On coverings of Banach spaces and their subsets by hyperplanes

Damian Głodkowski and Piotr Koszmider

https://arxiv.org/pdf/2103.05097.pdf

We consider only real Banach spaces of dimension bigger than 1.

Definition

A hyperplane of X = a one-codimensional closed subspace of X = kernel of a non-zero bounded functional on X.

We denote the set of all hyperplanes of X by $\mathcal{H}(X)$.

We define the σ -ideal of subsets of X that can be covered by countably many hyperplanes:

 $\mathcal{H}_{\sigma}(X) = \{ Y \subseteq X : \exists \mathcal{F} \subseteq (X) | Y \subseteq \bigcup \mathcal{F}, \ \mathcal{F} \text{ countable} \}.$

- $\mathfrak{add}(X)$ = the minimal cardinality of a family of sets from $\mathcal{H}_{\sigma}(X)$ whose union is not in $\mathcal{H}_{\sigma}(X)$
- cov(X) = the minimal cardinality of a family of sets from $\mathcal{H}_{\sigma}(X)$ whose union is equal to $X = \min_{x \in \mathcal{H}} \int_{\mathcal{H}} \int$
- non(X) = the minimal cardinality of a subset of X that is not in $\mathcal{H}_{\sigma}(X)$
- cof(X) = the minimal cardinality of a family of sets from H_σ(X) such that each member of H_σ(X) is contained in some element of that family.
 Obs(ων(X) 7, ω₁. A_d ∈ M_σ(X)
 Yf the hore {A_d}_{d<K} ∪ H_d = X, then we extend A_d ∈ UH_K, u
 U H_d = X, K

Theorem

For any Banach space X we have: $\mathfrak{add}(X) = \omega_1, \mathfrak{cof}(X) = |\mathcal{H}| = |X^*|$.

・ 同下 ・ ヨト ・ ヨト

э.

Theorem

For any Banach space X we have:
$$\mathfrak{add}(X) = \omega_1, \mathfrak{cof}(X) = |\mathcal{H}| = |X^*|$$
.

Lemma

If a hyperplane $H \in \mathcal{H}(X)$ is included in a countable union of hyperplanes $\bigcup H_i, H_i \in \mathcal{H}(X)$, then $H = H_i$ for some *i*.

Proof: Assure that
$$H \neq H_i$$
 for $i \in \mathbb{N}$. Consider $H_1 H_i \neq H$.
 $H_1 H_i$ is a nordere dense subset of H .
Baine codegory thm =) $\cup H_1 H_i \notin \mathbb{M}$ - constradiction.

(B)

Theorem

For any Banach space X we have:
$$\mathfrak{add}(X) = \omega_1, \mathfrak{cof}(X) = |\mathcal{H}| = |X^*|$$
.

Lemma

If a hyperplane $H \in \mathcal{H}(X)$ is included in a countable union of hyperplanes $\bigcup H_i, H_i \in \mathcal{H}(X)$, then $H = H_i$ for some *i*.

Front that
$$add(x) = \omega_1$$
: Take ω_1 hyperplanes $\{H_{\alpha} : \alpha < \omega_1\}$ and assume that
 $\bigcup H_{\alpha} \leq \bigcup U_{\alpha}$. By Lemma we get that $H_{\alpha} = U_{\alpha}$ for some α_1 so $\{H_{\alpha} : \alpha < \omega_1\}$
is in fact countable.
For $cef(x)$ use the fact that $|x^*| = |x^*|^{12}$

If X is a separable Banach space, then cov(X) = c and $non(X) = \omega_1$.

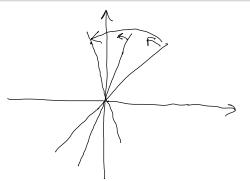
Both equalities follow from the following Klee's result:

Theorem

Let X be a separable Banach space. Then there is a set $Y \subseteq X$ of cardinality \mathfrak{c} such that each infinite subset of Y is linearly dense in X. In particular $H \cap Y$ is finite for every $H \in \mathcal{H}(X)$

Concording dense means that
$$\lim_{N \to \infty} \{y : y \in Y\}$$
 is dense. If $|H \cap Y| = \infty$ then $H \cap Y$ is thready dense,
but H is closed thread suppose, so $H = X$.
froof that $\operatorname{hen}(X) = \omega_{1}$: Take any $E \subseteq Y$, $|Z| = \omega_{1}$. If $Z \subseteq \bigcup H_{W}$, then $|Z \cap H_{W}| \neq \infty$, so
 $Z \mid Z \cap H_{W} \mid \neq \omega$. We get contradiction with $|Z| = \omega_{1}$.
For cor (X) assume that χ can be correct by $K < E$ may hyperplanes and take Z as above but
of cordinality K .

 $\mathfrak{cov}(X) \leq \mathfrak{c}$ for every Banach space X. In particular CH implies that $\mathfrak{cov}(X) = \omega_1$ for each X.



 $\mathfrak{cov}(X) \leq \mathfrak{c}$ for every Banach space X. In particular CH implies that $\mathfrak{cov}(X) = \omega_1$ for each X.

Theorem

Equality $cov(X) = \omega_1$ holds in ZFC for the following classes of nonseparable Banach spaces: • spaces of density ω_1

Take any dense
$$\{ \times_{\alpha} : \alpha \neq \omega_1 \} \subseteq \times$$
. Consider Spaces $\times_{\alpha} = \lim_{\alpha \neq \omega} \{ \times_{\beta} : \beta \neq \alpha \}$
talk $\times \in \times$ is in some \times_{α} $(\times = \bigcup_{\alpha \neq \omega_1} \times_{\alpha})$.
There is a countable $A \subseteq \omega_1$ such that $\chi = \lim_{\alpha \in A} \times_{\alpha} \cdot \times \in \times_{\beta}$, $\gamma = \sup_{\alpha \in A} (A) + 1$.
Now we can we can extend \times_{α} to hyperplanes.

 $\mathfrak{cov}(X) \leq \mathfrak{c}$ for every Banach space X. In particular CH implies that $\mathfrak{cov}(X) = \omega_1$ for each X.

Theorem

Equality $\mathfrak{cov}(X) = \omega_1$ holds in ZFC for the following classes of nonseparable Banach spaces:

- spaces of density ω_1
- spaces with fundamental biorthogonal system

$$(x_{i}, x_{i}^{*})_{i \notin I} \times i \notin j \times j \times i \notin X^{*} \oplus X^{*}$$

 $\mathfrak{cov}(X) \leq \mathfrak{c}$ for every Banach space X. In particular CH implies that $\mathfrak{cov}(X) = \omega_1$ for each X.

Theorem

Equality $cov(X) = \omega_1$ holds in ZFC for the following classes of nonseparable Banach spaces:

- spaces of density ω_1
- spaces with fundamental biorthogonal system
- spaces C(K) where K is compact and does not have small diagonal
- spaces X such that B_{X^*} (with the weak* topology) does not have small diagonal

$$((k) = \{ \notin : K \rightarrow R \text{ cont.} \} \text{ rith } || \neq || = \sup_{x \in K} \{| \notin (x) |\}.$$

We say that a topological space K has small diagonal if for every uncountable $A \subseteq K^2 \setminus \Delta(K)$ there is uncountable $B \subseteq A$ such that $\overline{B} \subseteq K^2 \setminus \Delta(K)$. $\Delta(\kappa) = \{\zeta_{x,x}\}:_{\kappa \in K}$

ヨト・イヨト

We say that a topological space K has small diagonal if for every uncountable $A \subseteq K^2 \setminus \Delta(K)$ there is uncountable $B \subseteq A$ such that $\overline{B} \subseteq K^2 \setminus \Delta(K)$.

Consider the following sentence:

For every compact Hausdorff space K, K is metrizable $\iff K$ has small diagonal. (*)

We say that a topological space K has small diagonal if for every uncountable $A \subseteq K^2 \setminus \Delta(K)$ there is uncountable $B \subseteq A$ such that $\overline{B} \subseteq K^2 \setminus \Delta(K)$.

Consider the following sentence:

For every compact Hausdorff space K, K is metrizable $\iff K$ has small diagonal. (*)

Theorem (Dow-Juhasz-Szentmiklossy)

- PFA \implies (*)
- (*) is consistent with any possible size of c start with V ≠ CH and add K wavy loben reals.

Open question: Is (*) provable in ZFC?

• • = • • = •

I nar

Nonseparable spaces: cov

Proposition compact

Assume that all spaces with small diagonals are metrizable. Then $\mathfrak{cov}(X) = \omega_1$ for all

nonseparable Banach spaces.

$$X - nonseparable =)$$
 $B_{X} \times is compart and not metricable => B_{X} \times does not have small diagonal => Cor(X)=w_1.$

Assume that all spaces with small diagonals are metrizable. Then $cov(X) = \omega_1$ for all nonseparable Banach spaces.

Corollary

- PFA implies that $cov(X) = \omega_1$ for all nonseparable Banach spaces.
- It is consistent with any possible size of c that cov(X) = ω₁ for all nonseparable Banach spaces.

Question

Is it provable in ZFC that $cov(X) = \omega_1$ for all nonseparable Banach spaces?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

General inequality

Let X be a nonseparable Banach space of density κ . Then

$$\kappa \leq \mathfrak{non}(X) \leq \underline{\mathsf{cf}([\kappa]^{\omega})}.$$

If κ has countable cofinality, then $\mathfrak{non}(X) > \kappa$.

- $[\kappa]^{\omega} =$ the family of all countable subsets of κ
- cf([κ]^ω) = the minimal cardinality of a family F ⊆ [κ]^ω such that each member of [κ]^ω is included in some member of F.
- hoof of K & ron(X): Arrune blat Y & X, 141 < K. So him (4:454) is a proper closed supspace of X 150 it is contained in some hyperplane. Yell(X) = 0 and ve have Y ≤ X, 141=K, blen Y = UYu, 142KK. Yn ≤ Mu SoY ≤ U Hu.

Nor
$$(X) \leq cf(EKJ^{\omega})^{\circ}$$
 dens $(X) = K$.
We start with a dense $\{X_X : X \leq K\} \leq X$.
We for F - a coloral family in EKJ^{ω} , $|F| = cf(EKJ^{\omega})$
for each $F \in F$ consider the $X_F = \overline{Wr} \{X_X : X \in P\}$ - separable.
Fick $Y_F \leq X_F$. Such that Y_F can the covered by w hyperplanes in X_F .
 $|Y_F| = W_T$. $Y = UY_F$. $|Y| = |Y_F| \cdot cf(EKJ^{\omega}) = U_T \cdot cf(EKJ^{\omega}) = cf(EKJ^{\omega})$.
We need to show that Y can the covered by coverably nong hyperplanes.
Assume $Y \subseteq UH_T$. For each n pick $X_F \leq K_T$ for each n X_F a set $F \in F$
such that $\{X_T : n \in N\} \leq F$. Look at X_F . For each n X_F or H_T is a hyperplane in X_F .
So $Y_F \in U(H_T \cap X_F)$ - contradiction.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

Values of $\mathsf{cf}([\kappa]^\omega)$

Proposition

 $cf([\omega_n]^{\omega}) = \omega_n$ for n = 1, 2, 3, ...

$$\begin{aligned} & \left(\begin{bmatrix} \omega_1 \end{bmatrix}^{\mathcal{W}} \right) \right) \not \mapsto \omega_1 \\ & \left\{ \alpha : \alpha < \omega_1 \right\} \end{aligned} a colored family in
$$\begin{bmatrix} \omega_1 \end{bmatrix}^{\omega_2} \\ & |A| = \omega = \right) A \leq \sup(A) + 1 \in \left\{ \alpha : \alpha < \omega_1 \right\}. \end{aligned}$$$$

For Wn use induction.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Values of $\mathsf{cf}([\kappa]^\omega)$

Proposition

 $cf([\omega_n]^{\omega}) = \omega_n$ for n = 1, 2, 3, ...

Corollary

If X is a Banach space of density ω_n , then $\mathfrak{non}(X) = \omega_n$.

Values of $cf([\kappa]^{\omega})$

Proposition

 $cf([\omega_n]^{\omega}) = \omega_n$ for n = 1, 2, 3, ...

Corollary

If X is a Banach space of density ω_n , then $\mathfrak{non}(X) = \omega_n$.

Theorem

Assume GCH or MM. Then for $\kappa > \omega$ (-(H =) $\kappa^{\omega} = \kappa$ if 4π) > ω . • $cf([\kappa]^{\omega}) = \kappa$, if $cf(\kappa) > \omega$ "If one of those eq. table then there is an inner • $cf([\kappa]^{\omega}) = \kappa^+$, if $cf(\kappa) = \omega$ model with a measurable (undimed.)

In particular, if X has density κ , then $\mathfrak{non}(X) = \mathrm{cf}([\kappa]^{\omega})$.

A B + A B +

I na∩

Theorem (Magidor)

Assume that there is a supercompact cardinal. Then for each $n \in \mathbb{N}$ it is consistent that $cf([\omega_{\omega}]^{\omega}) = \omega_{\omega+n}$.

Question

Is it possible that $non(X) < cf([\kappa]^{\omega})$ for some Banach space of density $\kappa > \omega$?

Theorem (Magidor)

Assume that there is a supercompact cardinal. Then for each $n \in \mathbb{N}$ it is consistent that $cf([\omega_{\omega}]^{\omega}) = \omega_{\omega+n}$.

Question

Is it possible that $\mathfrak{non}(X) < \mathsf{cf}([\kappa]^{\omega})$ for some Banach space of density $\kappa > \omega$?

Proposition

If X has density $\kappa > \omega$ and admits a fundamental biorthogonal system, then $\mathfrak{non}(X) = \mathsf{cf}([\kappa]^{\omega}).$

$$l_{p}^{c}(E)$$
 - the suppose of $l_{p}(E)$ consisting of sequences with countable supports.

Let X be a Banach space of density κ . We say that a subset $Y \subseteq X$ is overcomplete, if $|Y| = \kappa$ and each subset of Y of cardinality κ is linearly dense in X.

Examples of spaces that admit overcomplete sets:

- separable Banach spaces result by Klee
- $\ell_p(\omega_1)$ for $p \in (1,\infty)$ 2 special cases of the result by P Korrmidler on WLD spaces.
- $c_0(\omega_1)$)

A B < A B </p>

If cf(dens(X)) > cov(X), then X does not admit an overcomplete set.

Corollary

Assume that all compact Hausdorff spaces with small diagonals are metrizable. Then no Banach space of density ω_2 admits an overcomplete set.

On coverings of Banach spaces and their subsets by hype Damian Głodkowski and Piotr Koszmider

https://arxiv.org/pdf/2103.05097.pdf

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

On coverings of Banach spaces and their subsets by hype Damian Głodkowski and Piotr Koszmider 19/19

https://arxiv.org/pdf/2103.05097.pdf

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○