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Terminology

We consider only real Banach spaces of dimension bigger than 1.

Definition

A hyperplane of X = a one-codimensional closed subspace of X = kernel of a non-zero
bounded functional on X.

We denote the set of all hyperplanes of X by H(X).

We define the o-ideal of subsets of X that can be covered by countably many hyperplanes:

Ho(X)={Y S X:3F C(X) Y C|JF, F countable}.
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Terminology

X ¢H(x) hyPirploees oce nadere danse subsels ofX so bhe Bakee b, o oppliss.

@ add(X) = the minimal cardinality of a family of sets from ,(X) whose union is not in

X) = the minimal cardinality of a family of sets from H,(X) whose union is equal to
X = Wi st QLWMMW el £ covtn X
e non(X) = the minimal cardinality of a subset of X that is not in H,(X)

e cof(X) = the minimal cardinality of a family of sets from H,(X)
such that each member of H,(X) is contained in some element of that family.
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ad0 and cof

For any Banach space X we have: add(X) = w1, cof(X) = |H| = | X*|.
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ad0 and cof

For any Banach space X we have: add(X) = w1, cof(X) = |H| = | X*|.

If a hyperplane H € H(X) is included in a countable union of hyperplanes | H;, H; € H(X),
then H = H; for some i.
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ad0 and cof

For any Banach space X we have: add(X) = w1, cof(X) = |H| = | X*|.

If a hyperplane H € H(X) is included in a countable union of hyperplanes | H;, H; € H(X),
then H = H; for some i.
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Separable spaces

Proposition

If X is a separable Banach space, then cov(X) = ¢ and non(X) = wj.

Both equalities follow from the following Klee's result:

Let X be a separable Banach space. Then there is a set Y C X of cardinality ¢ such that each
infinite subset of Y is linearly dense in X. In particular HN Y is finite for every H € H(X)
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Nonseparable spaces: cov

Proposition

cov(X) < ¢ for every Banach space X. In particular CH implies that cov(X) = w; for each X.
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Nonseparable spaces: cov

Proposition
cov(X) < ¢ for every Banach space X. In particular CH implies that cov(X) = w; for each X.

Equality cov(X) = w; holds in ZFC for the following classes of nonseparable Banach spaces:

@ spaces of density w;
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Nonseparable spaces: cov

Proposition

cov(X) < ¢ for every Banach space X. In particular CH implies that cov(X) = w; for each X.

Equality cov(X) = w; holds in ZFC for the following classes of nonseparable Banach spaces:
@ spaces of density w;

@ spaces with fundamental biorthogonal system
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Nonseparable spaces: cov

Proposition

cov(X) < ¢ for every Banach space X. In particular CH implies that cov(X) = w; for each X.

Theorem

Equality cov(X) = wy holds in ZFC for the following classes of nonseparable Banach spaces:
@ spaces of density w;
@ spaces with fundamental biorthogonal system
@ spaces C(K) where K is compact and does not have small diagonal
o

spaces X such that By« (with the weak* topology) does not have small diagonal

C(K) = § £ K2R o) A N1£)= “f eI
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Small diagonals

Definition

We say that a topological space K has small diagonal if for every uncountable A C K2\ A(K)
there is uncountable B C A such that B C K?\A(K). ACK)= § Cxx)2mek}
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Small diagonals

Definition
We say that a topological space K has small diagonal if for every uncountable A C K2\ A(K)
there is uncountable B C A such that B C K2\ A(K).

Consider the following sentence:

For every compact Hausdorff space K, K is metrizable <= K has small diagonal. (%)
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Small diagonals

Definition
We say that a topological space K has small diagonal if for every uncountable A C K2\ A(K)
there is uncountable B C A such that B C K2\ A(K).

Consider the following sentence:

For every compact Hausdorff space K, K is metrizable <= K has small diagonal. (%)

Theorem (Dow-Juhasz-Szentmiklossy)

e PFA = (%)
o (%) is consistent with any possible size of ¢ — Sftasth ViECH adadd 5 any Chen reals,

Open question: Is (%) provable in ZFC?
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Nonseparable spaces: cov

Proposition

Y : . .
Assume that all'spaces with small diagonals are metrizable. Then cov(X) = w; for all
nonseparable Banach spaces.
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Nonseparable spaces: cov

Proposition

Assume that all spaces with small diagonals are metrizable. Then cov(X) = w; for all
nonseparable Banach spaces.

e PFA implies that cov(X) = w; for all nonseparable Banach spaces.

e It is consistent with any possible size of ¢ that cov(X) = w; for all nonseparable Banach
spaces.

Is it provable in ZFC that cov(X) = w; for all nonseparable Banach spaces?
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Nonseparable spaces: non

General inequality

Let X be a nonseparable Banach space of density k. Then M o = K= Ve ndiimal

£ < non(X) < cf([]"). Aty o doce sulbsitin

e

If k& has countable cofinality, then non(X) > k.

o [k]“ = the family of all countable subsets of x

o cf([x]¥) = the minimal cardinality of a family F C [k]“ such that each member of ] is
included in some member of F.
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Values of cf([x]*)

Proposition
cf([wn]¥) = wp for n=1,2,3,...
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Values of cf([x

Proposition
cf([wn]¥) = wp for n=1,2,3,...

If X is a Banach space of density wp, then non(X) = wy,.
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Values of cf([x]*)

Proposition
cf([wn]¥) = wp for n=1,2,3,...

If X is a Banach space of density wp, then non(X) = wy,.

Assume GCH or MM. Then for k > w GCH = K=pR W) o
o cf([k]¥) =k, if cf(k) > w Nt one of oz 0 falls Hew Voo 1 an xmer
o cf([r]¥) = kT, if cf(k) = w Hodl Whh o aseoble  Gdbal

In particular, if X has density x, then non(X) = cf([x]¥).
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Values of cf([x

Theorem (Magidor)

Assume that there is a supercompact cardinal. Then for each n € N it is consistent that
cf([ww]®) = Wuwtn-

Is it possible that non(X) < cf([«]*) for some Banach space of density x > w?
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Values of cf([x]*)

Theorem (Magidor)

Assume that there is a supercompact cardinal. Then for each n € N it is consistent that
cf([ww]®) = Wuwtn-

Is it possible that non(X) < cf([«]*) for some Banach space of density x > w?

Proposition

If X has density x > w and admits a fundamental biorthogonal system, then
non(X) = cf([x]¥).
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Overcomplete sets

Definition

Let X be a Banach space of density x. We say that a subset Y C X is overcomplete, if
|Y| = k and each subset of Y of cardinality & is linearly dense in X.

Examples of spaces that admit overcomplete sets:
@ separable Banach spaces  ~ ~esult by Klee
o (p(wr) for p € (1, oo)% %@LC@%‘} of bhe wesulk (y\)/F Verndde, on WLD spoces.

@ Co(bdl)
\\
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Overcomplete sets

Proposition
If cf(dens(X)) > cov(X), then X does not admit an overcomplete set.

Assume that all compact Hausdorff spaces with small diagonals are metrizable. Then no
Banach space of density w» admits an overcomplete set.
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