

Ellipticity in geometric variational problems

Sławomir Kolasiński s.kolasinski@mimuw.edu.pl

> Colloquium Of MIM December 8, 2022

 $\Phi: \{\text{geometric objects}\} \to [0, \infty]$

<u>Goal</u>: Study critical points (in particular minima) of Φ .

$$\Phi: \{\text{geometric objects}\} \to [0, \infty]$$

<u>Goal</u>: Study critical points (in particular minima) of Φ .

Examples:

1 The Plateau problem

geometric objects - surfaces with a fixed boundary

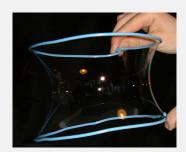
 Φ — measure of the surface

2 The isoperimetric problem

geometric objects - open sets with fixed volume

 Φ — measure of the boundary

Joseph Plateau 1801 – 1883 Image by Albert Callisto CC BY-SA 4.0



Catenoid

- 1930s parameterised surfaces
 - J. Douglas (Fields medal) and T. Radó
- 1960s rise of GMT: rectifiable currents and varifolds, Caccioppoli sets
 - H. Federer, W. Fleming, F. Almgren, E. R. Reifenberg, E. De Giorgi et al.
- 2010s new models and new solutions, more abstract setting
 - G. David, J. Harrison, C. De Lellis, F. Maggi,
 - G. De Philippis et al.

$$\Phi: \{ ext{geometric objects} \} \to [0, \infty]$$
 $S_i \in ext{dmn } \Phi, \qquad \Phi(S_i) \xrightarrow{i \to \infty} ext{inf im } \Phi$

- Is there a convergent sub-sequence of $\{S_1, S_2, \ldots\}$?
- If so, is the limit in the domain of Φ ?

Definition

Let $X \subseteq \mathbf{R}^N$. Define $\mathcal{K}(X)$ to be the space of those continuous functions $f: X \to \mathbf{R}$ which satisfy

$$Clos\{x \in X : f(x) \neq 0\}$$
 is compact.

 $\mathcal{K}(X)$ is a locally convex topological vector space.

Definition

Radon measure over *X* is any continuous linear functional $\mu : \mathcal{K}(X) \to \mathbf{R}$ such that $\mu(f) \ge 0$ whenever $f \ge 0$.

Definition

Radon measures μ_1 , μ_2 , ... over X converge weakly to μ if

$$\lim_{i\to\infty}\mu_i(f)=\mu(f)\quad\text{for all }f\in\mathscr{K}(X)\,.$$

Examples

Let M be a \mathcal{C}^1 -smooth submanifold of \mathbf{R}^n of dimension k and such that $M \cap K$ has finite measure whenever $K \subseteq \mathbf{R}^n$ is compact.

① One can associate a Radon measure μ_M to M by setting

$$\mu_M(f) = \int f \, dvol_M \quad \text{for } f \in \mathcal{K}(\mathbf{R}^n) \,.$$

Examples

Let M be a \mathcal{C}^1 -smooth submanifold of \mathbf{R}^n of dimension k and such that $M \cap K$ has finite measure whenever $K \subseteq \mathbf{R}^n$ is compact.

① One can associate a Radon measure μ_M to M by setting

$$\mu_M(f) = \int f \, dvol_M \quad \text{for } f \in \mathcal{K}(\mathbf{R}^n) \,.$$

② *Varifold* associated to M is the Radon measure $\mathbf{v}_k(M)$ over $\mathbf{R}^n \times \mathbf{G}(n,k)$

$$\mathbf{v}_k(M)(f) = \int f(x, \operatorname{Tan}(M, x)) \operatorname{dvol}_M(x)$$

for
$$f \in \mathcal{K}(\mathbf{R}^n \times \mathbf{G}(n,k))$$
, where

$$\mathbf{G}(n,k) = \{T : T \text{ a linear subspace of } \mathbf{R}^n, \dim T = k\}$$

$$\simeq \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n) \cap \{T : T \circ T = T, T^* = T, \operatorname{trace} T = k\}.$$

Definition

A k-dimensional *varifold* in an open set $U \subseteq \mathbf{R}^n$ is a Radon measure over $U \times \mathbf{G}(n,k)$.

Definition

A varifold V is called *rectifiable* if for i = 1, 2, ... there are positive numbers a_i and \mathcal{C}^1 -manifolds M_i such that

$$V = \sum_{i=1}^{\infty} a_i \mathbf{v}_k(M_i) .$$

The *weight measure* of V is the Radon measure ||V|| over U s.t.

$$||V||(A) = V(A \times \mathbf{G}(n,k))$$
 for $A \subseteq U$.

The *k*-density of *V* at *x* is defined (if the limit exists) by

$$\mathbf{\Theta}^{k}(\|V\|,x) = \lim_{r \downarrow 0} \frac{\|V\|\mathbf{B}(x,r)}{\alpha(k)r^{k}}.$$

$$\mu_{M_{1}} \qquad \mu_{M_{2}} \qquad \mu_{M_{3}} \qquad \mu_{M_{2}} \qquad \mu_{M_{3}} \qquad \mu_{M$$

Competitors: family C of varifolds associated to properly embedded C^1 -submanifolds of $U \subseteq \mathbf{R}^n$ with a given boundary.

Functional: $\Phi : \mathcal{C} \to \overline{\mathbf{R}}$ defined by $\Phi(V) = V(1)$, i.e., the total mass of $V \in \mathcal{C}$.

- ① choose a minimising sequence $V_i \in \mathcal{C}$, i.e., $\lim_{i\to\infty} \Phi(V_i) = \inf \operatorname{im} \Phi$
- ② use the Banach-Alaoglu theorem to find a weakly convergent sub-sequence
- \bigcirc pass to the limit $V_i \xrightarrow{i \to \infty} V$

Questions. Is *V* rectifiable? Is it associated to a single manifold?

Competitors: family C of varifolds associated to properly embedded C^1 -submanifolds of $U \subseteq \mathbb{R}^n$ with a given boundary.

Functional: $\Phi : \mathcal{C} \to \overline{\mathbf{R}}$ defined by $\Phi(V) = V(1)$, i.e., the total mass of $V \in \mathcal{C}$.

- ① choose a minimising sequence $V_i \in \mathcal{C}$, i.e., $\lim_{i\to\infty} \Phi(V_i) = \inf \operatorname{im} \Phi$
- ② use the Banach-Alaoglu theorem to find a weakly convergent sub-sequence
- 3 pass to the limit $V_i \xrightarrow{i \to \infty} V$

Questions. Is *V* rectifiable? Is it associated to a single manifold?

Remark. One can consider $\Phi_F(V) = V(F)$, where $F : U \times \mathbf{G}(n,k) \to \mathbf{R}$ is continuous and s.t. $0 < \inf \operatorname{im} F < \sup \operatorname{im} F < \infty$.

Theorem (Almgren, Ann. of Math, 1968)

Assume C is a class of rectifiable varifolds "spanning" a given boundary, $F: U \times \mathbf{G}(n,k) \to \mathbf{R}$ is of class C^k and s.t. $0 < \inf F < \sup \mathbf{F} < \infty$, $\Phi_F(V) = V(F)$ for $V \in C$, V is a minimiser of Φ_F , and F is uniformly elliptic.

Then V is regular (of class \mathscr{C}^{k-1}) almost everywhere, i.e., there exists a manifold M of class \mathscr{C}^{k-1} , which is dense in spt $\|V\|$ and such that $\|V\|(\operatorname{spt}\|V\|\sim M)=0$.

Theorem (Almgren's big regularity paper, 2000)

If $F \equiv 1$, then the singular set has Hausdorff dimension $\leq k - 2$.

Theorem (Federer, Bull. AMS, 1970)

If $F \equiv 1$ and k = n - 1, then the singular set has Hausdorff dimension $\leq k - 7$.

Assume

- ① μ is a Borel regular measure over \mathbf{R}^n (i.e. open sets are μ -measurable and each set is a subset of a Borel set with the same measure),
- ② μ is translation invariant,
- ③ μ is finite on any bounded subset of any $T \in \mathbf{G}(n,k)$,
- 4 μ is continuous w.r.t. \mathscr{C}^1 -deformations, i.e., given $f_k \xrightarrow{k \to \infty} 0$ in $\mathscr{C}^1(\mathbf{R}^n, \mathbf{R}^n)$ and a bounded set $A \subseteq \mathbf{R}^n$ with $\mu(A) < \infty$ there holds

$$\mu((\mathrm{id}_{\mathbf{R}^n}+f_k)[A]) \xrightarrow{k\to\infty} \mu(A).$$

Then there exists $F : \mathbf{G}(n,k) \to [0,\infty)$ s.t.

$$\mu(M) = \int F(\operatorname{Tan}(M, x)) \operatorname{dvol}_M(x)$$
 for any \mathscr{C}^1 -manifold $M \subseteq \mathbf{R}^n$.

Let $\phi : \mathbf{R}^n \to \mathbf{R}$ be a (non-Euclidean) norm. The *k*-dimensional *Hausdorff measure* is

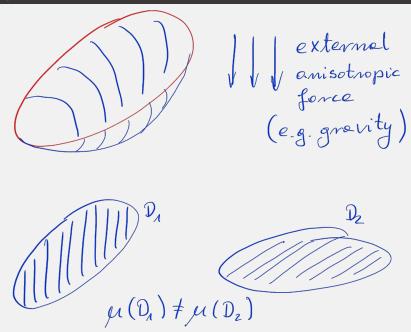
$$\mathscr{H}^k_\phi(A) = \lim_{\delta \downarrow 0} \inf \left\{ \begin{aligned} &\mathcal{F} \subseteq \mathbf{2}^{\mathbf{R}^n} \text{ countable,} \\ \frac{\pmb{\alpha}(k)}{2^k} \sum_{E \in \mathcal{F}} \operatorname{diam}_\phi(E)^k : & A \subseteq \bigcup \mathcal{F}, \\ &\operatorname{diam}_\phi(E) < \delta \text{ for } E \in \mathcal{F} \end{aligned} \right\}$$

Lemma (Busemann, Ann. of Math, 1947)

For any \mathscr{C}^1 -manifold $M \subseteq \mathbf{R}^n$ there holds $\mathscr{H}_{\phi}^k(M) = \int F^{\mathrm{BH}}(\mathrm{Tan}(M,x)) \, \mathrm{dvol}_M(x)$, where

$$F^{\mathrm{BH}}(T) = \frac{\alpha(k)}{\mathscr{H}^k(\mathbf{B}^{\phi}(0,1) \cap T)}.$$

Remark. $\mathcal{H}^n = \mathcal{L}^n$ over \mathbf{R}^n .



Assume *V* is a *k*-varifold in $U \subseteq \mathbb{R}^n$ s.t. for any choice of

 $g:U
ightarrow \mathbf{R}^n$ a \mathscr{C}^1 -vectorfield with compact support , defining

$$f_t(x) = x + tg(x)$$
 for $x \in U$ and $t \in (-\varepsilon, \varepsilon)$,

there holds

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \Phi_F(f_{t\#}V) = 0.$$

Question. What can we say about the regularity of *V*?

For simplicity for the rest of my talk assume F(x, T) = F(T).

$$g: U \to \mathbf{R}^{n}, \quad f_{t}(x) = x + tg(x),$$

$$\delta_{F}V(g) = \frac{d}{dt}\Big|_{t=0} \Phi_{F}(f_{t\#}V)$$

$$= \int \operatorname{trace}(P_{F}(T) \circ \operatorname{D}g(x))F(T) dV(x,T),$$

where $P_F(T) \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ is a (non-orthogonal) projection onto T.

Definition

We say that *V* is *F*-stationary if $\delta_F V = 0$.

Remark. In case $F \equiv 1$ and $M \subseteq \mathbb{R}^3$ is a *minimal surface*, then $\delta_F V = 0$.

Definition

(S,D) is a *test pair* if S is a k-rectifiable set, D is a flat k-disc, and S cannot be retracted onto ∂D .

Definition

 $F \in AE$ iff. for any test pair (S,D) with $\mathcal{H}^k(S) > \mathcal{H}^k(D)$

$$\Phi_F(S) > \Phi_F(D)$$
.

 $F \in UAE$ iff. there is c > 0 s.t. for any test pair (S, D)

$$\Phi_F(S) - \Phi_F(D) \ge c(\mathscr{H}^k(S) - \mathscr{H}^k(D)).$$

F ∈ BC iff. for any T ∈ $\mathbf{G}(n,k)$ and μ a probability measure over $\mathbf{G}(n,k)$

$$\delta_F(\mathcal{H}^k \, | \, T \times \mu) = 0 \implies \mu = \operatorname{Dirac}(T),$$

i.e.,

any stationary varifold supported in some $T \in \mathbf{G}(n,k)$ which is translation invariant in T is rectifiable.

Let

$$\mathcal{G}_F = \{P_F(T) : T \in \mathbf{G}(n,k)\} \subseteq \mathrm{Hom}(\mathbf{R}^n,\mathbf{R}^n).$$

 $F \in AC$ iff. \mathcal{G}_F is the set of extreme points of conv \mathcal{G}_F and

$$\operatorname{conv} \mathcal{G}_F \cap \{A : \dim \operatorname{im} A \leq k\} = \mathcal{G}_F.$$

Theorem (De Philippis, De Rosa, Ghiraldin, CPAM, 2018)

Assume $F \in AC$, c > 0, V is a k-varifold such that $\mathbf{\Theta}^k(\|V\|, x) > c$ for $\|V\|$ almost all x and $\delta_F V$ is representable by integration. Then V is rectifiable.

Remark. In particular, any *F*-stationary varifold with *k*-density bounded away from zero is rectifiable.

Remark. $F \in AC$ is also a necessary condition for the above implication.

Theorem (De Rosa, K., CPAM, 2020)

 $AC = BC \subseteq AE$

 $F \in \text{mUSAC}$ iff. there is c > 0 s.t. for each $T \in \mathbf{G}(n,k)$ there exists $N \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ s.t.

$$N \perp \operatorname{Hom}(\mathbf{R}^n, \mathbf{R}^n) \cap \{A : T \subseteq \operatorname{im} A\}$$

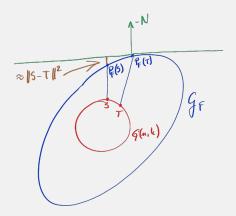
and $N \bullet P_F(S) \geq c \|S - T\|^2$.

Theorem (De Rosa, Tione, Invent. math., 2022)

Assume p > k, $F \in \text{mUSAC}$, $\Omega \subseteq \mathbf{R}^k$, V is associated to a graph of a Lipschitz function $f : \Omega \to \mathbf{R}^{n-k}$, and $\delta_F V$ representable by integration against some $\mathbf{L}_p(\|V\|, \mathbf{R}^n)$ function. Then there exists an open set $\Omega_0 \subseteq \Omega$ of full measure s.t. $f|\Omega_0$ is of class $\mathscr{C}^{1,\alpha}$, where $\alpha = 1 - k/p$.

 $F \in \text{mUSAC}$ iff. there is c > 0 s.t. for each $T \in \mathbf{G}(n,k)$ there exists $N \in \text{Hom}(\mathbf{R}^n, \mathbf{R}^n)$ s.t.

$$N\perp \operatorname{Hom}(\mathbf{R}^n,\mathbf{R}^n)\cap \left\{A: T\subseteq \operatorname{im} A\right\},$$
 and $N\bullet P_F(S)\geq c\|S-T\|^2$ for $S\in \mathbf{G}(n,k)$.



Theorem (Allard, Ann. of Math., 1972)

Assume p > k, $F \equiv 1$, V is a k-varifold with density bounded away from zero, $\delta_F V$ representable by integration against some $\mathbf{L}_p(\|V\|, \mathbf{R}^n)$ function. Then the set of regular points is open and dense in spt $\|V\|$.

Theorem (Wickramasekera, Ann. of Math, 2014)

Assume k = n - 1, $F \equiv 1$, V is an integral k-varifold which is stationary and *stable*. Then the singular set consists of points which have a neighbourhood in which V is made of at least three $\mathcal{C}^{1,\alpha}$ hypersurfaces meeting along their common boundary and the rest which has Hausdorff dimension at most k - 7.

If
$$k = n - 1$$
, then $\mathbb{S}^k \xrightarrow{\pi} \mathbf{RP}(k) \simeq \mathbf{G}(n, k)$.

Fact. $F \in AC$ iff. there exists a strictly convex norm G s.t. $F(\pi(\nu)) = G(\nu)$ for $\nu \in \mathbb{S}^k$.

<u>Fact.</u> $F \in \text{UAE}$ iff. there exists a uniformly convex norm G s.t. $F(\pi(\nu)) = G(\nu)$ for $\nu \in \mathbb{S}^k$.

Remark. In higher co-dimension no particular examples of $F \in AC$ are known!

- $F \in UAE$ gives partial regularity of minimisers
- $F \in AC = BC \subseteq AE$ gives rectifiability of critical points
- $F \in \text{mUSAC}$ gives partial regularity for critical graphs
- *F* ≡ 1
 - singular set of a critical point is open and dense in the support
 - singular set of a minimiser is of dimension $\leq k-2$
 - if n = k + 1, singular set of a minimiser is of dimension $\leq k 7$
 - if n = k + 1, singularities of a stable critical point are classified into two categories; the dimension of one of them is $\leq k 7$, the other has dimensions k 1 is unavoidable and is well understood.

- ② $mUSAC \subseteq UAE$?
- \bigcirc F^{BH} ∈ AC?
- 4 How to construct examples of $F \in AC$?
- \bigcirc Does any analogue of the Allard regularity theorem holds for $F \in \text{mUSAC}$?
- 6 Is the singular set of measure zero? (not known even for $F \equiv 1$)
- 7 What is the precise dimension of the singular set?

Thanks

Thank you for listening.