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Definitions and basic facts

All spaces are Tychonoff.

A space X is realcompact, if X can be closely embedded into Rκ

for some cardinal κ.

The minimal κ as above is denoted by Exp(X).

All Lindelöf spaces are realcompact. Thus all metrizable separable
and σ-compact spaces are realcompact.

kc(X) is the minimal cardinality of a cover of X by compact
subsspaces. kc∗(X) := kc(βX \X).
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Motivation

Theorem (van Douwen 1984)
For every κ ≤ c there exists a metrizable separable space X with
Exp(X) = κ.

Theorem (Hechler)
Exp(Q) = d.

Question
Which cardinals can be realized as Exp(X) for a countable crowded
space X?
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Main result

Theorem (AMZ 2023)
Let κ be an infinite cardinal. Then there exists a countable crowded
space X with Exp(X) = κ iff p ≤ κ ≤ c. 2

The proof consists of four parts:
▶ No κ < p can serve as Exp(X) for a countable crowded space;
▶ Producing an example for κ = p; the core of the proof;
▶ Modifying an example for p in such a way that it gets Exp

equal to any given κ ∈ [p, c];
▶ No κ > c can serve as Exp(X) for a countable crowded space.
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Main tool, P. 1

Proposition
Let X be a Lindelöf space. Then Exp(X) = max{w(X), kc∗(X)}.
Proof. Set κ = Exp(X) and κ′ = max{w(X), kc∗(X)}.
κ ≤ κ′: Fix a compactification γX such that w(γX) = w(X). Fix
a compact cover {Kξ : ξ ∈ κ′} of γX \X.
Using the lindelöfness, find (exercise) a continuous
fξ : γX −→ [0, 1] for ξ ∈ κ′ such that fξ(z) = 0 for every z ∈ Kξ

and fξ(z) > 0 for every z ∈ X. Set F = {fξ : ξ ∈ κ′}.
Fix a collection G of size at most w(γX) = w(X) consisting of
continuous functions g : γX → R that separates points of γX.
Define ϕ : γX → RF∪G by ϕ(z)(f) = f(z), where z ∈ γX and
f ∈ F ∪ G.
ϕ is an embedding “thanks” to G. Thus

ϕ[X] = ϕ[γX] ∩
(
(0,∞)F × RG) ,

and hence κ = Exp(X) = Exp(ϕ[X]) ≤ max{|F|, |G|} = κ′.
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Main tool, P. 2

κ′ ≤ κ: Assume that X is a closed subspace of (0, 1)κ, and let
Z = cl(X), where the closure is taken in [0, 1]κ. Z is a
compactification of X.

Denote by πξ : [0, 1]
κ −→ [0, 1] the natural projection on the ξ-th

coordinate. For every z ∈ Z \X there exists ξ ∈ κ such that
z(ξ) ∈ {0, 1}. Therefore

Z \X =
⋃
ξ∈κ

(π−1
ξ [{0, 1}] ∩ Z).

Each π−1
ξ [{0, 1}] ∩ Z is compact, hence kc∗(X) ≤ κ. Since also

w(X) ≤ w
(
(0, 1)κ

)
= κ, it follows that κ′ ≤ κ. 2
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Van Douwen’s and Hechler’s results

▶ Let X ⊂ [0, 1] be a Bernstein set, κ ≤ c an infinite cardinal,
and Xκ ⊃ X such that |[0, 1] \Xκ| = κ. Then Exp(Xκ) = κ.

▶ Since kc∗(Q) = kc([0, 1] \Q) = d, Exp(Q) = d.
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Main tool 2

Proposition
Let X be a Lindelöf space. Assume that n ∈ ω and X0, . . . , Xn are
Lindelöf subspaces of X such that X = X0 ∪ · · · ∪Xn. Then

Exp(X) ≤ max{Exp(X0), . . . ,Exp(Xn), w(X)}.

Proof.
A straightforward verification that kc∗(X) is also bounded by the
maximum above, using a compactification γX of X of weight
w(γX) = w(X).
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< p is impossible, P. 1

Theorem
Let κ < p be an infinite cardinal, and let X be a countable crowded
subspace of ωκ. Then X is not closed in ωκ.
Proof. Define

P = {x ↾ a : x ∈ X and a ∈ [κ]<ω}.

Given s, t ∈ P, declare s ≤ t if s ⊇ t.

P is σ-centered: P =
⋃

x∈X{x ↾ a : a ∈ [κ]<ω}. Given x ∈ X and
a ∈ [κ]<ω, define
▶ Dx = {s ∈ P : s(ξ) ̸= x(ξ) for some ξ ∈ dom(s)},
▶ Da = {s ∈ P : s = x ↾ b for some x ∈ X and b ∈

[κ]<ω such that b ⊇ a}.
Dx’s and Da’s are dense in P. Bell’s Theorem yields a filter G on
P that meets all of these dense sets. Then

⋃
G ∈ cl(X) \X,

where cl denotes closure in ωκ. 2
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< p is impossible, P. 2

Suppose that X is a countable crowded closed subspace of Rκ,
where κ < p.

For every ξ pick a countable dense Qξ ⊂ R \ prξ[X].

Then R \Qξ ≡ ωω, and thus X is a closed subspace of∏
ξ∈κ(R \Qξ) ≡ (ωω)κ, which is impossible.
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There exists a crowded countable X with Exp(X) = p, P. 1

Let P and P′ be posets. i : P −→ P′ is a pleasant embedding, if
(1) i(1P) = 1P′ ,
(2) ∀p, q ∈ P

(
p ≤ q → i(p) ≤ i(q)

)
,

(3) ∀p, q ∈ P
(
p ⊥ q ↔ i(p) ⊥ i(q)

)
.

We will say that i is a dense embedding if it satisfies all of the
above conditions plus the following:
(4) i[P] is dense in P′.
Also recall that P is separative, if for all p, q ∈ P such that p ≰ q
there exists r ∈ P such that r ≤ p and r ⊥ q.
P is meet-friendly if whenever p, q ∈ P are compatible, {p, q} has a
greatest lower bound, which we denote by p ∧ q.
Note that p ∧ q ∈ F whenever F is a filter on P and p, q ∈ F .
Notice that P is meet-friendly iff every centered finite subset
{p0, . . . , pn} of P has a greatest lower bound, which we will denote
by p0 ∧ · · · ∧ pn.
Example: B \ {0B}, where B is a boolean algebra.
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There exists a crowded countable X with Exp(X) = p, P. 2

If P is meet-friendly and C is a non-empty centered subset of P,

F = {p ∈ P : p0∧ · · · ∧ pn ≤ p for some n ∈ ω and p0, . . . , pn ∈ C}

is the (smallest) filter F generated by C.
Let P and P′ be meet-friendly. A pleasant embedding i : P → P′ is
meet-preserving if
(5) ∀p, q ∈ P

(
p ̸⊥ q → i(p ∧ q) = i(p) ∧ i(q)

)
.

Lemma
Let P be a meet-friendly partial order, and let F be a filter on P.
Then the following conditions are equivalent:
(A) F is an ultrafilter,
(B) ∀p ∈ P \ F ∃q ∈ F (p ⊥ q). 2
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There exists a crowded countable X with Exp(X) = p, P. 3

Lemma
Let P and P′ be meet-friendly partial orders, and let i : P → P′ be a
meet-preserving pleasant embedding. If G is a filter on P′ then
i−1[G] is a filter on P. 2

Lemma
Let P be a meet-friendly partial order, let B be a boolean algebra,
and let i : P → B \ {0} be a pleasant embedding. Assume that i[P]
generates B as a boolean algebra. If U is an ultrafilter on P then
i[U ] generates an ultrafilter on B \ {0}. 2.

Given a, b ∈ [ω]<ω, we will write a ≼ b to mean a ⊆ b and
b \ a ⊆ ω \max(a). We will also write a ≺ b to mean a ≼ b and
a ̸= b.
Given a subset C of [ω]ω with the SFIP, define

P(C) = {(a, F ) : a ∈ [ω]<ω and F ∈ [C]<ω}.
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There exists a crowded countable X with Exp(X) = p, P. 4

Order P(C) by declaring (a, F ) ≤ (b,G) if the following conditions hold:
▶ b ≼ a, G ⊆ F ,
▶ a \ b ⊆

⋂
G.

This is the standard partial order that generically produces a
pseudointersection of C. P(C) is meet-friendly:
If (a, F ) ̸⊥ (b,G), then (a ∪ b, F ∪G) is the greatest lower bound of
{(a, F ), (b,G)}.
Recall that A ⊂ [ω]ω is independent, if

⋂
i∈n A

δi
i is infinite for any

injective ⟨Ai : i ∈ n⟩ ∈ An and ⟨δi : i ∈ n⟩ ∈ {0, 1}n, where A0 = A and
A1 = ω \A.

Proposition (Nyikos)
There exists an independent family of size p with no pseudointersection.

Proof. Fix an independent family A of size p, subset C of [ω]ω of size p
with the SFIP and no pseudointersection. Let A = {Aξ : ξ < p} and
C = {Cξ : ξ < p} be injective enumerations. Set
∆+ = {(m,n) ∈ ω × ω : m ≤ n}. Then
{(Aξ × Cξ) ∩∆+ : ξ < p} is as required. 2
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There exists a crowded countable X with Exp(X) = p, P. 5

Now we can pass to the actual construction

Fix an independent family A of size p with no pseudointersection. Wlog,
for every n ∈ ω there exists A ∈ A such that n /∈ A. Set P = P(A). For
a ∈ [ω]<ω, denote by Ua the filter on P generated by
{(a, F ) : F ∈ [A]<ω}.
Claim 1. Each Ua is an ultrafilter on P.
Proof. Enough to check that if (b,G) ∈ P is compatible with every
element of Ua, then b ≼ a and a \ b ⊆

⋂
G, hence (a,G) ≤ (b,G). 2

Claim 2. P is separative.
Proof. Routine, using the independence of A. 2

Given p ∈ P, we set p ↓= {q ∈ P : q ≤ p}. U ⊆ P is open if p ↓⊆ U for
every p ∈ U .
RO(P) is the regular open algebra of P.
The map i : P → RO(P) \ {0} such that i(p) = p ↓ for p ∈ P, is known
to be well-defined, dense and meet-preserving embedding, and the
following stronger form of condition (2) holds:

(2′) ∀p, q ∈ P
(
p ≤ q ↔ i(p) ≤ i(q)

)
.
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There exists a crowded countable X with Exp(X) = p, P. 6

Let B be the boolean subalgebra of RO(P) generated by i[P], and
let Z be the Stone space of B. Given b ∈ B, we will denote by
[b] = {V ∈ Z : b ∈ V} the corresponding basic clopen subset of Z.
It follows that each i[Ua] generates an ultrafilter on B, which we
will denote by Va. Finally, set

X = {Va : a ∈ [ω]<ω}.

Claim 3. Z is crowded.
Proof. This is equivalent to showing that B has no atoms, which
follows from P having no atoms and (2′). ■

Claim 4. X is a countable dense subset of Z.
Proof.

⋃
a∈[ω]<ω Ua = P, and hence

⋃
a∈[ω]<ω Va = B \ {0}. ■

It follows from Claims 3 and 4 that X is a countable crowded
space, and that Z is a compactification of X. Furthermore,
w(X) ≤ w(Z) = |B| = p. Since Exp(X) ≥ p, it requires to show
that kc(Z \X) = kc∗(X) ≤ p. 17 / 20



There exists a crowded countable X with Exp(X) = p, P. 7

Fix an enumeration A = {Aξ : ξ ∈ p}. For every ξ set

Uξ =
⋃

a∈[ω]<ω [(a,Aξ) ↓],
an open subset of Z.

Claim 5. X =
⋂

ξ∈p Uξ.

Proof. ⊆ is straightforward. In order to prove ⊇, pick
V ∈

⋂
ξ∈p Uξ. Thus, for every ξ ∈ p we can fix aξ ∈ [ω]<ω such

that (aξ, Aξ) ↓∈ V. Set U = i−1[V], and observe that U is a filter
on P. Also, (aξ, Aξ) ∈ U for all ξ.

Set a =
⋃

ξ∈p aξ. a is finite, because a \max(aξ) ⊆ Aξ for all ξ.

Fix ξ ∈ p such that a = aξ, We check that U = Ua, which would
give that V = Va, thus concluding the proof.
Since Ua is an ultrafilter, it will be enough to show that Ua ⊆ U .
So pick (a, F ) ∈ Ua, where F = {Aξ0 , . . . , Aξk}. Note that

(a, F ∪ {Aξ}) = (aξ0 , Aξ0) ∧ · · · ∧ (aξk , Aξk) ∧ (aξ, Aξ) ∈ U ,
which clearly implies (a, F ) ∈ U , as desired. 18 / 20



Open questions

Using the CDH property of Rκ for κ < p, we get that any
countable dense X ⊂ Rκ has a closed copy of any countable space
of weight ≤ κ, is a topological group, and Exp(X) = d.

Using our Main Tool one can show that Exp(X) = κ for any
countable dense X ⊂ Rκ, provided that d ≤ κ ≤ c. In particular,
this is true for dense countable subgroups of Rκ.

This motivates the following

Question
For which cardinals κ such that p ≤ κ < d does there exist a
countable crowded topological group (homogeneous space) X such
that Exp(X) = κ? 2
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The last slide

Thank you for your attention.
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