] ∪ {x∗n : n ∈ ω},

defined by h(ν) = T ∗(rν) for ν ∈ M1(K) and h(n) = x∗n for n ∈ ω. Then h is a bijection

since T ∗ is injective and x∗n 6= x∗k for n 6= k. We topologize L′′ so that h becomes a

homeomorphism; clearly M1(K) gets its usual weak∗ topology when treated as a subspace

of L′′.

Since K has property (#), by Lemma 3.2 there is a bounded sequence (νn)n in M(K)

satisfying 3.2(ii). Let z∗n = T ∗(rνn) for n ∈ ω. Then (z∗n)n is a bounded sequence in X∗

and the following holds.

Claim. z∗n − x∗n → 0 in the weak∗ topology of X∗.

Take any x ∈ X ; then (thinking that x ∈ X∗∗), x ◦ h ∈ C(L′′) and

x ◦ h(ν) = T ∗(rν(x)) = ν(rTx),

for ν ∈M1(K). This means that x◦h is an extension of rTx ∈ C(K) treated as a function

on M1(K). Therefore

z∗n(x)− x∗n(x) = νn(rTx)− x ◦ h(n) → 0,

as required.

Define now

P : X → X, Px =
∑

n

(x∗n(x)− z∗n(x)) · xn.

Note that Pxk = xk since x∗n(xk) = 1 if n = k and is 0 otherwise; moreover, z∗n(xk) = 0 for

every n and k. Using Claim above, we conclude that P is indeed a projection onto Z, and

the proof is complete. �

Remark 3.5. Using the construction from the above proof we can show that ifX is a twisted

sum of c0 and C(K) then X is isomorphic to a subspace of C(L′), where L′ is a countable

discrete extension of M1(K).

4. Asymptotic measures on Boolean algebras

We consider here an algebra A of subsets of some set X . In the sequel, B (with possible

indices) always denotes a finite subalgebra of A. We introduced in section 2 the symbol

M(A) denoting the space of all signed finitely additive functions A → R of bounded

variation. We shall moreover write MQ(B) (or MQ
r (B)) for the set of signed measures

having rational values (and having the norm ≤ r, respectively).

Given any real-valued partial functions ϕ, ψ on A and an algebra B contained in their

domains we write

distB(ϕ, ψ) = sup
B∈B

|ϕ(B)− ψ(B)|.
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Notation 4.1. For the rest of this section we fix a sequence (ϕn)n of any set functions

ϕn : A → [−1, 1]. For any B and n we define

on(B) = inf{distB(ν, ϕn) : ν ∈MQ
1 (B)}.

Of course, in the formula defining o(B) we might as well replace MQ
1 (B) by M1(B)

but it will be convenient to consider in the sequel measures on finite algebras having only

rational values.

We shall show that, under some assumptions on A, if limn on(B) = 0 for every finite

B ⊆ A then the Martin’s axiom implies that there is a bounded sequence (µn)n in M(A)

such that µn(A) − ϕn(A) → 0 for every A ∈ A. In the prove below we use the following

parameters.

Definition 4.2. Fix r > 1. We define On(B) (positive real or +∞) for n ∈ ω and finite

B ⊆ A by induction on |B|. Set On(C) = 1/(n + 1) for every n in the case of the trivial

algebra C. Suppose that On(C) has been defined for every proper subalgebra C of B. Then

we put

On(B) = C0 + on(B) + 1/(n+ 1),

where C0 is the infimum of C > 0 such that

(i) whenever B1,B2 ⊆ B are proper subalgebras, the measures νi ∈ MQ
r (ABi

) agree on

B1 ∩ B2 and satisfy distBi
(νi, ϕn) < On(Bi) for i = 1, 2, then there is µ ∈ MQ

r (B)

such that µ is a common extension of ν1 and ν2 and distB(µ, ϕn) ≤ C;

(ii) for any proper subalgebra C ⊆ B and a measure ν ∈ MQ
r (C) with distC(ν, ϕn) <

On(C) there is an extension of ν to µ ∈ MQ(B) such that ‖µ‖ ≤ max(‖ν‖, 1) and

distB(µ, ϕn) ≤ C.

Remark 4.3. The definition of On depends on the chosen parameter r; we write On rather

than Or
n for simplicity.

Note that in case of (ii) above the set of such µ is always nonempty, see Lemma A.2

from Appendix at the end of the paper. However, there may be no common extension of

ν1, ν2 considered in (i) which would satisfy ‖µ‖ ≤ r; in such a case we understand that

On(B) = +∞.

Lemma 4.4. If limn on(B) = 0 for every finite algebra B ⊆ A then limnOn(B) = 0 for

every such B.

Proof. We argue by induction on |B|. If B is trivial then On(B) = 1/(n + 1). Suppose

that B is nontrivial and limnOn(C) = 0 for any proper subalgebra C of B.

Let N ≥ 2 be the number of atoms of B. Fix ε > 0 and take δ > 0 such that

4Nδ < r − 1 and (4N + 1)δ < ε.

By the inductive assumption and the fact that limn on(B) = 0 there is n0 such that for

n ≥ n0 we have on(B) < δ and On(C) < δ for all proper subalgebras C of B. We shall

check that then On(B) ≤ ε whenever n ≥ n0. Given such n, we will verify that C = ε

satisfies conditions (i-ii) of Definition 4.2.
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Consider a pair B1,B2 ⊆ B of proper subalgebras and a pair νi ∈ MQ
r (Bi) of con-

sistent measures as in Definition 4.2(i). Take λ ∈ MQ
1 (B) witnessing on(B) < δ. Then

distBi
(νi, λ) < 2δ so by Lemma A.1 there is a common extension of ν1, ν2 to a measure

λ′ ∈MQ(B) such that ‖λ− λ′‖ < 4Nδ. This implies

‖λ′‖ ≤ ‖λ‖+ 4Nδ ≤ 1 + r − 1 = r;

distB(λ
′, ϕn) ≤ distB(λ

′, λ) + distB(λ, ϕn) < 4Nδ + δ < ε,

as required.

Consider now C and ν ∈MQ
r (C) as in Definition 4.2(ii).

Let, again, λ ∈ MQ
1 (B) witnesses that on(B) < δ. We have distC(ν, λ) < 2δ so Lemma

A.2 gives us a measure λ′ ∈ MQ(B) extending ν with ‖λ′‖ ≤ max(‖ν‖, 1) and such that

distB(λ
′, λ) < 6δ. It follows that distB(λ

′, ϕn) < 7δ < (4N + 1)δ < ε, as required. �

Definition 4.5. Let us say that a Boolean algebra A has LEP(r) (local extension property)

for some r > 1 if there is a family B of finite subalgebras of A such that

(i) for every finite algebra C ⊆ A there is B ∈ B with B ⊇ C;

(ii) whenever B′ ⊆ B is uncountable then there are distinct B1,B2 ∈ B′ such that any

pair of consistent measures νi ∈ MQ
1 (Bi) admits a common extension to a measure

ν ∈MQ
r (〈B1 ∪B2〉).

We are now ready for the main result of this section. As usual, for a given cardinal

number κ, MA(κ) denotes the Martin’s axiom for κ many dense sets in a partially ordered

set with ccc, see e.g. Fremlin [15].

Theorem 4.6. Suppose that A is an algebra with |A| = κ. Suppose further that A has

LEP(r) for some r > 1 and that ult(A) is separable. Let (as in 4.1) ϕn : A → [−1, 1] be a

sequence of functions such that limn on(B) = 0 for every finite subalgebra B of A.

Assuming MA(κ), there is a sequence (µn)n in Mr(A) such that

lim
n→∞

(
ϕn(A)− µn(A)

)
= 0,

for every A ∈ A.

Proof. Let B be a family of subalgebras granted by LEP(r).

We consider a partially ordered set P of conditions

p = (B, n, (νi)i≤n, k), where

(i) B ∈ B and n, k are positive integers;

(ii) for every i ≤ n, the measure νi is in M
Q
r (B);

(iii) distB(νi, ϕi) < Oi(B) for any i ≤ n;

(iv) Om(B) < 1/k for every m ≥ n.

Consider two conditions

p = (B, n, (νi)i≤n, k), p′ = (B′, n′, (ν ′i)i≤n′, k′) ∈ P.

We shall say that p′ is a simple extension of p if k′ ≥ k and
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— either B′ = B and n′ ≥ n, ν ′i = νi for i ≤ n,

— or n′ = n, B ⊆ B
′ and ν ′i extends νi for every i ≤ n.

Then we define a partial order on P declaring p ≤ p′ if there are s ∈ ω and a sequence

pj, j = 0, . . . , s, in P such that p0 = p, ps = p′ and pj+1 is a simple extension of pj for every

j < s. Note that ≤ is indeed a partial order on P.

Claim A. Let A ∈ B and let p, p′ ∈ P be specified as above. If p ≤ p′. then

|ν ′i(A)− ϕi(A)| < 1/k whenever n ≤ i ≤ n′.

Note that if p′ is a simple extension of p with B′ = B then for i ≥ n we have

|ν ′i(A)− ϕi(A)| < Oi(B
′) = Oi(B) < 1/k,

by (iv). If p′ is a simple extension of p with n′ = n then the inequality holds as ν ′i(A) = νi(A)

for i ≤ n. Hence the assertion follows by induction on the number of simple extensions

leading from p to p′.

Note that p ≤ p′ means that the condition p′ is stronger; accordingly, we consider ccc

and other properties to be defined upwards.

Claim B. P is ccc.

Consider an uncountable family P ⊆ P of conditions

p = (Bp, np, (νpi )i≤np, kp).

Shrinking P if necessary, we can assume that np = n and kp = k are constant for p ∈ P .

Let S be a countable dense subset of ult(A). Every x ∈ S defines a 0-1 probability

measure δx ∈ M(A), where δx(B) = 1 iff B ∈ x. Let MS be the countable family of all

measures on A that are rational linear combinations of δx’s with x ∈ S. Note that any

measure ν ∈ MQ(B) on a finite algebra B can be represented as a restriction of some

ν̃ ∈MS to B, where ‖ν̃‖ = ‖ν‖.

Using the above remark, thinning P out again, we can assume that for every i ≤ n there

is ν̃i ∈MS such that νpi = ν̃i|B
p and ‖νpi ‖ = ‖ν̃i|B

p‖ for every p ∈ P .

Finally, we apply LEP(r) to choose distinct p, q ∈ P so that Bp and Bq have the

property granted by Definition 4.5(ii). We put B0 = B1 ∩ B2 and, using 4.5(i) choose

B ∈ B containing B1 ∪ B2. By Lemma 4.4 there is n1 ≥ n such that Om(B) < 1/k for

every m ≥ n1. We shall check that p and q have a common extension in P.

For every i such that n < i ≤ n1 we choose a measure πi ∈MQ
1 (B0) such that

distB0
(πi, ϕi) < oi(B0) + 1/(i+ 1) ≤ Oi(B0),

and then by part (ii) of Definition 4.2 extend πi to measures

νpi ∈ MQ
1 (B

p) and νqi ∈MQ
1 (B

q) such that

distBp(νpi , ϕi) < Oi(B
p), distBq(νqi , ϕi) < Oi(B

q).

Then there is νi in MQ
r (B) which is a common extension of νpi and νqi and such that

distB(νi, ϕi) < Oi(B); indeed, if Oi(B) < +∞, then this follows from Definition 4.2(i).



EXTENSION OPERATORS AND TWISTED SUMS 11

In case Oi(B) = +∞ we may take any extension granted by 4.5(ii) and the way we have

chosen B
p and B

q, and extend it to B preserving its norm.

For i ≤ n we choose νi ∈MQ
r (B) applying Definition 4.2 to the pair νpi , ν

q
i . Note that if

Oi(B) = +∞ then we may use the fact that both νpi and νqi are represented by the same

measure ν̃i ∈MS so ν̃i|B is their common extension to B with norm ≤ r.

In this way we get simple extensions

p1 = (Bp, n1, (ν
p
i )i≤n1

, k), q1 = (Bq, n1, (ν
q
i )i≤n1

, k),

of p and q, respectively. In turn,

s = (B, n1, (νi)i≤n1
, k) ∈ P

satisfies p1, q1 ≤ s, and this finishes the proof of Claim B.

Claim C. For every k0, n0 ∈ ω and finite B0 ⊆ A, the set

D(B0, n0, k0) = {p = (Bp, np, (νpi )i≤np, kp) ∈ P : Bp ⊇ B0, n
p ≥ n0, k

p ≥ k0},

is upwards dense in P.

Take any p = (Bp, np, (νpi )i≤np), kp) ∈ P and consider a triple B0, n0, k0; we can assume

that k0 ≥ kp and n0 ≥ np.

Find B ∈ B containing Bp ∪ B0 and n1 ≥ n0 such that Om(B) < 1/k0 for m ≥ n1.

Then, arguing as in the proof of Claim B we define appropriate νi and ν
′
i so that

p ≤ (Bp, n1, (νi)i≤n1
, k0) ≤ (B, n1, (ν

′
i)i≤n1

, k0).

Indeed, for np < i ≤ n1 we pick a measure νi ∈MQ
1 (B

p) such that

distBp(νi, ϕi) < oi(B
p) + 1/(i+ 1) ≤ Oi(B

p),

and then by part (ii) of Definition 4.2 extend νi to a measure ν ′i ∈ MQ
1 (B) such that

distB(ν
′
i, ϕi) < Oi(B). Accordingly, for i ≤ n we suitably extend every νi to ν

′
i ∈MQ

r (B).

With Claim B and C at hand, we apply Martin’s axiom MA(κ) to get a directed set

G ⊆ P such that G∩D(B0, n0, k0) 6= ∅ for every finite B0 ⊆ A and positive integers n0, k0,

This means that, for every i, we get a consistent family of measures νi of variation ≤ r.

Their domains cover all of A so they extend uniquely to a measure µi ∈Mr(A).

For any A ∈ A there is B0 ∈ B such that A ∈ B0. Given ε > 0, take k0 such that

1/k0 < ε and

p = (B, n, (νi)i≤n, k) ∈ G ∩ D(B0, 1, k0).

Then µn(A) = νn(A) so

|µn(A)− ϕn(A)| < On(B) < 1/k ≤ 1/k0 < ε.

For every m > n there is p′ = (B′, n′, (ν ′i)i≤n′, k′) ∈ G such that p ≤ p′ and m ≤ n′. Then

µm(A) = ν ′m(A) and |νm(A)− ϕm(A)| < 1/k0 by Claim A. This shows that

µn(A)− ϕn(A) → 0,

and the proof is complete. �
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Proposition 4.7. For any cardinal number κ, the algebra A = Clop(2κ) has LEP(2).

Proof. For any finite set F ⊆ κ we let BF be the finite subalgebra of A of all sets that are

determined by in coordinates in F ; thus BF is generated by its atoms A of the form

A = {t ∈ 2κ : t|F = τ |F},

for some function τ : F → 2. Clearly the family B of all such BF is cofinal in A so it is

enough to check that any BF1
,BF2

satisfy (ii) of Definition 4.5.

Consider νi ∈ MQ
1 (AFi

), i = 1, 2 and suppose that ν1 and ν2 agree on BF1
∩BF2

which

is BH , where H = F1 ∩ F2.

Let Ai, i ≤ 2F1\H , be the list of all atoms of BF1\H and, accordingly, Bj be the list of all

atoms of BF2\H .

For a fixed atom C of AH we apply Lemma A.3 to ai = ν1(Ai ∩C) and bj = ν2(Bj ∩C).

Note that
∑

i

ai = ν1(C) = ν2(C) =
∑

j

bj .

This enables us to define ν for all A ∈ AF contained in C, and

|ν|(C) ≤ max
(
|ν1|(C), |ν2|(C)

)
≤ |ν1|(C) + |ν2|(C),

so we get ν with ‖ν‖ ≤ 2. �

Remark 4.8. In the proof of 4.7 one can alternatively check that ν1 and ν2 admit a common

extension of norm ≤ 2 applying a result Basile, Rao and Shortt [4] described in Appendix.

One can check that SC(ν1, ν2) ≤ 2 basing on the following remark: If Bi ∈ BFi
and

B1 ⊆ B2 then there is C ∈ BF1∩F2
such that B1 ⊆ C ⊆ B2.

Proposition 4.9. Let A be an algebra of subsets of ω that is generated by an almost disjoint

family A and all finite subsets of ω. Then the algebra A has LEP(3).

Proof. We consider the family B of finite subalgebras of A, where everyB = 〈n,A1, . . . , Ak〉 ∈
B is an algebra spanned by all subsets of n = {0, 1, . . . , n−1} and Ai ∈ A having the prop-

erty that Ai ∩ Aj ⊆ n for i 6= j. Clearly B is cofinal in A; we shall check that (ii) of

Definition 4.5 holds for r = 3.

If B′ ⊆ B is uncountable then there are two algebras in B′ of the form

B1 = 〈n,A1, . . . , Am, B1, . . . , Bk〉, B2 = 〈n,A1, . . . , Am, C1, . . . , Ck〉,

where Bi, Cj ∈ A are all distinct. Set

X = n ∪
⋃

i≤m

Ai ∪
⋃

i,j≤k

Bi ∩ Cj ;

note that Bi \X and Ci \X are infinite for i ≤ k.

Take ν1 ∈ MQ
1 (B1) and ν2 ∈ MQ

1 (B2) which agree on B1 ∩B2 = 〈n,A1, . . . , Am〉. We

can represent them as the restrictions of

ν1 = ν0 +
∑

i≤k

biδxi + bδx, ν2 = ν0 +
∑

i≤k

ciδyi + cδx, where
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xi ∈ Bi \X, yi ∈ Ci \X, x ∈ ω \
(
X ∪

⋃

i≤k

(Bi ∪ Ci)
)
.

Here ν0 is defined as ν0(A) = ν1(A ∩X) = ν2(A ∩X). Write b =
∑

i≤k bi and c =
∑

i≤k ci,

and consider the measure

ν = ν0 +
∑

i≤k

biδxi +
∑

i≤k

ciδyi + (b− c)δx.

Then we have

ν(ω) = ν0(X) + b+ c+ b− c = ν1(ω) = ν2(ω).

Moreover, ν(Bi) = ν0(Bi ∩ n) + bi = ν1(Bi), a similar argument holds for ν2 and Ci.

It follows that ν is a common extension of ν1, ν2. Clearly, ‖ν‖ ≤ 3, so this finishes the

proof. �

5. Trivial twisted sums of c0 and C(K)

We conclude our considerations from previous section and show here that under Martin’s

axiom and the negation of the continuum hypothesis every twisted sum of c0 and C(2ω1)

is trivial. Another example if this kind is an Aleksandroff-Urysohn space defined from an

almost disjoint family of small size.

Theorem 5.1. Let K be a zerodimensional separable compact space of weight κ < c, and

such that A = Clop(K) has LEP(r) for some r > 1.

Subject to MA(κ), K has property (#).

Proof. Set L =M1(K); fix L′ ∈ CDE(L) and identify L′ \ L with ω.

For every A ∈ A, the function M1(K) ∋ ν → ν(A) is continuous on M1(K). Denote by

θA some its extension to a continuous function L′ → [−1, 1]. Define set functions ϕn on A

as ϕn(A) = θA(n) for every n and A ∈ A.

Recall that on(B) is defined in 4.1. We have limn on(B) = 0, for every finite subalgebra

B of A by Lemma 2.3 applied to the finite family {θB : B ∈ B}. Now Theorem 4.6 says

that there is a sequence µn ∈Mr(A) such that

lim
n
(θA(n)− µn(A)) = lim

n

(
ϕn(A)− µn(A)

)
= 0,

for every A ∈ A. Every measure µn extends uniquely to a Radon measure on K; we denote

its extension by the same symbol.

Consider the family G of those g ∈ C(K) such that whenever ĝ ∈ C(L′) extends g as a

function on M1(K) then µn(g)− ĝ(n) → 0. As we have seen, for every A ∈ A, χA ∈ G, see

Lemma 2.2. Using the same lemma we can easily verify that G is closed under finite linear

combinations, hence every simple continuous function is in G.

Note that if g, h ∈ C(K) and ‖g−h‖ < ε for some ε > 0 then, taking any extensions ĝ, ĥ

of g and h, respectively, we have |ĝ(n)− ĥ(n)| < ε for almost all n ∈ ω. This remark implies

that the family G is closed under uniform limits and we hence G = C(K). Consequently,

by Lemma 3.2, K has property (#), and this finishes the proof. �
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Now Propositions 4.7 and 4.9, together with Theorem 5.1 yield the following.

Corollary 5.2. Assume that κ < c is such a cardinal number that MA(κ) holds. Then 2κ

has property (#) and hence, by Theorem 3.4, every twisted sum of c0 and C(2κ) is trivial.

Corollary 5.3. Assume that κ < c and MA(κ) holds. Let A be an almost disjoint family of

subsets of ω with |A| = κ. Let K = ult(A) where A is an algebra of subsets of ω generated

by A and all finite sets.

Then K has property (#) and hence, by Theorem 3.4, every twisted sum of c0 and C(K)

is trivial.

The above results seem to give the first (consistent) examples of a nonmetrizable compact

spaceK for which every twisted sum of c0 and C(K) is trivial. Correa and Tausk [9] proved,

in particular, that C(2c) admits a nontrivial twisted sum with c0. Hence the question about

nontrivial twisted sums of c0 and C(2ω1) cannot be decided within the usual set theory.

This is also the case for compact spaces K as in Corollary 5.3, since Castillo proved that

assuming CH, for such spaces K, there exists a nontrivial twisted sum of c0 and C(K), see

Theorem 9.3.

The problem arises, if we can apply the above argument to any separable compactum

of weight < c. In other words, we do not know if every small Boolean algebra having a

separable Stone space has LEP(r) for some r > 1.

Problem 5.4. Is there a ZFC example of a separable compact space K of weight ω1 such

that c0 and C(K) have a nontrivial twisted sum?

Let us note that if we could, while examining property (#) of a compactum K, exchange

M1(K) for P (K), the space of probability measures on K, then the way to Corollary 5.3

would be much shorter, at least for κ = ω1. Indeed, P (2
ω1) is homeomorphic to [0, 1]ω1 and

therefore P (2ω1) is an absolute retract, In particular, for every L′ ∈ CDE(P (2ω1)) there is

a retraction L′ → P (2ω1) so there is a norm-one extension operator C(P (2ω1)) → C(L′).

However, we prove in the next section that M1(2
ω1) is not an absolute retract. Note that

M1(2
ω1) is clearly a dyadic space but this fact itself does not help as the examples given in

Section 7 indicate.

6. On properties of M1(K)

Recall that a compact spaceK is a Dugundji space if for every compact space L containing

K there exists a regular extension operator E : C(K) → C(L), i.e. an extension operator of

norm 1 preserving constant functions. It is well-known that a convex compact space K is a

Dugundji space if and only if it is an absolute retract, cf. [16, Sec. 2]. For a nonmetrizable

compact space K, the space P (K) can be an absolute retract, namely Ditor and Haydon

[10] proved that P (K) has this property if and only if K is a Dugundji space of weight at

most ω1. We will show that this can never happen for the space M1(K).

Theorem 6.1. If K is a nonmetrizable compact space, then the space M1(K) is not a

Dugundji space, in particular, it is not an absolute retract.
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We will prove this theorem using spectral theorem of Shchepin, the key ingredient will

be Proposition 6.2 below.

For a surjection ϕ : L → K between compact spaces K,L, ϕ∗ : M1(L) → M1(K)

denotes the canonical surjection associated with ϕ, i.e., the surjection given by the operator

conjugate to the isometrical embedding of C(K) into C(L) induced by ϕ. In other words,

for µ ∈ M(L), ϕ∗(µ) ∈M(K) is defined by ϕ∗(µ)(B) = µ(f−1[B]) for Borel sets B ⊆ K.

Proposition 6.2. Let ϕ : L → K be a surjection of a compact space L onto an infinite

space K. If ϕ is not injective, then the map ϕ∗ :M1(L) →M1(K) is not open.

Proof. We will consider two cases:

Case 1. There exist distinct points x, y ∈ K such that |ϕ−1(x)| > 1 and y is an accu-

mulation point of K. Pick disjoint neighborhoods Ux of x and Uy of y. Take two distinct

points z0, z1 ∈ ϕ−1(x) and a continuous function f : L → [0, 1] such that f(zi) = i and

f−1((0, 1]) ⊆ ϕ−1(Ux). Consider the open set V = {µ ∈ M1(L) : µ(f) > 1/4}. We will

show that its image ϕ∗(V ) is not open in M1(K). Clearly, we have

µ = (1/2)δz1 − (1/2)δz0 ∈ V and ϕ∗(µ) = 0.

Let W be any open neighborhood of 0 in M1(K). Since y is an accumulation point, we

can find y′ ∈ Uy \ {y} such that ν = (1/2)δy − (1/2)δy′ ∈ W . One can easily check that

ν /∈ ϕ∗(V ).

Case 2. It is clear that if the Case 1 does not hold, then there exists an accumulation

point x in K such that ϕ−1(x) is the only nontrivial fiber of ϕ. Take two distinct points

z0, z1 ∈ ϕ−1(x) and disjoint neighborhoods U0, U1 of z0, z1, respectively, in L. Then we have

ϕ(U0) ∩ ϕ(U1) = {x}, hence there is an i ∈ {0, 1} such that ϕ(Ui) is not a neighborhood

of x. Find a a continuous function f : L → [0, 1] such that f(zi) = 1 and f−1((0, 1]) ⊆ Ui.

We define the open set V = {µ ∈M1(L) : µ(f) > 1/4} as in Case 1. Again, we have

µ = (1/2)δzi − (1/2)δz1−i
∈ V and ϕ∗(µ) = 0.

Take any open neighborhood W of 0 in M1(K). Since x is an accumulation point, we can

find distinct points y, y′ ∈ K \ϕ(Ui) such that ν = (1/2)δy− (1/2)δy′ ∈ W . One can easily

verify that ν /∈ ϕ∗(V ), hence ϕ∗(V ) is not open in M1(K). �

Proposition 6.3. Let K be a compact space of weight ω1. Then the space M1(K) is not a

Dugundji space.

Proof. Assume towards a contradiction that M1(K) is a Dugundji space. Then by a re-

sult of Haydon, cf. [16], [28], M1(K) is an inverse limit of a continuous inverse sequence

〈Lα, p
β
α, ω1〉, where all spaces Lα are metrizable and all bonding maps pβα are open. Let

〈Kα, q
β
α, ω1〉 be any continuous inverse sequence with all spaces Kα infinite metrizable, all

bonding maps qβα non-injective, and the limit homeomorphic to K. Then one can easily

verify that the inverse system 〈M1(Kα), (q
β
α)

∗, ω1〉 is continuous and its limit is homeomor-

phic to M1(K). Then, by Shchepin’s spectral theorem [28] the sequences 〈Lα, p
β
α, ω1〉 and
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〈M1(Kα), (q
β
α)

∗, ω1〉 would contain isomorphic subsequences, which is impossible, since the

maps pβα are open and the maps (qβα)
∗ are not open by Proposition 6.2. �

We need to recall some notions and results from [22]. Let X = Πα<κXα be the product

of metrizable compact spaces Xα, and let r : X → Y be a retraction. A subset S ⊆ κ is

r-admissible if x|S = x′|S implies r(x)|S = r(x′)|S for all x, x′ ∈ X . Obviously the union

of any family of r-admissible subsets is r-admissible. For y ∈ Y let pS : Y → Πα∈SXα

be defined by pS(y) = y|S and let YS = pS(Y ). Kubís proved in [22] that each countable

subset of κ is contained in a countable r-admissible subset, and if S ⊆ κ is r-admissible

then the map pS : Y → YS is right-invertible, i.e., there exists a continuous map j : Ys → Y

such that pS ◦ j = idYS , hence YS is homeomorphic to a retract j(YS) of Y .

Proof of Theorem 6.1. Suppose that K is a nonmetrizable compact space such that the

spaceM1(K) is a Dugundji space, hence an absolute retract. We will show that there exists

a continuous image L of K of weight ω1 such that M1(L) is homeomorphic to a retract of

M1(K). This will give a contradiction with Proposition 6.3. Let F = {ft : K → Kt : t ∈ T}
be the family of all continuous surjections ofK onto a subspace of [0, 1]ω. Then the diagonal

map

ϕ = △t∈Tf
∗
t :M1(K) → Πt∈TM1(Kt),

is an embedding of M1(K) into the product of metrizable compacta. Let Y = ϕ(M1(K))

and let r : Πt∈TM1(Kt) → Y be a retraction. Fix a subset {tα : α < ω1} ⊆ T such that the

image of the diagonal map

△α<ω1
ftα : K → Πα<ω1

Ktα ,

is of weight ω1. For any countable subset S ⊆ T fix a countable r-admissible subset

η(S) ⊆ T containing S. By induction we will define the family of r-admissible countable

sets Sα ⊆ T for α < ω1. We start with S0 = η({t0}). Suppose that we have defined

the sets Sβ for β < α. Put Pα =
⋃
{Sβ : β < α} ∪ {tα} and let sα ∈ T be such

that fsα = △t∈Pα
ft : K → Πt∈Pα

Kt. We define Sα = η(Pα ∪ {sα}). Finally we put

S =
⋃
{Sα : α < ω1}. The set S is r-admissible, hence the map pS : Y → YS is right-

invertible, so Ys is homeomorphic to a retract of Y . Let L be the image of K under the

diagonal map △t∈Sft : K → Πt∈SKt. The use of indexes tα in our construction guaranties

that L has weight ω1. A routine verification shows that Ys is homeomorphic to M1(L). �

7. Countable discrete extensions of dyadic compacta

If A is a subalgebra of the algebra of all subsets of ω containing all finite sets then its

Stone space ult(A) can be seen as a compactification of ω because one can identify every

n ∈ ω with the corresponding principal ultrafilter. Note that ult(A/fin) is homeomorphic

to the remainder of such a compactification. In this setting, the equivalence of conditions

(i) and (iii) from Lemma 2.7 can be stated as follows (see Lemma 3.1 in [12]).

Lemma 7.1. Let A be an algebra such that fin ⊆ A ⊆ P (ω). Then the compactification

ult(A) of ω is tame if and only if there exists a bounded sequence (νn)n in M(A) such that
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(i) νn|fin ≡ 0 for every n, and

(ii) νn − δn → 0 on A, that is (νn − δn)(A) → 0 for every A ∈ A.

A Boolean algebra B is called dyadic if it can be embedded into a free algebra Clop(2κ)

for some cardinal number κ, that is if ult(A) is a dyadic compactum, i.e., a continuous

image of some Cantor cube 2κ ([14]). Recall that for L = 2κ and L′ ∈ CDE(L) there is a

retraction from L′ onto L so, in particular, there is an extension operator C(L) → C(L′).

We give below examples showing that this is no longer true if we replace here 2κ by its

continuous image.

Lemma 7.2. Let B be a Boolean algebra generated by a family G of size κ such that

G =
⋃
n Gn, where every Gn is an independent family and for every k 6= n, if a ∈ Gk and

b ∈ Gn then a ∩ b = 0.

Then B embeds into Clop(2κ).

Proof. Take a pairwise disjoint sequence D(n) in Clop(2κ) and for every n choose indepen-

dent family {Dξ(n) : ξ < κ}, where every Dξ(n) is a clopen subset of D(n).

Write Gn = {gξ(n) : ξ < κn}, where κn ≤ κ. Define ϕ setting ϕ(gξ(n)) = Dξ(n) for

every n and ξ < κn. Then ϕ extends to a Boolean embedding A → Clop(2κ) in a obvious

way. �

Example 7.3. There is a dyadic compactum L of weight ω1 and L′ ∈ CDE(L) such that

there is no extension operator E : C(L) → C(L′) with ‖E‖ < 2.

Proof. Divide ω into three infinite sets P,Q1, Q2. Recall that, for A,B ⊆ ω, A ⊆∗ B means

that the set A \B is finite.

On P we consider a Hausdorff gap, see e.g. [18], 29.7: take Aα, Bα ⊆ P , α < ω1 such

that

(a) Aα ⊆∗ Aβ, Bα ⊆∗ Bβ for α < β < ω1;

(b) Aα ∩Bβ is finite for every α, β < ω1;

(c) there is no X ⊆ N satisfying Aα ⊆∗ X ⊆∗ N \Bβ for α, β < ω1.

For i = 1, 2, we choose a family {Cα(i) : α < ω1} of independent subsets of Qi and define

a subalgebra A of P (ω) generated by fin and all the sets

Gα(1) = Cα(1) ∪Aα, Gα(2) = Cα(2) ∪ Bα, α < ω1.

By Lemma 7.2 the algebra A/fin is dyadic.

Now L′ = ult(A) is a countable discrete extension of L = ult(A/fin). Suppose that there

is an extension operator E : C(L) → C(L′) such that r = ‖E‖ < 2. Take a sequence (νn)n
in M(A) as in Lemma 2.7(iii). Then ‖νn‖ ≤ r < 2 for every n. Take δ > 0 such that

r < 2− 2δ. For every α < ω put

Âα = {n ∈ Aα : νn(Gα(1)) > 1− δ}.

Then Aα ⊆∗ Âα since limn∈Aα
νn(Gα(1)) = 1. Hence the set X =

⋃
α<ω1

Âα almost contains

every Aα. On the other hand, for every β < ω1, Bβ ∩X must be finite: otherwise, there



18 W. MARCISZEWSKI AND G. PLEBANEK

is n ∈ Bβ ∩ X such that νn(Gβ(2)) > 1 − δ. Since n ∈ X , n ∈ Âα for some α so

νn(Gα(1)) > 1− δ. But Gα(1) ∩Gβ(2) is finite so νn(Gα(1) ∩Gβ(2)) = 0. It follows that

‖νn‖ ≥ νn(Gα(1)) + νn(Gβ(2)) > 2− 2δ > r,

contrary to our assumption.

In this way we have checked that X separates the gap, which is impossible. �

It is a well-known fact from the theory of absolute retracts that a metrizable compactum

M is an absolute retract, provided it is a union of two compact absolute retracts M1,M2

whose intersection M1∩M2 is also an absolute retract. It is also known that this is not the

case without the metrizability assumption. Our Example 7.3 can be applied to demonstrate

this.

Corollary 7.4. Let K = 2× [0, 1]ω1, and x be a fixed point of [0, 1]ω1. The quotient space

M obtained from K by identification of the points (0, x) and (1, x) is the union of two

copies of [0, 1]ω1 intersecting at the single point, yet it is not an absolute retract.

Proof. We adopt the notation from the proof of Example 7.3.

Observe that, since the cube [0, 1]ω1 is homogeneous, the space M does not depend on

the choice of a point x. We can assume that x ∈ {0, 1}ω1. Let S be the subspace of M

which is a quotient image of 2 × {0, 1}ω1 ⊆ K. Using the fact that {0, 1}ω1 is a Dugundji

space, we can easily obtain an extension operator E ′ : C(S) → C(M) of norm 1.

One can easily verify that S is homeomorphic to the space L from Example 7.3. Indeed,

for i = 1, 2, let Ai be the subalgebra of P (ω) generated by fin and the family of sets Gα(i),

α < ω1. These families are independent, hence Li = ult(Ai/fin) are homeomorphic to

{0, 1}ω1. Since all intersections Gα(1)∩Gβ(2) are finite, we conclude that L is homeomor-

phic to S. Therefore, we can take S ′ ∈ CDE(S) such that there is no extension operator

E : C(S) → C(S ′) with ‖E‖ < 2. We can assume that S ′ \ S is disjoint from M . Let

M ′ = M ∪ S ′. If there was a retraction r : M ′ → M , then the assignment f 7→ E ′(f) ◦ r

would define an extension operator from C(S) to C(S ′) of norm 1, a contradiction. �

Proposition 7.5. Let K be a compact space, such that, for some point p ∈ K, K =⋃n
i=1Ki, where Ki is a Dugundji space, and Ki ∩Kj = {p}, for all i, j ≤ n, i 6= j. Then,

for any compact space L containing K, there exists an extension operator E : C(K) → C(L)

with ‖E‖ ≤ 2n− 1.

Proof. For any i ≤ n, let Li be the quotient space obtained from L by identifying all points

from
⋃
j 6=iKj with the point p, and let qi : L → Li be the quotient map. Clearly, qi maps

Ki homeomorphically onto qi(Ki). Let ri : qi(Ki) → Ki be the inverse homeomorphism.

By our assumption on Ki, we can find an extension operator Ei : C(qi(Ki)) → C(Li) of

norm 1. Now, we can define the extension operator E : C(K) → C(L) by

E(f)(x) =

n∑

i=1

Ei(f |Ki ◦ ri)(qi(x))− (n− 1)f(p),
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for f ∈ C(K) and x ∈ L. It is clear that, for each f ∈ C(K), E(f) is continuous on L. If

x ∈ K, then x ∈ Ki, for some i, hence qj(x) = p and Ej(f |Kj ◦ rj)(qj(x)) = f(p) for j 6= i.

Therefore E(f)(x) = f(x). Obviously, we have ‖E‖ ≤ 2n− 1, so E is as desired. �

From the above Proposition and the proof of Corollary 7.4 we immediately obtain the

following

Corollary 7.6. For the spaces L and L′ from Example 7.3 there exists an extension operator

E : C(L) → C(L′) of norm 3.

Our next example uses the concept of multigaps introduced by Avilés and Todorčević

and partially builds on Theorem 29 from [2]. In what follows, we consider ideals I on ω

containing all finite sets. Two ideals I1, I2 are orthogonal if A1∩A2 is finite for any Ai ∈ Ii.
Given k and a family I1, . . . , Ik of mutually orthogonal ideals, they are said to constitute a

k-gap if for any X1, . . . , Xk ⊆ ω, if for every i ≤ k and A ∈ Ii, A ⊆∗ Xi then
⋂
i≤kXi 6= ∅.

Note that a Hausdorff gap is, in particular, a 2-gap defined by ideals generated by ω1 sets.

Aviles and Todorcevic [2] proved that for every k there are k-gaps of c-generated ideals; on

the other hand, under MA(ω1) there are no 3-gaps defined by ω1-generated ideals.

Example 7.7. There is a dyadic compactum L of weight c and L′ ∈ CDE(L) such that

there is no extension operator E : C(L) → C(L′).

Proof. Take a partition ω =
⋃
k≥2Nk into infinite sets. For every k ≥ 2 divide Nk into

infinite sets Pk, Qk,j, j ≤ k. Let I(k, j), j ≤ k be a family of mutually orthogonal ideals

of subsets of Pk that constitutes a k-gap.

Fix k and j ≤ k. Choose an independent family {Cξ(k, j) : ξ < c} of subsets of Qk,j and

fix some enumeration {Iξ(k, j) : ξ < c} of Ik,j.

We define A to be an algebra of subsets of ω generated by finite sets and

Gξ(k, j) = Iξ(k, j) ∪ Cξ(k, j), ξ < c, k ≥ 2, j ≤ k.

By Lemma 7.2A/fin is a dyadic algebra (can be embedded into Clop(2c)), so L = ult(A/fin)

is a dyadic compactum of weight ≤ c. We let L′ = L ∪ ω which is identified with ult(A).

Suppose that there is an extension operator E : C(L) → C(L′); such that ‖E‖ < ∞.

Take a sequence (νn)n in M(A) as in Lemma 7.1. Then ‖νn‖ ≤ ‖E‖ for every n. Take

k > 2 · ‖E‖.

Note that for every j ≤ k and A ∈ I(k, j) there is GA such that A ∪GA ∈ A; moreover,

if A ∈ I(k, j) and A′ ∈ I(k, j′) with j 6= j′ then GA ∩GA′ is finite. For A ∈ I(k, j) put

Â = {n ∈ A : νn(A ∪GA) > 1/2}.

Then A ⊆∗ Â since limn∈A νn(A ∪GA) = 1. Hence the set

Xj =
⋃

A∈I(k,j)

Â,

almost contains every A ∈ I(k, j). Since the family {I(k, j) : j ≤ k} constitutes a k-

gap, there is n ∈
⋂
j≤kXj. Then there are Aj ∈ I(k, j), j ≤ k, such that n ∈ Âj so
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νn(Aj ∪ GAj
) > 1/2 and Aj ∪ GAj

are almost pairwise disjoint for different j’s. Since νn
vanishes on fin, this gives ‖νn‖ > k/2 > ‖E‖, a contradiction. �

Problem 7.8. Can we, in ZFC, define L as in Example 7.7, but of weight ω1?

Correa and Tausk [9] proved that if a compact space K contains a copy of 2c, then C(K)

admits a nontrivial twisted sum with c0. Gerlits and Efimov showed that every dyadic

compactum K contains a copy of the Cantor cube 2κ, for every regular cardinal number

κ ≤ w(X), see [13, 3.12.12]. From these results easily follows

Theorem 7.9. Assuming CH, for each nonmetrizable dyadic space K, c0 and C(K) have

a nontrivial twisted sum.

8. Linearly ordered compact spaces

The following theorem is a consequence of several known results.

Theorem 8.1. Assuming CH, if L is a nonseparable linearly ordered compact space, then

there is a nontrivial twisted sum of c0 and C(L).

Proof. Recall that every measure on a linearly ordered compactum has a separable support,

see [27] or [24]. Hence the space L does not support a strictly positive measure.

If L has ccc then it is first-countable ([14, 3.12.4]), and it follows that |L| ≤ c ([14,

3.12.11(d)]) so L is of weight ω1 = c. Therefore we obtain the desired conclusion by

Theorem 2.8.

If L does not satisfy ccc then this follows from a theorem of Correa and Tausk stated in

[9]. Namely, it is well-known that in such a case C(L) contains an isometric copy of c0(ω1),

and by [8, Corollary 2.7] this copy is complemented in C(L). It remains to recall that there

exists a nontrivial twisted sum of c0 and c0(ω1), cf. [7]. �

The next result is an improvement of Theorem 7.1 from [12].

Theorem 8.2. Let L be a separable linearly ordered compact space of weight κ such that

2κ > c. Then there is a non-tame compactification γω with remainder homeomorphic to L.

Hence there is a nontrivial twisted sum of c0 and C(L).

Corollary 8.3. If L is a separable linearly ordered compact space of weight c, then there

is a nontrivial twisted sum of c0 and C(L).

Corollary 8.4. Under CH, if K is a nonmetrizable linearly ordered compact space, then

there is a nontrivial twisted sum of c0 and C(K).

Note that Corollary 8.4 follows directly from Corollary 8.3 and Theorem 8.1. The rest

of this section is devoted to proving Theorem 8.2.

We shall use the following well-known description of the class of separable linearly ordered

compact spaces. Let A be an arbitrary subset of a closed subset K of the unit interval

I = [0, 1]. Put

KA = (K × {0}) ∪ (A× {1}),
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and equip this set with the order topology given by the lexicographical order (i.e., (s, i) ≺

(t, j) if either s < t, or s = t and i < j).

For K = I and A = (0, 1) the space K = KA is a well known double arrow space (some

authors use this name for the space II).

It is known that the class of all spaces KA coincides with the class of separable linearly

ordered compact spaces. Namely, the following is a reformulation of the characterization

due to Ostaszewski [26]:

Theorem 8.5 (Ostaszewski). The space L is a separable compact linearly ordered space if

and only if L is homeomorphic to KA for some closed set K ⊆ I and a subset A ⊆ K.

The next lemma seems to belong to the mathematical folklore, we include a short justi-

fication for the readers convenience.

Lemma 8.6. Let L be a separable linearly ordered compact space of uncountable weight κ.

Then L contains a topological copy of the space IB, where B is a dense subset of (0, 1) of

the cardinality κ.

Proof. By Theorem 8.5 we can assume that L = KA for some closed K ⊆ I and some

subset A of K. From our assumption on the weight of K it easily follows that |A| = κ.

Take a dense-in-itself subset C of A of cardinality κ. Let M be the closure of C in K and

let a = infM, b = supM . Put D = M ∩ A ∩ (a, b). Obviously, D is a dense subset of M

of the cardinality κ and the space MD is a subspace of KA. Let {(an, bn) : n < m} be an

enumeration of the family of all components of [a, b] \M for some m ≤ ω. Put

P =MD \ ({(an, 1) : an ∈ D} ∪ {(bn, 0) : bn ∈ D}) .

Then P is a closed, dense-in-itself subspace of MD. Let ∼ be the equivalence relation on

M defined by an ∼ bn for n < m, and let q : M → M/∼ be the quotient map. The

space S = M/∼ is compact, linearly ordered, connected, and metrizable, hence there is

a homeomorphism h : M/∼ → I with h(q(a)) = 0. One can easily verify that P can be

identified with IB where B = h(q(D ∪ {an : n < m})). �

Theorem 8.7. Let B be a dense subset of (0, 1) of the cardinality κ such that 2κ > c. Then

there is a non-tame compactification γω which remainder is homeomorphic to IB.

Proof. Let Q be a countable dense subset of (0, 1). For each x ∈ B put Px = {q ∈ Q :

q ≤ x} and pick a strictly increasing sequence (qnx)n∈ω in Q such that limn q
n
x = x. Let

Sx = {qnx : n ∈ ω}. For any f : B → 2 define

Rf
x =

{
Px if f(x) = 0,

Px \ Sx if f(x) = 1.

Let Af be a subalgebra of P (Q) generated by {Rf
x : x ∈ B} ∪ fin, where fin denotes the

family of all finite subsets of Q. We shall check that, for any f , the Stone space ult(Af) is

a compactification of a countable discrete space with remainder homeomorphic to IB.
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For any q ∈ Q let ufq denote the ultrafilter in ult(Af) containing {q}. Let rf : Af →

Af/fin be the quotient map. It is well-known that ult(Af) is a compactification of its

countable discrete subspace {ufq : q ∈ Q} and its remainder can be identified with the

space ult(Af/fin). Observe that Af/fin is generated by the family {rf(Rf
x) : x ∈ B}. For

x, y ∈ B, x < y we have Px ⊆ Py, the difference Py \ Px is infinite, and the intersection

Px ∩ Sy is finite. Therefore

Rf
x (∗ Rf

y ⇔ x < y for x, y ∈ B and f ∈ 2B.

Let U be an ultrafilter in Af/fin. The set TU = {x ∈ B : r(Rf
x) ∈ U} is a final segment

in (B,<), hence, either

∃z ∈ I \B TU = (z, 1) ∩ B or

∃y ∈ B TU = [y, 1) ∩B or

∃y ∈ B TU = (y, 1) ∩B .

The ultrafilter U is uniquely determined by the set TU . For z ∈ I\B let Uf
z be the ultrafilter

in Af/fin such that TUf
z
= (z, 1) ∩ B. For y ∈ B let Uf

y,0, U
f
y,1 be the ultrafilters such that

TUf
y,0

= [z, 1) ∩B, TUf
y,1

= (z, 1) ∩ B.

A routine verification shows that the map ϕf : ult(Af/fin) → IB given by

ϕf(U) =

{
(z, 0) if U = Uf

z , z ∈ I \B,

(y, i) if U = Uf
y,i, y ∈ B, i = 0, 1

is a homeomorphism. The map ψf : ult(Af/fin) → ult(Af), given by ψf(U) = (rf)−1(U),

for U ∈ ult(Af/fin) is a homeomorphic embedding. Let

ufz = ψf(Uf
z ), u

f
y,i = ψf (Uy,i) for z ∈ I \B, y ∈ B, i = 0, 1.

Observe that if f(x) = 0, then Sx ⊆ Rf
x, otherwise Sx ⊆ Q \ Rf

x, hence Sx is contained

in the element of the ultrafilter ufy,f(x). It follows that the sequence (ufqnx )n∈ω converges to

ufy,f(x) in ult(Af). The space M(IB) has the cardinality c, which follows for instance from

the fact that every probability measure on IB has a uniformly distributed sequence, see

Mercourakis [24]. Hence the family E of all maps e : Q→M(IB) has the same cardinality.

Suppose that for all f ∈ 2B there is an extension operator

T f : C(ψf(ult(Af/fin))) → C(ult(Af)).

Consequently, by Lemma 2.7 there exists a continuous map gf : ult(Af) →M(ψf (ult(Af/fin)))

such that, for any U ∈ ult(Af/fin), gf(ψf(U)) = δψf (U). By continuity of gf we have

lim
n
gf(ufqnx ) = δufy,f(x),

for all x ∈ B. Let

φf :M(ψf (ult(Af/fin))) →M(IB),

be the isometry induced by the embedding ψf and the homeomorphism ϕf . Let ef : Q →

M(IB) be defined by ef (q) = φf(gf(ufq )). Then, for any x ∈ B, the sequence (ef (qnx))n∈ω
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converges to δ(x,f(x)). It follows that the assignment f 7→ ef is an injection of 2B into E , a

contradiction. �

Theorem 8.7 immediately implies the following.

Corollary 8.8. Let K be the double arrow space. There is a non-tame compactification γω

which remainder is homeomorphic to K. Hence there is a nontrivial twisted sum of c0 and

C(K).

Let us remark that if K is a closed subset of a linearly ordered compact space L, then

there is a regular extension operator E : C(K) → C(L), cf. [17]. Using this fact one can

easily deduce Theorem 8.2 from Theorem 8.7, Lemma 8.6, Remark 2.5 and Proposition 2.6.

9. On scattered compact spaces

We start this section by presenting one more construction of non-tame compactifications

of ω, based on an idea similar to that used in the proof of Theorem 8.7. For a compact

space K we denote by Auth(K) the group of autohomeomorphisms of K.

Theorem 9.1. Let L be a compact space such that

(i) |M(L)| = c,

(ii) L contains a continuous image K of ω∗ = βω \ ω such that |Auth(K)| > c.

Then there exists a countable discrete extension L′ of L such that there is no extension

operator E : C(L) → C(L′); in particular, there is a nontrivial twisted sum of C(L) and

c0.

Moreover, if L = K then we may additionally require that L′ is a non-tame compactifi-

cation of ω which remainder is homeomorphic to L.

Proof. The assumption that K is a continuous image of ω∗ is equivalent to the existence of

a compactification γω of ω with the remainder γω \ω homeomorphic to K. We can assume

that γω and L are disjoint. Let S = L ∪ γω be the disjoint union of L and γω. Consider

the family H of all homeomorphisms ϕ : γω \ ω → K. By our assumption |H| > c. For

any ϕ ∈ H, let ∼ϕ be the equivalence relation on S given by x ∼ϕ ϕ(x) for all x ∈ γω \ ω

and let qϕ : S → S/∼ϕ
be a corresponding quotient map. Clearly qϕ(L) is homeomorphic

to L and S/∼ϕ
is a countable discrete extension of qϕ(L).

Suppose that for all ϕ ∈ H there is an extension operator

Tϕ : C(qϕ(L)) → C(S/∼ϕ
).

Consequently, by Lemma 2.7 for every such ϕ there exists a continuous map

hϕ : S/∼ϕ
→M(qϕ(L)),

satisfying hϕ(y) = δy for every y ∈ qϕ(L). Let gϕ : M(qϕ(L)) → M(L) be the isometry

induced by the homeomorphism qϕ|L : L → qϕ(L). Define eϕ : ω → M(L) by eϕ(n) =

gϕ(hϕ(qϕ(n))) for n ∈ ω. Observe that the family of all maps from ω to M(L) has the

cardinality c, since |M(L)| = c. We will get the desired contradiction by showing that the
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assignment ϕ 7→ eϕ is one-to-one. Fix distinct ϕ0, ϕ1 ∈ H, and take x ∈ γω \ ω such that

ϕ0(x) 6= ϕ1(x). Pick f ∈ C(L) with f(ϕi(x)) = i, i = 0, 1. Since qϕi
(x) = qϕi

(ϕi(x))), we

have gϕi
(hϕi

(qϕi
(x)))(f) = i. By continuity of hϕi

we can find a neighborhood Ui of x in

γω such that

gϕ0
(hϕ0

(qϕ0
(z)))(f) < 1/2 for z ∈ U0;

gϕ1
(hϕ1

(qϕ1
(z′)))(f) > 1/2 for z′ ∈ U1.

Now, for any n ∈ ω such that n ∈ U0 ∩ U1, we have eϕ0
(n)(f) < 1/2 < eϕ1

(n)(f). �

We shall now consider the well-known class of compact spaces associated with uncount-

able almost disjoint families of subsets of ω — separable compact spaces K whose set of

accumulation points is the one-point compactification of an uncountable discrete space.

Such compact spaces were considered first by Aleksandrov and Urysohn [1] and for that

reason we call them AU-compacta, cf. [23]. It is worth recalling that the space C(K) for

an AU-compactum K may have interesting structural properties, see Koszmider [21].

In section 5 we considered an AU-compactum described as the Stone space of the algebra

of subsets of ω generated by finite sets and a given almost disjoint family. Below we use

the following description of AU-compacta.

Let D be a countable set and let A be an uncountable almost disjoint family of infinite

subsets of D, i.e. the intersection of any two distinct members of A is finite. Let A 7→ pA be

a one-to-one correspondence between members of A and points in some fixed set disjoint

from D, an let ∞ be a point distinct from points in D and any point pA. In the set

KA = D ∪ {pA : A ∈ A} ∪ {∞}

we introduce a topology declaring that points of D are isolated, basic neighborhoods pA
are of the form {pA} ∪ (A \F ), where F ⊂ A is finite, and ∞ is the point at infinity of the

locally compact space D ∪ {pA : A ∈ A}.

From Theorem 9.1 one can easily derive the following

Corollary 9.2. Let A be an almost disjoint family of subsets of ω of cardinality κ, where

2κ > c. Then there exists a non-tame compactification γω which remainder is homeomor-

phic to KA. Hence there is a nontrivial twisted sum of c0 and C(KA).

Proof. First, recall that every measure from M(KA) is purely atomic, hence |M(KA)| = c.

Second, observe that the subspaceK = {pA : A ∈ A}∪{∞} ofKA is homeomorphic to a one

point compactification of a discrete space of cardinality κ, therefore |Auth(K)| = 2κ > c.

Next, notice that K is a continuous image of ω∗, since KA is a compactification of ω with

remainder K. Finally, we can obtain the desired non-tame compactification using Theorem

9.1 and Proposition 2.6. �

Recall that a space X is scattered if no nonempty subset A ⊆ X is dense-in-itself. For

an ordinal α, X(α) is the αth Cantor-Bendixson derivative of the space X . For a scattered

space X , the scattered height ht(X) = min{α : X(α) = ∅}.
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Using Theorem 9.1 we can also provide an alternative, more topological proof of the

following result of Castillo.

Theorem 9.3 (Castillo [7]). Under CH, if K is a nonmetrizable scattered compact space

of finite height, then there exists a nontrivial twisted sum of c0 and C(K).

Our argument is based on the following two auxiliary facts.

Proposition 9.4. Each nonmetrizble scattered compact space K contains a nonmetrizble

retract of cardinality at most c.

Proof. Consider the family of all uncountable (equivalently, nonmetrizable) clopen sub-

spaces of K, and pick such a subspace L of minimal height α. By compactness of L, α is

a successor ordinal, i.e., α = β +1. The set L(β) is finite, therefore we can partition L into

finitely many clopen sets containing exactly one point from L(β). One of these sets must be

uncountable, hence, without loss of generality we can assume that L(β) = {p}. For every

x ∈ L \ {p} fix a clopen neighborhood Ux of x in L such that p /∈ Ux. Clearly, the height

of Ux is less than α, so, by our choice of L, Ux must be countable, hence metrizable. Since

every point of L \ {p} has a metrizable neighborhood it follows that

(9.1) (∀A ⊂ L) (∀x ∈ A \ {p}) (∃(xn)) xn ∈ A and xn → x .

For any subset A ⊆ L \ {p} define

ϕ(A) =
⋃

{Ux : x ∈ A} \ {p} .

Observe that, by |Ux| ≤ ω and (9.1), we have

(9.2) |ϕ(A)| ≤ c, provided |A| ≤ c .

Fix any subset A ⊆ L\ {p} of cardinality ω1. We define inductively, for any α < ω1, sets

Aα ⊆ L \ {p}. We start with A0 = A, and at successor stages we put Aα+1 = ϕ(Aα). If α

is a limit ordinal we define Aα =
⋃
{Aβ : β < α}. Finally we take B =

⋃
{Aα : α < ω1}.

From (9.2) we conclude that |B| ≤ c. First, observe that B is open in L, since, for any

x ∈ B, x belongs to some Aα, and then Ux ⊆ Aα+1 ⊆ B. Second, the unionM = B∪{p} is

closed in L. Indeed, if x ∈ B \ {p}, then by (9.1), there is a sequence (xn) in B converging

to x. We have {xn : n ∈ ω} ⊆ Aα, for some α < ω1, therefore x ∈ Aα+1 ⊆ B. Now, we can

define a retraction r : L→M by

r(x) =

{
x for x ∈M,

p for x ∈ L \M .

Then r is continuous since it is continuous on closed sets M and L \ B. It remains to

observe that M is also a retract of K, since L is a retract of K. �

Lemma 9.5. Every nonmetrizable scattered compact space K of finite height contains a

copy of a one point compactification of an uncountable discrete space.
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Proof. Let n + 1 be the height of K. Using the same argument as at beginning of the

proof of Theorem 9.4, without loss of generality, we can assume that K(n) = {p} and every

x ∈ K \ {p} has a countable clopen neighborhood Ux in K. Let k = max{i : |K(i)| > ω}.

Consider

A = K(k) \ (
⋃

{Ux : x ∈ K(k+1) \ {p}} ∪ {p}) .

Observe that by our choice of k, the set A is uncountable. One can easily verify that the

set A is discrete and p is the unique accumulation point of A. Therefore L = A ∪ {p} is a

one point compactification of an uncountable discrete space. �

Proof of Theorem 9.3. Let K be a nonmetrizable scattered compact space of finite height,

and let L be a a nonmetrizable retract of K of cardinality at most c, given by Proposition

9.4. Obviously, in the presence of continuum hypothesis, we have |L| = c. Since L is a

retract of K it is enough to justify the existence of a nontrivial twisted sum of c0 and C(L).

Take a copy S in L of a one point compactification of an uncountable discrete space, given

by Lemma 9.5. Obviously, we have |S| = c. Since L is scattered, every measure in M(L) is

purely atomic, hence |M(L)| = c. We also have |Auth(S)| = 2c, so we can apply Theorem

9.1 as in the proof of Corollary 9.2. �

Clearly, a compact scattered space supports measure if and only if it is separable. There-

fore we have the following easy consequence of Lemma 2.8.

Corollary 9.6. If K is a nonseparable scattered compact space of weight ω1, then there

exists a nontrivial twisted sum of c0 and C(K).

Theorem 9.3, Corollary 9.2, and Corollary 9.6 should be compared with the following

direct consequence of Corollary 5.3.

Theorem 9.7. Assume MA(κ) and let K be a separable scattered compact space of height

3 and weight κ. Then every twisted sum of c0 and C(K) is trivial.

Proof. It is well-known that each infinite scattered compact space K contains a nontrivial

convergent sequence, and hence C(K) contains a complemented copy of c0. Consequently,

for any n ∈ ω, the space C(K) is isomorphic with C(K)⊕ Rn.

If K is a separable scattered compact space of height 3, then the quotient space L

obtained from K by gluing together all points in K(2) is an AU-compactum. Let |K(2)| = n.

A standard factorization argument shows that C(K) is isomorphic to C(L)⊕ Rn−1, hence

it is isomorphic to C(L), and we can apply Corollary 5.3. �

Recall that two families A and B of infinite subsets of ω are separated if there exists

S ⊆ ω such that A ⊆∗ S, for each A ∈ A, and B ⊆∗ ω \ S for each B ∈ B. N.N. Luzin

constructed (in ZFC) an almost disjoint family L of subsets of ω of cardinality ω1 such that

no two disjoint uncountable subfamilies of L are separated, see [11, Theorem 4.1] and [29]

and references therein.
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Proposition 9.8. Let A be an almost disjoint family of subsets of ω which contains two

separated disjoint uncountable subfamilies. Then there exists an L ∈ CDE(KA) such that

there is no extension operator E : C(KA) → C(L) with ‖E‖ < 2.

Proof. Let A0 and A1 be disjoint uncountable subfamilies of A separated by a set S ⊆ ω.

Without loss of generality we may assume that Ai have the cardinality ω1, so we can

enumerate A0 ∪A1 as {Aα : α < ω1}. Let L = {Lα : α < ω1} be the Luzin almost disjoint

family of subsets of a countable set ω′. We assume that the AU-compacta

KA = ω ∪ {pA : A ∈ A} ∪ {∞} and KL = ω′ ∪ {rL : L ∈ L} ∪ {∞′}

are disjoint. To simplify the notation we denote pAα
by pα and rLα

by rα for α < ω1. Let

L′ be the disjoint union of KA and KL and L be the quotient space obtained from L′ by

the identification of pα with rα, for all α < ω1, and ∞ with ∞′. Let q : L′ → L be the

quotient map. Clearly q(KA) is a topological copy of KA.

Suppose that there exists an extension operator

E : C(q(KA)) → C(L) with ‖E‖ = a < 2.

Then by Lemma 2.7 there is a sequence (νp)p in M(q(KA)) such that ‖νp‖ ≤ a for every

p ∈ ω′ and νp − δq(p) → 0 in the weak∗ topology of M(L). Let

Γ = {α < ω1 : νp({q(pα)}) 6= 0 for some p ∈ ω′}.

Obviously, the set Γ is countable. We put

T = {p ∈ ω′ : |νp|(S) > a/2}, T ′ = {p ∈ ω′ : |νp|(ω \ S) > a/2};

Li = {Lα : Aα ∈ Ai, α ∈ ω1 \ Γ} for i = 0, 1.

We will obtain the desired contradiction by showing that the set T separates uncountable

subfamilies Li of L. First, fix some Lα ∈ L0. Take a finite set F ⊆ ω such that Aα \F ⊆ S.

Note that the set C = (Aα \F )∪{pα} is clopen in KA and the set D = Lα∪{rα} is clopen

in KL. Therefore the characteristic function f of q(C ∪ D) is continuous on L. For all

p ∈ Lα, we have δq(p)(f) = 1, so (νp)p(f) → 1. Since νp({q(pα)}) = 0, νp(Aα \ F ) > a/2

for almost all p ∈ Lα. It follows that Lα ⊆∗ T . In the same way one can show that, for all

Lα ∈ L1, Lα ⊆∗ T ′. It remains to observe that the assumption that ‖νp‖ ≤ a implies that

T ′ and T are disjoint. �

10. Remarks and open problems

Let us recall that a compact space is Eberlein compact if K is homeomorphic to a weakly

compact subset of a Banach space. There are well-studied much wider classes of Corson

and Valdivia compacta.

Given a cardinal number κ, the Σ-product Σ(Rκ) of real lines is the subspace of Rκ

consisting of functions with countable supports. A compactum K is Corson compact if

it can be embedded into some Σ(Rκ); K is Valdivia compact if for some κ there is an

embedding g : K → Rκ such that g(K)∩Σ(Rκ) is dense in the image, see Negrepontis [25]

and Kalenda [19].
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It is known that if K is a nonmetrizable Eberlein compact space then c0 admits a

nontrivial twisted sum with C(K), see [7]. The following generalization can be found in [7]

and [9].

Theorem 10.1. If K is a Valdivia compact space which does not satisfy the countable

chain condition then c0 admits a nontrivial twisted sum with C(K).

Let us note that 10.1 can be demonstrated as follows. If K is Valdivia compact without

ccc then there is a retraction of K onto its subspace which has the weight ω1 and still does

not satisfy ccc. Then one can apply Theorem 2.8. This suggests the following question.

Problem 10.2. Let K be Valdivia compact that does not support a measure. Does there

exist a nontrivial twisted sum of c0 and C(K)?

The main obstacle here is that we do not know if every Valdivia compact space not

supporting a measure has a retract of weight ω1 which does not support a measure either.

We also recall a related class of compact spaces: a compactum K is Gul’ko compact if

C(K) equipped with the weak topology is countably determined, i.e., is the continuous

image of a closed subset of a product of some subset S of the irrationals P and a compact

space (cf. [25]). We have the following relations between the classes of compacta mentioned

above

metrizable ⇒ Eberlein ⇒ Gul’ko ⇒ Corson ⇒ Valdivia

and none of the above implications can be reversed, cf. [25]. Since each Gul’ko compact

space satisfying ccc is metrizable (cf. [25, 6.40]), Theorem 10.1 yields

Proposition 10.3. For every nonmetrizable Gul’ko compact space K, there exists a non-

trivial twisted sum of c0 and C(K).

Correa and Tausk [9] proved that, assuming CH, the above result can be extended to the

class of Corson compact space. It is well-known that under MA and the negation of CH,

every Corson compact satisfying ccc is metrizable. Hence, using again 10.1, we can state

the theorem of Correa and Tausk in a slightly stronger way:

Theorem 10.4 (Correa and Tausk). Assuming MA, for every nonmetrizable Corson com-

pact space K, there exists a nontrivial twisted sum of c0 and C(K).

It is natural to ask whether we can prove the above theorem in ZFC.

Let us, finally, summarize the open problems mentioned in the previous sections. On one

hand, we were not able to prove in section 5 that under MA(ω1) no separable compactum

K of weight ω1 admits a nontrivial twisted sum of c0 and C(K), see Problem 5.4. On the

other hand, our attempts at giving a ZFC construction of a separable compact space K

of weight ω1 and its countable discrete extension L admitting no extension operator failed

for some combinatorial reasons, see Problem 7.8 and the assumption in Theorem 8.7. In

all the cases we have considered one can construct such a pair K and L that there is no

extension operator E : C(K) → C(L) of small norm. However, at each instance we needed
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some additional set-theoretic assumption to kill all the possible extension operators, see e.g.

Proposition 9.8 and Theorem 9.1. Therefore the following question is worth considering.

Problem 10.5. Does there exist a model of set theory in which every twisted sum of c0
and C(K) is trivial whenever K is a separable compactum of weight ω1?

Appendix A. Bounded common extensions

We discuss here some consequences of a result due to Basile, Rao and Shortt [4] on

common extensions of finitely additive signed measures. Let B be a Boolean algebras of

subsets of X and B1,B2 ⊆ B its two subalgebras. We consider νi ∈ M(Bi), i = 1, 2,

where the measures ν1, ν2 are consistent, that is ν1(B) = ν2(B) for every B ∈ B1 ∩B2.

Let η be a function defined on B1 ∪B2 by η(B) = ν1(B) for B ∈ B1 and η(B) = ν2(B)

for B ∈ B2. We define

SC(ν1, ν2) = sup

{
n∑

i=1

|η(Bi+1)− η(Bi)|

}
,

where the supremum is taken over all n ≥ 0 and all increaing chains ∅ = B0 ⊆ B1 ⊆ . . . ⊆

Bn+1 = X from B1 ∪B2.

Theorem 1.5 from [4] asserts that there is a common extension of ν1, ν2 to a measure

λ ∈ M(〈B1 ∪ B2〉) such that ‖λ‖ = SC(ν1, ν2). Clearly, we can extend such λ to B

preserving its norm.

Lemma A.1. Let B be a finite algebra having N atoms. Suppose that B1,B2 ⊆ B are

subalgebras, νi ∈M(Bi) for i = 1, 2 are two consistent measures, and δ > 0.

(a) If |νi(B)| < δ for B ∈ Bi, i = 1, 2, then there is a common extension of ν1, ν2 to

λ ∈M(B) such that ‖λ‖ ≤ 2Nδ.

(b) If λ ∈M(B) is such a measure that |λ(B)−νi(B)| < δ for B ∈ Bi, i = 1, 2, then there

is a common extension of ν1, ν2 to λ′ ∈M(B) such that ‖λ− λ′‖ ≤ 2Nδ.

(c) In the setting of (b), if moreover ν1, ν2 and λ have rational values then there is such λ′

that also assumes only rational values.

Proof. To check (a) it is enough to notice that if B0, . . . , Bn+1 is a strictly increasing chain

in B1 ∪B2 then n + 1 ≤ N so clearly SC(ν1, ν2) ≤ 2Nδ.

To get (b) we can apply (a) to the measures ν ′1 = ν1 − λ and ν ′2 = ν2 − λ considered on

B1 and B2, respectively.

For (c) we may also assume that δ ∈ Q. By (b) the set

E = {µ ∈M(B) : µ extends ν1, ν2 and ‖µ− λ‖ ≤ 2Nδ},

is nonempty. The set E may be identified with a symplex in RN defined by equations

and inequalities with rational coefficients. Hence any extreme point of E has rational

coefficients and defines the required measure λ′. �

Lemma A.2. Let B be a finite algebra. For any subalgebra C ⊆ B and a measure ν ∈

M(C), if, for some δ > 0, there is λ ∈M1(B) such that |λ(C)− ν(C)| < δ for C ∈ C then
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there is an extension of ν to µ ∈ M(B) such that ‖µ‖ ≤ max(1, ‖ν‖) and |µ(B)−λ(B)| ≤ 3δ

for every B ∈ B.

If, moreover, ν and λ have rational values then there is such µ with rational values.

Proof. Note first that for any ν1 ∈ M(C), if |ν1(C)| < δ for every C ∈ C then there is an

extension ν̃1 ∈ M(B) of ν1 such that |ν̃1(B)| < δ for every B ∈ B. Indeed, we can define

such ν̃1 by the following procedure: If C is an atom of C then choose any atom B of B

contained in C and set ν̃1(B) = ν1(C) and ν̃1(B1) = 0 for every B1 ∈ B contained in C \B.

Note also that then ν̃1 satisfies ‖ν̃1‖ < 2δ.

We can now apply the preceding remark to ν1 = ν − λ considered on C to get ν̂1 as

above. Then the measure λ′ = ν̂1 + λ extends ν and satisfies ‖λ′‖ < ‖λ‖+ 2δ ≤ 1 + 2δ.

Now it is enough to check that we can appropriately lower the size of ‖λ′‖. Consider

first some atom C of C and let B+ be the union of all atoms B of B contained in C for

which λ′(B) > 0; set B− = C \ B+. Note that if t ≤ min(|λ′(B+), |λ′(B−)| then we can

modify λ′ on C, assigning the value λ′(B+) − t to B+ and λ′(B−) + t to B−; this defines

an extension of ν of norm ‖λ′‖ − 2t.

Let now C1, . . . , Cm be the list of all atoms; we divide every Cj into B+
j and B−

j as

described above. Let

p =
∑

j≤m

min
(
λ′(B+

j ), |λ
′(B−

j )|
)
.

If p ≥ δ, by the procedure described above we shall get a measure µ extending ν with

‖µ‖ ≤ 1. Namely, we then choose numbers nonnegative tj ≤ min
(
|λ′(B+

j ), |λ
′(B−

j )|
)
such

that
∑

j≤m tj = δ, and apply the modification by tj to Cj . If p < δ then the same procedure

will give µ such that µ is either nonnegative or nonpositive on each Ci. In such a case

‖µ‖ =
∑

j≤m

|µ(Cj)| =
∑

j≤m

|ν(Cj)| = ‖ν‖.

In both cases we shall have |µ(B) − λ′(B)| ≤ 2δ for any B ∈ B so µ will be the required

measure.

For the final statement just note that we can assume that δ ∈ Q; the above argument

shows that in such a case λ′ and µ have values in Q. �

In the last auxiliary result we consider the the following set in a Euclidean space:

T (a, b) =

{
x ∈ Rm × Rn :

∑

j≤n

xij = ai for i ≤ m,
∑

i≤m

xij = bj for j ≤ n

}
.

Lemma A.3. For and a ∈ Rm, b ∈ Rn such that
∑

i≤m ai =
∑

j≤n bj there is x ∈ T (a, b)

satisfying
∑

i,j

|xij | ≤ max
(∑

i≤m

|ai|,
∑

j≤n

|bj |
)
.

Proof. The assertion is clearly true of either m = 1 or n = 1. We argue by induction on

m+ n.
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Since
∑

i≤m ai =
∑

j≤n bj there are i and j such that ai and bj have the same sign.

Suppose e.g. that this is the case for i = j = 1. Moreover, let us assume that 0 ≤ a1 ≤ b1;

the other case may be treated by symmetric argument. Set

(i) x11 = a1 and x1,j = 0 for j > 1;

(ii) b′1 = b1 − a1, b
′
j = bj for j > 1;

(iii) a′ = (a2, . . . , am) ∈ Rm−1.

Then for

r′ = max
( ∑

2≤i≤m

|ai|,
∑

j≤n

|b′j |
)
,

by the inductive assumption there is

x′ = (xij)2≤i≤m,1≤j≤n,

such that x′ ∈ T (a′, b′) and ‖x′‖ ≤ r′. Note that
∑

2≤i≤m

|ai| ≤ r − a1,

∑

j≤n

|b′j | = b1 − a1 +
∑

j≤2≤n

|bj | ≤ b1 − a1 + r − b1 = r − a1,

so r′ ≤ r− a1. Hence we can extend x′ by the first row defined above and get the required

vector x. �
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[20] J. Ka̧kol, W. Kubís, M. López-Pellicer, Descriptive topology in selected topics of functional analysis,

Developments in Mathematics 24, Springer, New York (2011).

[21] P. Koszmider, On decompositions of Banach spaces of continuous functions on Mrwka’s spaces, Proc.

Amer. Math. Soc. 133 (2005), 2137-2146.

[22] W. Kubís, A representation of retracts of cubes, arXiv:math/0407196.

[23] W. Marciszewski and R. Pol, On Banach spaces whose norm-open sets are Fσ-sets in the weak topology,

J. Math. Anal. Appl. 350 (2009), 708–722.

[24] S. Mercourakis, Some remarks on countably determined measures and uniform distribution of se-

quences, Monatsh. Math. 121 (1996), 79–111.

[25] S. Negrepontis, Banach spaces and topology, in: Handbook of set-theoretic topology, K. Kunen, J.

Vaughan (eds.), North-Holland, Amsterdam (1984), 1045–1142.

[26] A.J. Ostaszewski, A characterization of compact, separable, ordered spaces, J. London Math. Soc. 7

(1974), 758–760.

[27] A. Sapounakis, Measures on totally ordered spaces, Mathematika 27 (1980), 225–235.

[28] E.V. Shchepin, Topology of limit spaces with uncountable inverse spectra, Uspekhi Mat. Nauk, 31

(1976), no. 5 (191), 191–226 (Russian Mathematical Surveys, 1976, 31:5, 155–191).
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