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Dynamical System
What is a dynamical system?

Most generally speaking, a dynamical system is a pair 
, where  is some space and   is a (semi)group 

of maps  .  Today, we shall  talk about discrete 
dynamical systems generated by a single map . 
Then  and    (  iterated  times).

(X, f t) X ( f t)t∈T
f t : X → X

f : X → X
T = ℕ f n = f ∘ f ∘ … ∘ f f n
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Holomorphic maps

Reminder: a function  defined on an open set   is called 
holomorphic if it is (complex) differentiable  at every point .

f : U → ℂ U ⊂ ℂ
z ∈ U

Reminder: we denote  by  the set of complex numbers  . We denote by  
the Riemann sphere endowed with the structure of a  complex manifold.

ℂ z = a + bi ℂ̂
ℂ ∪ {∞}
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Motivation: Kleinian groups

Let  be a subgroup of the group of Möbius transformations acting on the Riemann 
sphere. Then  acts also as a group of isometries of the hyperbolic -ball . The group is 
called discrete if identity is an isolated element of . Then  is called a Kleinian group.

G
G 3 B

G G

Reminder: a Möbius map (homography) is a map given by the formula


 where  and . Möbius maps are (the only) 


holomorphic automorphisms of the Riemann sphere .

h(z) = az + b
cz + d a, b, c, d ∈ ℂ ad − bc ≠ 0

ℂ̂
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The ordinary set  is the set of points at which the group acts discontinously, i.e. 
the set of such points   for which there exists a disc around  which hits itself under  the 
action only of a finite number of elements of the group. The limit set  is defined as 

. The limit set may be finite with ,  or   elements. Otherwise it is infinite. 

Ω(G) ⊂ ℂ̂
z z

Λ(G) = ℂ̂∖Ω(G) 0 1 2

The set  can be equivalently described as an equicontinuity region: the set of points 
for which there exists a neighborhood  such that the family of maps   is a normal 
family (each sequence has a  subsequence converging uniformly on compact sets).

Ω(G)
U G|U
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Informally speaking, the action of the group  divides the sphere into two invariant sets: 
open set  on which the action of the group is „regular”, and closed set  on 
which the action is „chaotic”.

G
Ω(G) Λ(G)



In contrary, dynamics of a single Möbius map  in  is not interesting and easy to 
describe: the group     generated by , called elementary,  has  finite set .

h ℂ̂
G = {hn}n∈ℤ h Λ(G)

Study of the geometry of  limit sets of Kleinian groups, and their relation with the 
geometry and topology of Riemann surfaces and hyperbolic 3-manifolds has been for 
decades  one of the leading  areas of research in mathematics.
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For example: if  then .h(z) = 2z Λ(G) = {0,∞}

However, when, instead of  of a single Möbius map, we consider iterations of a single 
holomorphic non-invertible function , the situation resembles the previous 
one- the action of a Kleinian group.

f : ℂ̂ → ℂ̂



Dynamics of rational maps
Reminder:  Holomorphic maps on the Riemann sphere are rational functions, i.e.,   where  are 

polynomials 
f(z) = p(z)

q(z) p, q

Definition: For a rational function   of degree we define the Fatou 
set  (equicontinuity set) as the set of points for which there exists a 

neighborhood  such that the family of maps  is a normal family.

f : ℂ̂ → ℂ̂ d > 1
F( f )

U f n
|U

Definition: The Julia set is defined as the complement of the Fatou set: 
   

J( f )
J( f ) = ℂ̂∖F( f )

Vocabulary: ;  Ω(G) ≍ F( f ) Λ(G) ≍ J( f )
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G.Julia, P.Fatou, 1920’s



Some properties of  Fatou and Julia sets
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• The Fatou set is open, the Julia set is closed.


• The Julia set is non-empty.


• The Julia set is a perfect set (no isolated points). If  then 
.


• Each connected component of the Fatou set  is mapped by  onto some 
component of . There are no wandering components. This means that  
every connected component   of  is eventually periodic: 

 for some .


• Informally speaking, the Julia set  is the locus of „chaotic behaviour” of 
iterates of the map .


int(J( f )) ≠ ∅
J( f ) = ℂ̂

F( f ) f
F( f )

U F( f )
f n+k(U) = f k(U) k, n ∈ ℕ

J( f )
f

D.Sullivan, 1980’s, using tools of PDEs
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Thus, the Fatou set (equicontinuity set) is a union of all periodic components 
(there is a finite number of them) and all their preimages.  If  then  is 
either:

f k(U) = U U

• basin of attraction:  for    where  ,   and 
, or


• parabolic basin: for    where  ,   and is 
a root of unity, or


•  Siegel discs: after a holomorphic change of coordinates  becomes a rotation on 
a disc by an angle , or


• Herman ring: after a holomorphic change of coordinates  becomes a rotation on 
an annulus  by an angle 

z ∈ U f nk(z)
n→∞

p p ∈ U fk(p) = p
| ( f k)′￼(p) | < 1

z ∈ U f nk(z)
n→∞

p p ∈ ∂U fk(p) = p | ( f k)′￼(p) |

f k
|U

2πθ, θ ∉ ℚ

f k
|U

2πθ, θ ∉ ℚ

classification: P.Fatou,M.Herman



Dynamics of polynomials 
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If   is a polynomial of degree , then the point at infinity is an attracting fixed 
point: for all points  with sufficiently large modulus  

f d > 1
z f n(z)

n→∞
∞

Denote by  the basin of attraction of infinity, i.e. the set of points  
such that  .  Denote by  the complement of  . The set 

 is open and connected.  For polynomials we have the following alternative 
(equivalent)  definition of the Julia set:

𝒜∞( f ) z ∈ ℂ̂
f n(z)

n→∞
∞ K( f ) 𝒜∞( f )

𝒜∞( f )

J( f ) = ∂𝒜∞( f ) = ∂K( f )

(which means that   is the common boundary of the „escaping” and „non escaping” sets)     J( f )



Examples of Julia sets: quadratic polynomials:
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;
, 

f(z) = z2 + 1/4
f(1/2) = 1/2
f n(0)

n→∞
1/2

                  ;f(z) = z2 + i
0 ↦ i ↦ − 1 + i ↦ − i ↦ − 1 + i

escaping set: in red/yellow/green , 
interior of   in blackK( f )



More examples  of Julia sets (quadratic polynomials)
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f(z) = z2 + 0.2 + 0.2if(z) = z2



One more example:
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„Bassilica”: ; the critical point 
 is mapped to and the back to . So, 

this is a periodic attracting point of period 
. The central black region is the 

component of the  basin of attraction; it is 
mapped  by  to the attached  component 
to the left of it, and then back onto itself. 
Other black regions are the preimages of 
these two components under iterates 

.

f(z) = z2 − 1
0 −1 0

2

f

f k, k ∈ ℕ



Structure of Julia sets. Example the „rabbit”:  f(z) = − 0.12z2 + 0.75i
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Example: totally disconnected Julia set
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f(z) = z2 + 0.2 + i



The famous Mandelbrot set
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Mandelbrot set  is in the space of parameters :  iff the Julia set of the polynomial 
  is connected.

ℳ c c ∈ ℳ
fc(z) = z2 + c

 is connected: Douady, 
Hubbard; Sibony (independent)
ℳ
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For quadratic polynomials the Julia set is either connected of totally disconnected. 
For higher degree polynomials the situation and geometry of Julia sets  is more 
involved. Here is the example:

, where , f(z) = az3 + z2 − b a = 0.215 b = 1.45

Observe that the non- trivial components of  look similar to the „basilica” (there is in fact a 
quasiconformal homeomorphism mapping such a component to the basilica.  There are also 
(uncountably many) components of  consisting of a single point! (not  visible on this picture..)

J( f )

J( f )



18

Tools to describe the geometry of these complicated „fractal” shapes?

Hausdorff dimension is a way of distinguishing the size of sets of (planar) 
measure zero.  All Julia sets displayed on previous slides have planar measure 
zero (although, there are very specific, even quadratic polynomials for which 
the Julia set has positive Lebesgue measure). 

Motivating example: The „standard” Cantor set with the interval  and its copies 

removed has Hausdorff dimension , while the Cantor set with the interval  

and its copies removed, has Hausdorff dimension  which is larger.

(1/3,2/3)
log 2
log 3

(3/5,4/5)
log 4
log 5
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Formal definition of the  (outer) Hausdorff measure in  is similar to that of Lebesgue 
measure:

ℝn

Let  . To define   dimensional outer Hausdorff measure  we


• choose 


• consider all possible countable covers of  with sets  of diameter less than 


• calculate the sum 


• take infimum  of these sums over all such covers, denote it by 


• let  tend to zero, take the limit of  .

A ⊂ ℝn h ℋh(A)

δ > 0

A Ci δ

∑
i

(diamAi)h

ℋh
δ(A)

δ ℋh
δ(A)
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So, given a set , we can calculate  for values .  The value 
 is uniquely determined by the condition:  for , 


 for . 

A ⊂ ℝn ℋh(A) h ≥ 0
h0 = dimH(A) ℋh(A) = ∞ h < h0

ℋh(A) = 0 h > h0

Informally speaking:  is the right scale for measuring the „fractal” set .h0 = dimH(A) A
Example: every smooth, every  rectifiable curve has Hausdorff dimension .1

Hausdorff dimension of a measure: given a measure  supported on a set  we can 
(and we do)  ask about Hausdorff dimension of the measure :


                


Informally speaking: this value tells us what portion of the set  is „seen” by the 
measure .


μ A
μ

dimh(μ) = inf{dimh(B) : B ⊂ A, μ(B) > 0}

A
μ



Hausdorff dimension of Julia set for a polynomial.
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Theorem [rigidity:complicated or analytic]: Let   be a polynomial with not totally 
disconnected Julia set. Then , with only two exceptions: 


  (then  or


 (then )


(both: up to an affine change of variable).

f
dimH(J( f )) > 1

f(z) = zd J( f ) = { |z | = 1}

f(z) = ± Chebychev polynomial J( f ) = [−1,1]

Remark: it may even happen that every non- trivial connected component of  is an analytically 
embedded interval, but, still, the dimension of the whole Julia set is larger than one.

J( f )

Z. (c0nnected) (1990) 
Przytycki, Z. (not totally 
disconnected (2022) 



Hausdorff dimension  of basins of attraction
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Theorem [rigidity:complicated or a circle]  Let  be a rational function. If a simply 
connected domain  is a (connected component of) the basin of attraction of an 
attracting periodic point then  with only the (well described) few 
exceptions when the boundary of the basin is a circle or the interval.

f
U

dimH(∂U) > 1

Observation: actually, both above theorems say more: the hyperbolic dimension 
of  and of  is larger than . Hyperbolic dimension is the supremum of 
dimensions of invariant measures supported on  or , respectively.

J( f ) ∂U 1
J( f ) ∂U

Remark: A seemingly similar question: whether a connected Julia set of a rational 
function has dimension larger than  (except the above special cases) still remain 
open…

1

Z.(1991), Przytycki (2006)



Harmonic measure
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Somewhat surprisingly, the above mentioned results are based on (very interesting 
themselves) questions about distribution of the harmonic measure.

Harmonic measure:  If  is a domain in   (with non- polar boundary) and 
 - a continuous function then there exists a unique harmonic function 

 (harmonic extension) such that  for „nearly  all” .

U ℂ̂
h : ∂U → ℝ
ĥ : U → ℝ lim

z→ζ
ĥ(z) = h(ζ) ζ ∈ ∂U

Harmonic measure „seen from a point  ”:


                         

w ∈ U

∫δU
h(ζ)ω(z, d)(dζ) = ω(z, U)(h) := ĥ(z)
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Probabilistic approach:  start a Brownian motion („random walk”) from a point . 
Then, with probability one, the trajectory exits the domain . This defines a measure on 

: for (Borel) set   is the probability that the trajectory exits  
„through” .

z ∈ U
U

∂U A ⊂ ∂U ω(z, U)(A) U
A

If  is simply connected then  Riemann mapping theorem says that there exists a 
holomorphic bijection .  In general, this map does not extend to the 
boundary, but for (Lebesgue) almost all  there is a radial (also: non- 
tangential) limit . This defines (a.e) the extended map . The 

harmonic measure is just the push- forward of the Lebesgue measure under .

U
R : 𝔻 → U

ζ ∈ ∂𝔻
lim
r→1

R(rζ) R : ∂𝔻 → ℂ

R

informally: open set „without holes”
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Hausdorff dimension of harmonic measure? What part of the boundary is „seen” 
by the Brownian motion? This question has been the  subject of intense study for 
decades.

Theorem [Hausdorff dimension of harmonic measure] If U is a simply connected 
domain in the plane and  is the harmonic measure on , then 

. For an arbitrary domain  with non-polar boundary   
(Makarov,  Rohde, Jones, Wolff )

ω = ω(z, U) ∂U
dimH(ω) = 1 U dimH(ω) ≤ 1

Makarov’s proof was  based on probability tools:  If  is the Riemann 
map, consider the function . One can associate to this function a (complex 
valued) martingale. The growth of  was then controlled using a version of the 
Law of Iterated Logarithm for (real part of) this martingale.

R : 𝔻 → U
log R′￼

R′￼
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Makarov’s result says, in particular  that there exists a universal constant  such 
that the harmonic measure  on  is absolutely continuous with respect to the 
Hausdorff measure  associated to the function 

.

C > 0
ω(z, U) ∂U

ℋφ

φ(t) = t exp C log
1
t

log log log
1
t

For the „dynamical domains”  (basins of attraction) discussed above we have, however, 
using also Law of Iterated Logarithm for some  sequence of weakly dependent random 
variables,  that for some     is singular with respect to the Hausdorff 

measure  associated to the function .

c ∈ (0,C) ω(z, U)

ℋφ ψ(t) = t exp c log
1
t

log log log
1
t

Informally speaking, this means that these „dynamical domains” are the worst possible domains  
from the point of view of harmonic measure.

Przytycki, Urbański, Z., 
Z.



Rigidity of harmonic measure
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The theorem about rigidity of dimension can be reformulated and generalized in 
the following way:

Theorem.  The Hausdorff dimension of the Julia set of a polynomial is larger than 
the Hausdorff dimension of the harmonic measure on it (apart from the mentioned 
analytic exceptions). The same applies for basins of attraction of a periodic 
attracting point. Informally speaking, most of the boundary is hidden and not 
visible for the Brownian motion starting from inside the domain.

This general question whether (and when) dimension of harmonic measure is 
smaller than dimension of the set  has been considered in various other settings, 
many of them   not related to dynamics, with sometimes surprisingly  difficult 
proofs (Carleson, Volberg,  Batakis, Batakis-Z., Urbański-Z., Z.,  Tolsa, Azzam, 
David..) and with a lot of still open questions.

Z.



One more open question related to the structure of harmonic measure
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Brennan’s conjecture: Let  be a simply connected domain in . The 
conjecture is about the growth of  integral means for the Riemann map 




                              , which in turn translates


into estimates of how many disjoint balls   with large harmonic 
measure (large: means: close to ) the boundary may have („tops of spikes”)


Equivalently, we ask about the integral . The conjecture says


that this integral is finite for  (indeed, for  this is 
an easy consequence of classical Koebe distortion estimates).


 

G ℂ̂

R : 𝔻 → G

βG(t) = lim sup
r→1

log ∫ |R′￼|t (rζ) |dζ |

log 1
1 − r

B(zj, ρ)
ρ

∫ ∫𝔻
|R′￼|p dxdy

−2 < p < 2/3 −1 < p < 2/3
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Theorem: Brennan’s conjecture is true for  Julia set of  a quadratic polynomial
 (provided it is connected). In other words: for every parameter in the 

Mandelbrot set.
fc(z) = z2 + c

The proof is based on quite surprising geometric observations:


• to prove the conjecture it is enough to check that the filled-in Julia set  is 
contained in the area bounded by the ellipse with foci : 

. When  is close to  then both the ellipse and  are 
close to the interval .


• to prove that the above condition holds we formulate another sufficient 
condition: the Mandelbrot set is contained in the closure of the area bounded 
by the curve 

K( f )
±c

|z + c | + |z − c | = 4 c −2 J( fc)
[−2,2]

|c |2 (Rec + 3) = 4

Barański, Volberg, Z.
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