# Deformations, torus actions and complexity of matrix multiplication 

Joachim Jelisiejew

MIM UW Colloquium

UNIVERSITY OF WARSAW
$\underset{\text { answaw }}{ }$

## Connection with classical game theory (Pac-man)



## complexity

 deformations torus actionsPlease don't eat me when I skim over details!

## Complexity of matrix multiplication

How many multiplications do we need to multiply two $n \times n$ $\begin{array}{ll}\text { matrices? } A \cdot B=C=\left[C_{i j}\right] \\ \text { Usual algorithm: } n^{3} \text { multiplications } & n^{2} \text { entnas } \\ & n \cdot n^{2}=n^{3}\end{array}$

Strassen '69: for $n=2$

## Complexity of matrix multiplication

How many multiplications do we need to multiply two $n \times n$ matrices?

Usual algorithm: $n^{3}$ multiplications

$$
2^{3}=8
$$

Strassen '69: for $n=2$ need $\leq 7$ multiplications

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
c_{1}+c_{4}-c_{5}+c_{7} & c_{3}+c_{5} \\
c_{2}+c_{4} & c_{1}-c_{2}+c_{3}+c_{6}
\end{array}\right]
$$

for $c_{1}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right), c_{2}=\left(a_{21}+a_{22}\right) b_{11}$, $c_{3}=a_{11}\left(b_{12}-b_{22}\right), c_{4}=a_{22}\left(b_{21}-b_{11}\right), c_{5}=\left(a_{11}+a_{12}\right) b_{22}$, $c_{6}=\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right), c_{7}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right)$.

## Complexity of matrix multiplication

How many multiplications do we need to multiply two $n \times n$ matrices?

Usual algorithm: $n^{3}$ multiplications

Strassen '69 \& CW'70: for $n=2$ need 7 multiplications

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
c_{1}+c_{4}-c_{5}+c_{7} & c_{3}+c_{5} \\
c_{2}+c_{4} & c_{1}-c_{2}+c_{3}+c_{6}
\end{array}\right]
$$

for $c_{1}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right), c_{2}=\left(a_{21}+a_{22}\right) b_{11}$,
$c_{3}=a_{11}\left(b_{12}-b_{22}\right), c_{4}=a_{22}\left(b_{21}-b_{11}\right), c_{5}=\left(a_{11}+a_{12}\right) b_{22}$,
$c_{6}=\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right), c_{7}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right)$.
Exact number of multiplications for $n=3$ still open, in range $\{19,20,21,22,23\}$ (Bläser, Laderman).

## Strassen's estimate

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \cdot\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=?
$$

## Strassen's estimate

$$
\left[\begin{array}{ll|ll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\hline a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \cdot\left[\begin{array}{ll|ll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
\hline b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=?
$$

## Strassen's estimate

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\hline a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \cdot\left[\begin{array}{ll|ll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
\hline b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=} \\
& {\left[\begin{array}{l|l|l}
A_{12,12} & A_{12,34} \\
\hline A_{34,12} & A_{34,34}
\end{array}\right] \cdot\left[\begin{array}{l|l}
B_{12,12} & B_{12,34} \\
\hline B_{34,12} & B_{34,34}
\end{array}\right]=\text { use Strassen's trick twice! }}
\end{aligned}
$$

## Strassen's estimate

$$
\left[\begin{array}{ll|ll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\hline a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \cdot\left[\begin{array}{ll|ll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
\hline b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=
$$

$$
\left[\begin{array}{l|l|l}
A_{12,12} & A_{12,34} \\
\hline A_{34,12} & A_{34,34}
\end{array}\right] \cdot\left[\begin{array}{l|l}
B_{12,12} & B_{12,34} \\
\hline B_{34,12} & B_{34,34}
\end{array}\right]=\text { use Strassen's trick twice! }
$$

for $n=4$ need $\leq 7^{2}$ multiplications
for $n=8$ need $\leq 7^{3}$ multiplications
for general $n$ need $\approx n^{\log _{2} 7}<n^{2.81}$ : there is an algorithm using
$O\left(n^{2.81}\right)$ multiplications
called Strassen's algorithm

## Complexity: what is known

## $169^{\omega 1}$

Who: Bini, Schönhage, Coppersmith-Winograd, ..., $189 \omega \leqslant 2.376$
Alman-V.Williams. What: proved existence of algorithm $O\left(n^{2.3729}\right)$.
$\omega=2$ conjecture
For every $\varepsilon>0$ there is an algorithm in $O\left(n^{2+\varepsilon}\right)$. $\omega=\inf \left\{\tau \mid\right.$ algorithm in $O\left(\mathfrak{Z}^{\tau}\right)$ exists $\}$.

Who: Landsberg-Michałek, ...
What: needs at least $2 n^{2}$ - errorTerm multiplications.

Tensor in $\mathbb{C}^{a} \otimes \mathbb{C}^{b} \otimes \mathbb{C}^{c}=a \times b$ matrix with entries from $\mathbb{C}^{c}$. Example: matrix multiplication tensor $M_{n}$ lives in $\mathbb{C}^{n^{2}} \otimes \mathbb{C}^{n^{2}} \otimes \mathbb{C}^{n^{2}}$.

$n=2$ matrix multiplication as a tensor
A rank one tensor is a nonzero matrix as above with all entries proportional such that treating then as numbers one gets a usual rank one matrix.
no of multiplications $=$ no of rank one tensors summing to $M_{n}$.

## Laser method, Coppersmith-Winograd

Let $T$ some tensor (e.g. matrix multiplication $M_{n}$ ).
(1) Rank of $T=$ minimal no of rank one tensors summing to $T$. Denote $\mathrm{R}(T)$.
(2) Border rank of $T=$ minimal $r$ such that $T$ is a limit of rank $r$ tensors. Denoted $\mathrm{R}(T)$.

[^0]
## Laser method, Coppersmith-Winograd

Let $T$ some tensor (e.g. matrix multiplication $M_{n}$ ).
(1) Rank of $T=$ minimal no of rank one tensors summing to $T$. Denote $\mathrm{R}(T)$.
(2) Border rank of $T=$ minimal $r$ such that $T$ is a limit of rank $r$ tensors. Denoted $\mathrm{R}(T)$.

## Proposition (Bini)

We have $n^{\omega} \sim \mathbf{R}\left(M_{n}\right)$ and even $n^{\omega} \sim \underline{\mathbf{R}}\left(M_{n}\right)$.

Laser method. Gives best known estimates on $\omega$ :
(1) find a tensor $T \in \mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ with $\underline{\mathrm{R}}(T)=d$. Then $\underline{R}\left(T^{\otimes k}\right) \leq d^{k}$ for any $k$.
(2) degenerate $T^{\otimes k}$ to $M_{n}$ with $n=n(k)$ large. Get $\underline{\mathrm{R}}\left(M_{n}\right) \leq d^{k}$. So $\omega \leq \log _{n}\left(d^{k}\right)$.

Tensors from algebras
Let $A$ be a $d$-dimensional vector space with a multiplication $A \times A \rightarrow A$. Fix its basis $a_{1}, \ldots, a_{d}$. Multiplication tensor $\mu_{A}$ of $A$ has $a_{i} \cdot a_{j}$ in the $(i, j)$ entry.

## Example

For $A_{\text {gen }}=\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C}$ with standard basis get

$$
\mu_{A}=\left[\begin{array}{ccccc}
e_{1} & 0 & 0 & \ldots & 0 \\
0 & e_{2} & 0 & \ldots & 0 \\
& & \ldots & & \\
0 & 0 & 0 & \ldots & e_{d}
\end{array}\right]
$$

$$
c_{i}=(0.0 .1,0.0)
$$

This is a rank $d$ tensor!

## Tensors from algebras

Let $A$ be a $d$-dimensional vector space with a multiplication $A \times A \rightarrow A$. Fix its basis $a_{1}, \ldots, a_{d}$. Multiplication tensor $\mu_{A}$ of $A$ has $a_{i} \cdot a_{j}$ in the $(i, j)$ entry.

## Example

For $A_{\text {gen }}=\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C}$ with standard basis get

$$
\mu_{A}=\left[\begin{array}{ccccc}
e_{1} & 0 & 0 & \ldots & 0 \\
0 & e_{2} & 0 & \ldots & 0 \\
& & \ldots & & \\
0 & 0 & 0 & \ldots & e_{d}
\end{array}\right]
$$

This is a rank $d$ tensor!

## Idea: smoothability

If we have a degeneration of algebras $A_{\text {gen }} \rightsquigarrow A$ then also $\mu_{A_{\text {gen }}} \rightsquigarrow \mu_{A}$, hence multiplication tensor of $A$ has border rank $\leq d$. Such $A$ are called smoothable.

Example of degeneration, $d=2$
For $y_{0} \in \mathbb{C}$ consider

$$
\mathbb{C}[x] /\left(y_{0}-x^{2}\right)
$$

In basis 1, $x$ its multiplication tensor is

$$
\left.\begin{array}{c} 
\\
1 \\
x
\end{array} \begin{array}{cc}
1 & x \\
{\left[\begin{array}{c}
1 \\
x
\end{array}\right.} & x \\
y_{0}
\end{array}\right]
$$

$$
\text { For } y_{0} \neq 0 \text { get } \mathbb{C} \times \mathbb{C} \text {, }
$$

$$
\text { for } y_{0}=0 \text { get } \mathbb{C}[x] / x^{2}
$$

## THIS IS A DEGENERATION of $\mathbb{C} \times \mathbb{C} \leadsto \mathbb{C}[x] / x^{2}$

## Expert slide one

Current best algorithm starts from a special algebra

$$
A_{C W}=\frac{\mathbb{C}\left[x_{1}, \ldots, x_{d-2}\right]}{\left(x_{i} x_{j} \mid i \neq j\right)+\left(x_{i}^{2}-x_{j}^{2} \mid i \neq j\right)+\left(x_{1}^{3}\right)}{ }^{\text {CLo }}
$$

whose multiplication tensor is big Coppersmith-Winograd tensor:

$$
\mathrm{CW}_{d-2}:=\left[\begin{array}{cccccc}
1 & x_{1} & x_{2} & \ldots & x_{d-2} & Q \\
x_{1} & Q & 0 & \ldots & 0 & 0 \\
x_{2} & 0 & Q & \ldots & 0 & 0 \\
& & & \ldots & & \\
x_{d-2} & 0 & 0 & \ldots & Q & 0 \\
Q & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

## Proposition (Hoyois-J-Nardin-Yakerson'21)

The multiplication tensor of every nice (=Gorenstein, smoothable) algebra gives bounds on $\omega$ which are better or equal than the Coppersmith-Winograd tensor.

## Deformations and degenerations of algebras

Further in this talk algebras are commutative, associative and with identity. How to parametrize those?

Idea one: multiplication tensor.
An algebra $A$ with a basis $a_{1}, \ldots a_{d}$ is uniquely determined by $\left[\lambda_{i j}^{k}\right]_{1 \leq i, j, k \leq d}$ where

$$
\underset{a_{i} \cdot a_{j}}{\curvearrowleft}=\sum_{k=1}^{d} \lambda_{i j}^{k} a_{k} .
$$

(1) $a_{1}$ is the identity iff $\lambda_{1 j}^{k}=\delta_{j k}, \lambda_{i 1}^{k}=\delta_{i k}$, with $\delta$ being Dirac delta,
(2) $A$ is commutative iff $\lambda_{i j}^{k}=\lambda_{j i}^{k}$,
(3) $A$ is associative iff $\sum_{m} \lambda_{i j}^{m} \lambda_{m k}^{\ell}=\sum_{m} \lambda_{i m}^{\ell} \lambda_{j k}^{m}$. $\left(a_{i} \cdot a_{j}\right) \cdot a_{k}=$
(4) $A$ is Gorenstein iff exists a functional $f: A \rightarrow \mathbb{C}$ such that $a_{i} \cdot\left(a_{a j} ; a_{k}\right)$ $\left(a_{1}, a_{2}\right) \mapsto f\left(a_{1} a_{2}\right)$ is a perfect pairing.

## Deformations and degenerations of algebras

The set of rank $d$ algebras with a basis is cut out by polynomial equations in $\mathbb{C}^{d^{3}}$. Has a natural topology! Even scheme structure.


Problem: this topology is mighty complicated.

## Theorem (J'20)

"Murphy's Law": every possible singularity (up to retraction) appears in this space for some $d$.

## Expert slide two



## Theorem (CEVV'08)

Every algebra is smoothable for $d \leq 7$.

## Theorem (Casnati-J-Notari'13)

Every Gorenstein algebra is smoothable for $d \leq 13$.

Theorem (Szachniewicz, J.Marcinkiewicz \& mFundacja prizes'21) Already for $d=13$ this space is nonreduced and at special points exhibits fractal-like behaviour (I am vague, read this preprint!).

## Deformations and degenerations of algebras

How to parametrize algebras?
Recall:

$$
A_{C W}=\frac{\mathbb{C}\left[x_{1}, \ldots, x_{d-2}\right]}{\left(x_{i} x_{j}, i \neq j\right)+\left(x_{i}^{2}-x_{j}^{2}, \quad i \neq j\right)+\left(x_{1}^{3}\right)}
$$

Idea two (Grothendieck): as quotients of a polynomial ring:

$$
\left\{I \triangleleft \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I, \operatorname{dim}_{\mathbb{C}} A=d\right\}
$$

with $n, d$ fixed.


This goes under the fancy name: Hilbert scheme (gives +5 respect, -2 readability to paper).

The two ideas are equivalent: the spaces they give have same components and singularities for $n \geq d-1$.


We have

$$
\mathbb{C}[x, y] /\left(y-x^{2}\right)
$$

where $y$ is the parameter. For $y=y_{0} \neq 0$ get $\mathbb{C} \times \mathbb{C}$, for $y=0$ instead $\mathbb{C}[x] / x^{2}$.

This is a degeneration of $\mathbb{C} \times \mathbb{C}$ to $\mathbb{C}[x] /\left(x^{2}\right)$. This is a map from $\mathbb{C}$ to the space of algebras.

Action of the algebraic group mu $\mathrm{H}_{\boldsymbol{T}} \mathbb{C}^{*}$ on a space $X$.

Assume $X$ is complete (for every $x \in X$ the limit $\lim _{t \rightarrow \infty} t \cdot x$ exists
$\int$ the function $x \mapsto \lim _{t \rightarrow \infty} t \cdot x$ ( may be NOT continuous.
think: $\mathbb{R}^{*}$-action on a manifold think: compact for every $x \in X$ the limit $\lim _{t \rightarrow \infty} t \cdot x$ exists the function $x \mapsto \lim _{t \rightarrow \infty} t \cdot x$ may be NOT continuous.


The limit of any point is $\mathbb{C}^{*}$-fixed. Let $F_{1}, \ldots, F_{r}$ be the subdivision of fixed points into connected components and let


## Białynicki-Birula decomposition

## Theorem (ASzBB'73)

If $X$ is smooth then the limit function $X_{i} \rightarrow F_{i}$ is continuous, regular and its fibers are isomorphic to $\mathbb{C}^{n_{i}}$ (+local trivialization).

## Theorem (Drinfeld'13)

The limit function $X_{i} \rightarrow F_{i}$ is continuous, regular and its fibers are isomorphic to cones in $\mathbb{C}^{n_{i}}$. (No smoothness assumption!)

J-Sienkiewicz'19-21: some generalizations to groups other than $\mathbb{C}^{*}$.

Fix the $\mathbb{C}^{*}$-action known from linear algebra: $\mathbb{C}^{*} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $t \cdot\left(v_{1}, \ldots, v_{n}\right)=\left(t v_{1}, \ldots, t v_{n}\right)$.

This gives a $\mathbb{C}^{*}$-action on the space of quotients $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$.
(1) $x_{i}$ is $v_{i}^{*}$, so $t \cdot x_{i}=t^{-1} v_{i}$
(2) $\mathbb{C}^{*}$ acts on $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
(3) $\mathbb{C}^{*}$ acts on the space of its quotient rings:
$t \cdot[S / I]=[S /(t \cdot I)]$
" $S / I$ are functions on zero set of $I$ "


## © SO Expert slide three cd.


(1) Each stratum converges to its fixed points: up to retraction can reduce to fixed points.
(2) To prove smoothability of given point it is profitable to deform so as to escape the current stratum. Effective for smoothability:
Previous approach: $d \leq 16$ some cases
Now:
$d \leq 100$ usually doable

## Thanks for your attention!

## 

## EAME CHER


[^0]:    Proposition (Bini)
    We have $n^{\omega} \sim \mathbf{R}\left(M_{n}\right)$ and even $n^{\omega} \sim \underline{\mathbf{R}}\left(M_{n}\right)$.

