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Connection with classical game theory (Pac-man)

complexity
deformations
torus actions

Please don’t eat me when I skim over details!

J.Jelisiejew Deformations, torus actions and complexity



Complexity of matrix multiplication

How many multiplications do we need to multiply two n × n
matrices?

Usual algorithm: n3 multiplications

Strassen ’69: for n = 2
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Complexity of matrix multiplication

How many multiplications do we need to multiply two n × n
matrices?

Usual algorithm: n3 multiplications

Strassen ’69: for n = 2 need ≤ 7 multiplications
�
a11 a12
a21 a22

�
·
�
b11 b12
b21 b22

�
=

�
c1 + c4 − c5 + c7 c3 + c5

c2 + c4 c1 − c2 + c3 + c6

�

for c1 = (a11 + a22)(b11 + b22), c2 = (a21 + a22)b11,
c3 = a11(b12 − b22), c4 = a22(b21 − b11), c5 = (a11 + a12)b22,
c6 = (a21 − a11)(b11 + b12), c7 = (a12 − a22)(b21 + b22).
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Complexity of matrix multiplication

How many multiplications do we need to multiply two n × n
matrices?

Usual algorithm: n3 multiplications

Strassen ’69 & CW’70: for n = 2 need 7 multiplications
�
a11 a12
a21 a22

�
·
�
b11 b12
b21 b22

�
=

�
c1 + c4 − c5 + c7 c3 + c5

c2 + c4 c1 − c2 + c3 + c6

�

for c1 = (a11 + a22)(b11 + b22), c2 = (a21 + a22)b11,
c3 = a11(b12 − b22), c4 = a22(b21 − b11), c5 = (a11 + a12)b22,
c6 = (a21 − a11)(b11 + b12), c7 = (a12 − a22)(b21 + b22).

Exact number of multiplications for n = 3 still open, in range
{19, 20, 21, 22, 23} (Bläser, Laderman).
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Strassen’s estimate




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 ·




b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


 =?
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Strassen’s estimate




a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44


 ·




b11 b12 b13 b14
b21 b22 b23 b24

b31 b32 b33 b34
b41 b42 b43 b44


 =?

J.Jelisiejew Deformations, torus actions and complexity



Strassen’s estimate




a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44


 ·




b11 b12 b13 b14
b21 b22 b23 b24

b31 b32 b33 b34
b41 b42 b43 b44


 =

�
A12,12 A12,34

A34,12 A34,34

�
·
�
B12,12 B12,34

B34,12 B34,34

�
= use Strassen’s trick twice!
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Strassen’s estimate




a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44


 ·




b11 b12 b13 b14
b21 b22 b23 b24

b31 b32 b33 b34
b41 b42 b43 b44


 =

�
A12,12 A12,34

A34,12 A34,34

�
·
�
B12,12 B12,34

B34,12 B34,34

�
= use Strassen’s trick twice!

for n = 4 need ≤ 72 multiplications
for n = 8 need ≤ 73 multiplications
for general n need ≈ nlog2 7 < n2.81: there is an algorithm using

O(n2.81) multiplications
called Strassen’s algorithm
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Complexity: what is known

Who: Bini, Schönhage, Coppersmith-Winograd, . . . ,
Alman-V.Williams.
What: proved existence of algorithm O(n2.3729).

ω = 2 conjecture

For every ε > 0 there is an algorithm in O(n2+ε).
ω = inf {τ | algorithm in O(2τ ) exists}.

Who: Landsberg-Michałek, . . .
What: needs at least 2n2 − errorTerm multiplications.
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Tensors

Tensor in Ca ⊗ Cb ⊗ Cc = a× b matrix with entries from Cc .
Example: matrix multiplication tensor Mn lives in Cn2 ⊗Cn2 ⊗Cn2

.

b11 b12 b21 b22

a11
a12
a21
a22




E11 E12 0 0
0 0 E11 E12
E21 E22 0 0
0 0 E21 E22




n = 2 matrix multiplication as a tensor

A rank one tensor is a nonzero matrix as above with all entries
proportional such that treating then as numbers one gets a usual
rank one matrix.

no of multiplications = no of rank one tensors summing to Mn.
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Laser method, Coppersmith-Winograd

Let T some tensor (e.g. matrix multiplication Mn).
1 Rank of T = minimal no of rank one tensors summing to T .

Denote R(T ).
2 Border rank of T = minimal r such that T is a limit of rank r

tensors. Denoted R(T ).

Proposition (Bini)

We have nω ∼ R(Mn) and even nω ∼ R(Mn).
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Laser method, Coppersmith-Winograd

Let T some tensor (e.g. matrix multiplication Mn).
1 Rank of T = minimal no of rank one tensors summing to T .

Denote R(T ).
2 Border rank of T = minimal r such that T is a limit of rank r

tensors. Denoted R(T ).

Proposition (Bini)

We have nω ∼ R(Mn) and even nω ∼ R(Mn).

Laser method. Gives best known estimates on ω:
1 find a tensor T ∈ Cd ⊗ Cd ⊗ Cd with R(T ) = d . Then

R(T⊗k) ≤ dk for any k .
2 degenerate T⊗k to Mn with n = n(k) large. Get R(Mn) ≤ dk .

So ω ≤ logn(d
k).
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Tensors from algebras
Let A be a d-dimensional vector space with a multiplication
A× A → A. Fix its basis a1, . . . , ad . Multiplication tensor µA of A
has ai · aj in the (i , j) entry.

Example
For Agen = C× C× . . .× C with standard basis get

µA =




e1 0 0 . . . 0
0 e2 0 . . . 0

. . .
0 0 0 . . . ed




This is a rank d tensor!
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Tensors from algebras
Let A be a d-dimensional vector space with a multiplication
A× A → A. Fix its basis a1, . . . , ad . Multiplication tensor µA of A
has ai · aj in the (i , j) entry.

Example
For Agen = C× C× . . .× C with standard basis get

µA =




e1 0 0 . . . 0
0 e2 0 . . . 0

. . .
0 0 0 . . . ed




This is a rank d tensor!

Idea: smoothability
If we have a degeneration of algebras Agen � A then also
µAgen � µA, hence multiplication tensor of A has border rank ≤ d .
Such A are called smoothable.
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Example of degeneration, d = 2

y = x2

For y0 ∈ C consider

C[x ]/(y0 − x2).

In basis 1, x its
multiplication tensor is

1 x

1
x

�
1 x
x y0

�

For y0 �= 0 get C× C,
for y0 = 0 get C[x ]/x2.
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Expert slide one
Current best algorithm starts from a special algebra

ACW =
C[x1, . . . , xd−2]

(xixj | i �= j) + (x2
i − x2

j | i �= j) + (x3
1 )

whose multiplication tensor is big Coppersmith-Winograd tensor:

CWd−2 :=




1 x1 x2 . . . xd−2 Q
x1 Q 0 . . . 0 0
x2 0 Q . . . 0 0

. . .
xd−2 0 0 . . . Q 0
Q 0 0 . . . 0 0




Proposition (Hoyois-J-Nardin-Yakerson’21)

The multiplication tensor of every nice (=Gorenstein, smoothable)
algebra gives bounds on ω which are better or equal than the
Coppersmith-Winograd tensor.
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Deformations and degenerations of algebras
Further in this talk algebras are commutative, associative and with
identity. How to parametrize those?

Idea one : multiplication tensor.

An algebra A with a basis a1, . . . ad is uniquely determined by
[λk

ij ]1≤i ,j ,k≤d where

ai · aj =
d�

k=1

λk
ijak .

1 a1 is the identity iff λk
1j = δjk , λk

i1 = δik , with δ being Dirac
delta,

2 A is commutative iff λk
ij = λk

ji ,
3 A is associative iff

�
m λm

ij λ
�
mk =

�
m λ�

imλ
m
jk .

4 A is Gorenstein iff exists a functional f : A → C such that
(a1, a2) �→ f (a1a2) is a perfect pairing.
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Deformations and degenerations of algebras

The set of rank d algebras with a basis is cut out by polynomial
equations in Cd3

. Has a natural topology! Even scheme structure.

Problem: this topology is mighty complicated.

Theorem (J’20)

“Murphy’s Law”: every possible singularity (up to retraction)
appears in this space for some d .
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Expert slide two

Theorem (CEVV’08)

Every algebra is smoothable for d ≤ 7.

Theorem (Casnati-J-Notari’13)

Every Gorenstein algebra is smoothable for d ≤ 13.

Theorem (Szachniewicz, J.Marcinkiewicz & mFundacja prizes’21)

Already for d = 13 this space is nonreduced and at special points
exhibits fractal-like behaviour (I am vague, read this preprint!).
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Deformations and degenerations of algebras

How to parametrize algebras?
Recall:

ACW =
C[x1, . . . , xd−2]

(xixj , i �= j) + (x2
i − x2

j , i �= j) + (x3
1 )

Idea two (Grothendieck): as quotients of a polynomial ring:

{I � C[x1, . . . , xn] | A = C[x1, . . . , xn]/I , dimC A = d}

with n, d fixed.
This goes under the fancy name: Hilbert scheme (gives +5 respect,
-2 readability to paper).

The two ideas are equivalent: the spaces they give have same
components and singularities for n ≥ d − 1.
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y = x2

We have

C[x , y ]/(y − x2),

where y is the parameter.
For y = y0 �= 0 get C× C,
for y = 0 instead C[x ]/x2.

This is a degeneration of C× C to C[x ]/(x2). This is a map from
C to the space of algebras.
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Torus actions
Action of the algebraic group
C∗ on a space X .

think: R∗-action on a manifold

Assume X is complete think: compact
for every x ∈ X the limit
limt→∞ t · x exists

for every x ∈ X the limit
limt→∞ t · x exists

the function x �→ limt→∞ t · x
may be NOT continuous.

the function x �→ limt→∞ t · x
may be NOT continuous.

t · (x, y) = (t−1x, ty)
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Torus actions

The limit of any point is C∗-fixed. Let F1, . . . , Fr be the
subdivision of fixed points into connected components and let

Xi =
�
x ∈ X | lim

t→∞
t · x ∈ Fi

�
.
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Białynicki-Birula decomposition

Theorem (ASzBB’73)

If X is smooth then the limit function Xi → Fi is continuous,
regular and its fibers are isomorphic to Cni (+local trivialization).

Theorem (Drinfeld’13)

The limit function Xi → Fi is continuous, regular and its fibers are
isomorphic to cones in Cni . (No smoothness assumption!)

J-Sienkiewicz’19-21: some generalizations to groups other than C∗.
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Expert slide three

Fix the C∗-action known from linear algebra: C∗ × Cn → Cn given
by t · (v1, . . . , vn) = (tv1, . . . , tvn).

This gives a C∗-action on the space of quotients C[x1, . . . , xn]/I .

1 xi is v∗i , so t · xi = t−1vi
2 C∗ acts on S = C[x1, . . . , xn]

3 C∗ acts on the space of its
quotient rings:
t · [S/I ] = [S/(t · I )]

“S/I are functions on zero set of I ”
t → ∞

R

2 ·R

0
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Expert slide three cd.

−→

Figure: Analyse the strata

1 Each stratum converges to its fixed points: up to retraction
can reduce to fixed points.

2 To prove smoothability of given point it is profitable to deform
so as to escape the current stratum. Effective for
smoothability:
Previous approach: d ≤ 16 some cases
Now: d ≤ 100 usually doable
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Thanks for your attention!
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