Deformations, torus actions and complexity of matrix multiplication

Joachim Jelisiejew

MIM UW Colloquium

J.Jelisiejew Deformations, torus actions and complexity

Connection with classical game theory (Pac-man)

complexity deformations torus actions Please don't eat me when I skim over details!

Complexity of matrix multiplication

How many <u>multiplications</u> do we need to multiply two $n \times n$ matrices? $A \cdot B = C = \begin{bmatrix} c \\ \vdots \end{bmatrix} n^2$ entries Usual algorithm: n^3 multiplications $p \cdot p^2 = p^3$

Strassen '69: for n = 2

Complexity of matrix multiplication

How many multiplications do we need to multiply two $n \times n$ matrices?

Usual algorithm: n^3 multiplications 23-8 Strassen '69: for n = 2 need ≤ 7 multiplications $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_1 + c_4 - c_5 + c_7 & c_3 + c_5 \\ c_2 + c_4 & c_1 - c_2 + c_3 + c_6 \end{bmatrix}$ for $c_1 = (a_{11} + a_{22})(b_{11} + b_{22}), c_2 = (a_{21} + a_{22})b_{11}$ $c_3 = a_{11}(b_{12} - b_{22}), c_4 = a_{22}(b_{21} - b_{11}), c_5 = (a_{11} + a_{12})b_{22}, c_6 = (a_{11} + a_{12})b_{22}, c_8 = a_{11}(b_{12} - b_{22}), c_8 = a_{12}(b_{21} - b_{11}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{11}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{22}, c_8 = a_{12}(b_{12} - b_{12}), c_9 = (a_{11} + a_{12})b_{12}, c_9 = (a_{11} + a_{12})b_{12}$ $c_6 = (a_{21} - a_{11})(b_{11} + b_{12}), c_7 = (a_{12} - a_{22})(b_{21} + b_{22}).$

Complexity of matrix multiplication

How many multiplications do we need to multiply two $n \times n$ matrices?

Usual algorithm: n^3 multiplications

Strassen '69 & CW'70: for n = 2 need 7 multiplications

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_1 + c_4 - c_5 + c_7 & c_3 + c_5 \\ c_2 + c_4 & c_1 - c_2 + c_3 + c_6 \end{bmatrix}$$

for
$$c_1 = (a_{11} + a_{22})(b_{11} + b_{22}), c_2 = (a_{21} + a_{22})b_{11},$$

 $c_3 = a_{11}(b_{12} - b_{22}), c_4 = a_{22}(b_{21} - b_{11}), c_5 = (a_{11} + a_{12})b_{22},$
 $c_6 = (a_{21} - a_{11})(b_{11} + b_{12}), c_7 = (a_{12} - a_{22})(b_{21} + b_{22}).$

Exact number of multiplications for n = 3 still open, in range {19, 20, 21, 22, 23} (Bläser, Laderman).

a ₁₁	a ₁₂	a ₁₃	a ₁₄ a ₂₄ a ₃₄ a ₄₄		[b ₁₁	b_{12}	b_{13}	b_{14}	
a ₂₁	a ₂₂	a ₂₃	a ₂₄		b ₂₁	b ₂₂	b ₂₃	b ₂₄	_7
a ₃₁	a 32	a 33	a ₃₄	•	b ₃₁	b ₃₂	b33	b ₃₄	-:
a ₄₁	a ₄₂	<i>a</i> 43	a ₄₄		b{41}	b ₄₂	b ₄₃	b_{44}	

- a ₁₁	a ₁₂	a ₁₃	a ₁₄ -	b ₁₁	b_{12}	b ₁₃	b ₁₄ -]
<i>a</i> ₂₁	a ₂₂	a ₂₃	<i>a</i> ₂₄	<i>b</i> ₂₁	b ₂₂	b ₂₃ b ₃₃	b ₂₄	2
a ₃₁	a ₃₂	a33	<i>a</i> ₃₄					:
<i>a</i> ₄₁	a 42	a43	<i>a</i> 44	b ₄₁	b ₄₂	b ₄₃	b44	

	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{bmatrix}$	a ₁₂ a ₂₂ a ₃₂ a ₄₂	<i>a</i> ₁₃ <i>a</i> ₂₃ <i>a</i> ₃₃ <i>a</i> ₄₃	<i>a</i> ₁₄ <i>a</i> ₂₄ <i>a</i> ₃₄ <i>a</i> ₄₄	•	$\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{41} \end{bmatrix}$	b ₁₂ b ₂₂ b ₃₂ b ₄₂	b ₁₃ b ₂₃ b ₃₃ b ₄₃	$\begin{array}{c} b_{14} \\ b_{24} \\ b_{34} \\ b_{44} \\ \end{array}$	=	
$\begin{bmatrix} A_{12,12} & A_{12,34} \\ \hline A_{34,12} & A_{34,34} \end{bmatrix} \cdot \begin{bmatrix} B_{12,12} & B_{12,34} \\ \hline B_{34,12} & B_{34,34} \end{bmatrix} = \text{use Strassen's trick twice!}$											
2×2mates A12,12 B12,12 each											
						Vcqu	12,12	15 7 m	12,12	(och [49]	

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ \hline b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix} = \\ \begin{bmatrix} A_{12,12} & A_{12,34} \\ A_{34,12} & A_{34,34} \end{bmatrix} \cdot \begin{bmatrix} B_{12,12} & B_{12,34} \\ B_{34,12} & B_{34,34} \end{bmatrix} = \text{use Strassen's trick twice!}$$

for $n = 4$ need $\leq 7^2$ multiplications
for $n = 8$ need $\leq 7^3$ multiplications
for general n need $\approx n^{\log_2 7} < n^{2.81}$: there is an algorithm using
 $O(n^{2.81})$ multiplications
called Strassen's algorithm

'69 ⁶2.81

Who: Bini, Schönhage, Coppersmith-Winograd, ..., Alman-V.Williams. $(89 \ \omega \leq 2.376)$

What: proved existence of algorithm $O(n^{2.3729})$.

 $\omega = 2$ conjecture

For every $\varepsilon > 0$ there is an algorithm in $O(n^{2+\varepsilon})$. $\omega = \inf \{ \tau \mid \text{algorithm in } O(\mathbf{2}^{\tau}) \text{ exists} \}.$

Who: Landsberg-Michałek, ... What: needs at least $2n^2 - errorTerm$ multiplications.

Tensors

Tensor in $\mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c = a \times b$ matrix with entries from \mathbb{C}^c . Example: matrix multiplication tensor M_n lives in $\mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2}$.

$$\begin{array}{cccccccc} b_{11} & b_{12} & b_{21} & b_{22} \\ a_{11} & \begin{bmatrix} E_{11} & E_{12} & 0 & 0 \\ 0 & 0 & E_{11} & E_{12} \\ a_{21} & E_{21} & E_{22} & 0 & 0 \\ a_{22} & \begin{bmatrix} 0 & 0 & E_{21} & E_{22} \end{bmatrix} \end{array}$$

n = 2 matrix multiplication as a tensor

A *rank one tensor* is a nonzero matrix as above with all entries proportional such that treating then as numbers one gets a usual rank one matrix.

no of multiplications = no of rank one tensors summing to M_n .

Laser method, Coppersmith-Winograd

Let T some tensor (e.g. matrix multiplication M_n).

- Rank of T = minimal no of rank one tensors summing to T. Denote $\mathbf{R}(T)$.
- **2** Border rank of T = minimal r such that T is a limit of rank r tensors. Denoted $\underline{\mathbf{R}}(T)$.

Proposition (Bini)

We have $n^{\omega} \sim \mathbf{R}(M_n)$ and even $n^{\omega} \sim \underline{\mathbf{R}}(M_n)$.

Laser method, Coppersmith-Winograd

Let T some tensor (e.g. matrix multiplication M_n).

- Rank of T = minimal no of rank one tensors summing to T. Denote $\mathbf{R}(T)$.
- Border rank of T = minimal r such that \underline{T} is a limit of rank r tensors. Denoted $\underline{\mathbf{R}}(T)$.

Proposition (Bini)

We have
$$n^{\omega} \sim \mathbf{R}(M_n)$$
 and even $n^{\omega} \sim \underline{\mathbf{R}}(M_n)$.

Laser method. Gives best known estimates on ω :

find a tensor $T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ with $\underline{\mathbf{R}}(T) = d$. Then $\underline{\mathbf{R}}(T^{\otimes k}) \leq d^k$ for any k.

• degenerate $T^{\otimes k}$ to M_n with n = n(k) large. Get $\underline{\mathbb{R}}(M_n) \leq d^k$. So $\omega \leq \log_n(d^k)$.

Tensors from algebras

Let A be a d-dimensional vector space with a multiplication $A \times A \rightarrow A$. Fix its basis a_1, \ldots, a_d . Multiplication tensor μ_A of A has $a_i \cdot a_i$ in the (i, j) entry.

For
$$A_{\text{gen}} = \underbrace{\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C}}_{d}$$
 with standard basis get

$$\mu_A = \begin{bmatrix} e_1 & 0 & 0 & \dots & 0 \\ 0 & e_2 & 0 & \dots & 0 \\ & & & & \\ 0 & 0 & 0 & \dots & e_d \end{bmatrix} \quad e_{:} = (o_{-}, \circ, 4, o_{-}, \circ, 0)$$
This is a rank d tensor!

Tensors from algebras

Let A be a d-dimensional vector space with a multiplication $A \times A \rightarrow A$. Fix its basis a_1, \ldots, a_d . Multiplication tensor μ_A of A has $a_i \cdot a_j$ in the (i, j) entry.

Example

For ${\it A}_{\rm gen}=\mathbb{C}\times\mathbb{C}\times\ldots\times\mathbb{C}$ with standard basis get

$$\mu_{A} = \begin{bmatrix} e_{1} & 0 & 0 & \dots & 0\\ 0 & e_{2} & 0 & \dots & 0\\ & & \dots & & \\ 0 & 0 & 0 & \dots & e_{d} \end{bmatrix}$$

This is a rank d tensor!

Idea: smoothability

If we have a degeneration of algebras $A_{\text{gen}} \rightsquigarrow A$ then also $\mu_{A_{\text{gen}}} \rightsquigarrow \mu_A$, hence multiplication tensor of A has border rank $\leq d$. Such A are called *smoothable*.

C Expert slide one

Current best algorithm starts from a special algebra

$$A_{CW} = \frac{\mathbb{C}[x_1, \dots, x_{d-2}]}{(x_i x_j \mid i \neq j) + (x_i^2 - x_j^2 \mid i \neq j) + (x_1^3)}$$

whose multiplication tensor is big Coppersmith-Winograd tensor:

$$CW_{d-2} := \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_{d-2} & Q \\ x_1 & Q & 0 & \dots & 0 & 0 \\ x_2 & 0 & Q & \dots & 0 & 0 \\ & & & \dots & & \\ x_{d-2} & 0 & 0 & \dots & Q & 0 \\ Q & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

Proposition (Hoyois-J-Nardin-Yakerson'21)

The multiplication tensor of every nice (=Gorenstein, smoothable) algebra gives bounds on ω which are better or equal than the Coppersmith-Winograd tensor.

Deformations and degenerations of algebras

Further in this talk algebras are commutative, associative and with identity. How to parametrize those?

Idea one : multiplication tensor.

An algebra A with a basis $a_1, \ldots a_d$ is uniquely determined by $[\lambda_{ii}^k]_{1 \leq i,j,k \leq d}$ where 3 montes

$$a_{i} \cdot a_{j} = \sum_{k=1}^{d} \lambda_{ij}^{k} a_{k}.$$

• a_1 is the identity iff $\lambda_{1i}^k = \delta_{jk}$, $\lambda_{i1}^k = \delta_{ik}$, with δ being Dirac delta.

a is commutative iff
$$\lambda_{ij}^k = \lambda_{ji}^k$$
,
a is associative iff $\sum_m \lambda_{ij}^m \lambda_{mk}^\ell = \sum_m \lambda_{im}^\ell \lambda_{ik}^m$. (a: a)) as a sociative iff $\sum_m \lambda_{ij}^m \lambda_{mk}^\ell = \sum_m \lambda_{im}^\ell \lambda_{ik}^m$.

3 A is associative iff
$$\sum_{m} \lambda_{ij}^{m} \lambda_{mk}^{\ell} = \sum_{m} \lambda_{im}^{\ell} \lambda_{jk}^{m}$$
.

• A is Gorenstein iff exists a functional $f: A \to \mathbb{C}$ such that $a_i \in \{a_i, a_j\}$ $(a_1, a_2) \mapsto f(a_1 a_2)$ is a perfect pairing.

Deformations and degenerations of algebras

The set of rank d algebras with a basis is cut out by polynomial equations in \mathbb{C}^{d^3} . Has a natural topology! Even scheme structure.

Problem: this topology is mighty complicated.

Theorem (J'20)

"Murphy's Law": every possible singularity (up to retraction) appears in this space for some d.

J.Jelisiejew Deformations, torus actions and complexity

CC Expert slide two

Theorem (CEVV'08)

Every algebra is smoothable for $d \leq 7$.

Theorem (Casnati-J-Notari'13)

Every Gorenstein algebra is smoothable for $d \leq 13$.

Theorem (Szachniewicz, J.Marcinkiewicz & mFundacja prizes'21) Already for d = 13 this space is nonreduced and at special points

exhibits fractal-like behaviour (I am vague, read this preprint!).

Deformations and degenerations of algebras

How to parametrize algebras? Recall:

$$A_{CW} = \frac{\mathbb{C}[x_1, \dots, x_{d-2}]}{(x_i x_j, \ i \neq j) + (x_i^2 - x_j^2, \ i \neq j) + (x_1^3)}$$

Idea two (Grothendieck): as quotients of a polynomial ring:

$$\{I \lhd \mathbb{C}[x_1, \dots, x_n] \mid A = \mathbb{C}[x_1, \dots, x_n]/I, \dim_{\mathbb{C}} A = d\}$$

with *n*, *d* fixed.

This goes under the fancy name: *Hilbert scheme* (gives +5 respect, -2 readability to paper).

The two ideas are equivalent: the spaces they give have same components and singularities for $n \ge d - 1$.

We have

$$\mathbb{C}[x,y]/(y-x^2),$$

where y is the parameter. For $y = y_0 \neq 0$ get $\mathbb{C} \times \mathbb{C}$, for y = 0 instead $\mathbb{C}[x]/x^2$.

This is a degeneration of $\mathbb{C} \times \mathbb{C}$ to $\mathbb{C}[x]/(x^2)$. This is a map from \mathbb{C} to the space of algebras.

Torus actions

Action of the algebraic group \mathcal{C}^* on a space X. Assume X is complete for every $x \in X$ the limit $\lim_{t\to\infty} t \cdot x$ exists f the function $x \mapsto \lim_{t \to \infty} t \cdot x$ the function $x \mapsto \lim_{t \to \infty} t \cdot x$ may be NOT continuous.

think: \mathbb{R}^* -action on a manifold

think: compact for every $x \in X$ the limit $\lim_{t\to\infty} t \cdot x$ exists may be NOT continuous.

$$t \rightarrow \infty$$

 $t \cdot (x, y) = (t^{-1}x, ty)$

Torus actions

The limit of any point is \mathbb{C}^* -fixed. Let F_1, \ldots, F_r be the subdivision of fixed points into connected components and let

Theorem (ASzBB'73)

If X is smooth then the limit function $X_i \to F_i$ is continuous, regular and its fibers are isomorphic to \mathbb{C}^{n_i} (+local trivialization).

Theorem (Drinfeld'13)

The limit function $X_i \to F_i$ is continuous, regular and its fibers are isomorphic to cones in \mathbb{C}^{n_i} . (No smoothness assumption!)

J-Sienkiewicz'19-21: some generalizations to groups other than $\mathbb{C}^\ast.$

Fix the \mathbb{C}^* -action known from linear algebra: $\mathbb{C}^* \times \mathbb{C}^n \to \mathbb{C}^n$ given by $t \cdot (v_1, \ldots, v_n) = (tv_1, \ldots, tv_n)$.

This gives a \mathbb{C}^* -action on the space of quotients $\mathbb{C}[x_1, \ldots, x_n]/I$.

$$x_i \text{ is } v_i^* \text{, so } t \cdot x_i = t^{-1} v_i$$

2
$$\mathbb{C}^*$$
 acts on $S = \mathbb{C}[x_1, \dots, x_n]$

C* acts on the space of its quotient rings:

$$t \cdot [S/I] = [S/(t \cdot I)]$$

"S/I are functions on zero set of I"

CCC Expert slide three cd.

- Each stratum converges to its fixed points: up to retraction can reduce to fixed points.
- To prove smoothability of given point it is profitable to deform so as to escape the current stratum. Effective for smoothability:
 Previous approach: d < 16 some cases

Now: $d \leq 100$ usually doable

Thanks for your attention!

J.Jelisiejew Deformations, torus actions and complexity