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Definitions and basic facts

All spaces are Tychonoff.

A space X is realcompact, if X can be closely embedded into R”
for some cardinal k.

The minimal k as above is denoted by Fzp(X).

All Lindeldf spaces are realcompact. Thus all metrizable separable
and o-compact spaces are realcompact.

kc(X) is the minimal cardinality of a cover of X by compact
subsspaces. kc"(X) 1= ke(BX \ X).
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Theorem (van Douwen 1984)

For every k < ¢ there exists a metrizable separable space X with
Exp(X) = k.

Theorem (Hechler)
Exp(Q) = .

Question
Which cardinals can be realized as Exp(X) for a countable crowded
space X7
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Main result

Theorem (AMZ 2023)

Let x be an infinite cardinal. Then there exists a countable crowded
space X with Exp(X) =k iffp <k <. O

The proof consists of four parts:
» No k < p can serve as Exp(X) for a countable crowded space;
» Producing an example for k = p; the core of the proof;

» Modifying an example for p in such a way that it gets Fxp
equal to any given k € [p, c];

» No k > ¢ can serve as Exp(X) for a countable crowded space.
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Main tool, P. 1

Proposition

Let X be a Lindeléf space. Then Exp(X) = max{w(X), kc*(X)}.
Proof. Set k = Exzp(X) and ' = max{w(X), kc¢*(X)}.

< r’: Fix a compactification X such that w(yX) = w(X). Fix
a compact cover {K; : £ € v’} of 7. X\ X.

Using the lindelofness, find (exercise) a continuous

fe 17X —[0,1] for £ € &/ such that f¢(z) = 0 for every z € K¢
and fe(z) > 0 for every z € X. Set F = {f¢: { € v'}.

Fix a collection G of size at most w(yX) = w(X) consisting of
continuous functions g : ¥X — R that separates points of 7.X.
Define ¢ : v X — RFYY by ¢(2)(f) = f(z), where z € vX and
feFug.

¢ is an embedding “thanks” to G. Thus

¢[X] = ¢[yX] N ((0,00)” x RY),
and hence k = Exp(X) = Exp(¢[X]) < max{|F|, |G|} = K.
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Main tool, P. 2

! &~

' < ki Assume that X is a closed subspace of (0,1)", and let

Z = cl( ), where the closure is taken in [0,1]". Z is a
compactification of X.

Denote by 7¢ : [0, 1]® — [0, 1] the natural projection on the &-th
coordinate. For every z € Z \ X there exists £ € k such that
2(€) € {0,1}. Therefore

Z\X = J(='{0,1}]n 2).

(ER

Each 7, ~1{0,1}] N Z is compact, hence kc¢*(X) < k. Since also
w(X) <w((0,1)%) = &, it follows that &’ < k. 0
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Van Douwen's and Hechler's results

» Let X C [0,1] be a Bernstein set, x < ¢ an infinite cardinal,
and X, D X such that |[0,1] \ X,.| = k. Then Exp(X,) = k.

» Since kc*(Q) = ke([0,1]\ Q) =0, Exp(Q) =0.
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Proposition
Let X be a Lindelof space. Assume that n € w and Xy, ..., X, are
Lindelof subspaces of X such that X = XoU---UX,,. Then

Ezp(X) < max{Ezp(Xo),..., Ezp(Xy), w(X)}.

Proof.

A straightforward verification that kc*(X) is also bounded by the
maximum above, using a compactification yX of X of weight
w(yX) = w(X). O
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< p is impossible, P. 1

Theorem
Let k < p be an infinite cardinal, and let X be a countable crowded
subspace of w®. Then X is not closed in w".

Proof. Define
P={zla:z€ X and a € [k]*“}.

Given s,t € P, declare s < ¢t if s D t.

P is o-centered: P ={J,.x{z [ a:a € [k]<“}. Given z € X and
a € [k]=, define
> D, ={secP:s() # x() for some £ € dom(s)},
» D,={se€P:s=uz[bforsomex € X and b €
[£]<“ such that b D a}.
D,'s and D,'s are dense in P. Bell's Theorem yields a filter G on
[P that meets all of these dense sets. Then |JG € cl(X) \ X,

where ¢l denotes closure in w”. O
10/20



< p is impossible, P. 2

Suppose that X is a countable crowded closed subspace of R",
where k < p.

For every & pick a countable dense Q¢ C R\ pr¢[X].

Then R\ Q¢ = w®, and thus X is a closed subspace of
[Leen(R\ Q¢) = (w*)", which is impossible.
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There exists a crowded countable X with Fxp(X) =p, P. 1

Let P and P’ be posets. i : P — [P is a pleasant embedding, if
(1) i(lp) = 1p,

(2) Yp,g € P (p < q—ilp) <i(q)),

(3) Vp,a € P(p L g+ i(p) Li(g)).

We will say that i is a dense embedding if it satisfies all of the
above conditions plus the following:

(4) i[P] is dense in P’

Also recall that P is separative, if for all p,q € P such that p £ ¢
there exists r € P such that » < p and r L g.

[P is meet-friendly if whenever p,q € P are compatible, {p, ¢} has a
greatest lower bound, which we denote by p A g.

Note that p A ¢ € F whenever F is a filter on P and p,q € F.
Notice that P is meet-friendly iff every centered finite subset
{po,...,pn} of P has a greatest lower bound, which we will denote
by po A -+ A p.

Example: B\ {Og}, where B is a boolean algebra.
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There exists a crowded countable X with Exp(X) =p, P. 2

If P is meet-friendly and C is a non-empty centered subset of P,
F={peP:pgA---Ap, <pforsomen € w and pg,...,p, € C}

is the (smallest) filter 7 generated by C.

Let P and I’ be meet-friendly. A pleasant embedding i : P — P is
meet-preserving if

(5) Vp,qeP(p Lqg—ilpAq) =i(p) ANi(g)).
Lemma

Let P be a meet-friendly partial order, and let F be a filter on PP.
Then the following conditions are equivalent:

(A) F is an ultrafilter,
(B) Vpe P\ F3ge F(pLq). O
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There exists a crowded countable X with Fxp(X) =p, P. 3

Lemma

Let P and P’ be meet-friendly partial orders, and let i : P — P’ be a
meet-preserving pleasant embedding. If G is a filter on P’ then
i~YG] is a filter on PP. O

Lemma

Let P be a meet-friendly partial order, let B be a boolean algebra,
and let i : P — B\ {0} be a pleasant embedding. Assume that i[PP|
generates B as a boolean algebra. IfU is an ultrafilter on P then
i[U] generates an ultrafilter on B\ {0}. o.

Given a,b € [w]|<*, we will write a < b to mean a C b and
b\ aCw)\max(a). We will also write @ < b to mean a < b and

a #b.
Given a subset C of [w] with the SFIP, define

PC) ={(a,F):a € [w]<¥ and F € [C]~“}.
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There exists a crowded countable X with Exp(X) =p, P. 4

Order P(C) by declaring (a, F') < (b, G) if the following conditions hold:
» b<xa GCF,
> a\bC NG

This is the standard partial order that generically produces a
pseudointersection of C. P(C) is meet-friendly:

If (a,F) L (b,G), then (a Ub, FFUG) is the greatest lower bound of
{(a, F), (b, G)}.

Recall that A C [w]® is independent, if ;,, A% is infinite for any
injective (A; :i € n) € A" and (§; : i € n) € {0,1}", where A = A and
Al =w)\ A.

Proposition (Nyikos)

There exists an independent family of size p with no pseudointersection.
Proof. Fix an independent family A of size p, subset C of [w]“ of size p
with the SFIP and no pseudointersection. Let A= {A,:{ < p} and
C = {C¢ : £ < p} be injective enumerations. Set
At ={(m,n) Ew xw:m <n}. Then
{(A¢ x Ce) N AT 1 £ < p} is as required. O
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There exists a crowded countable X with Exp(X) =p, P. 5

Now we can pass to the actual construction

Fix an independent family A of size p with no pseudointersection. Wlog,
for every n € w there exists A € A such that n ¢ A. Set P =P(A). For
a € [w]<¥, denote by U, the filter on P generated by

{(a, F) : F € [A]<¥}.

Claim 1. Each U, is an ultrafilter on P.

Proof. Enough to check that if (b, G) € P is compatible with every
element of U, then b < a and a\ b C G, hence (a,G) < (b,G). O

Claim 2. P is separative.

Proof. Routine, using the independence of A. a
GivenpeP, wesetpl={qeP:q<p}. UCPisopenifplCU for
every pe U.

RO(P) is the regular open algebra of P.

The map i : P — RO(P) \ {0} such that i(p) = p | for p € P, is known
to be well-defined, dense and meet-preserving embedding, and the
following stronger form of condition (2) holds:

(2) ¥p,g € P (p < g+ ilp) <i(q)).
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There exists a crowded countable X with Exp(X) =p, P. 6

Let B be the boolean subalgebra of RO(P) generated by i[PP], and
let Z be the Stone space of B. Given b € B, we will denote by

[b] ={V € Z : b € V} the corresponding basic clopen subset of Z.
It follows that each i[U,] generates an ultrafilter on B, which we
will denote by V,. Finally, set

X ={V,:a¢c W}

Claim 3. Z is crowded.
Proof. This is equivalent to showing that B has no atoms, which
follows from P having no atoms and (2). B

Claim 4. X is a countable dense subset of Z.
Proof. |J,epj<w Ua =P, and hence |J ¢ (<o Vo =B\ {0}. B

It follows from Claims 3 and 4 that X is a countable crowded

space, and that Z is a compactification of X. Furthermore,

w(X) <w(Z) = |B| = p. Since Exp(X) > p, it requires to show

that kc(Z \ X) = kc*(X) < p. 1720



There exists a crowded countable X with Fxp(X) =p, P. 7

Fix an enumeration A = {A¢ : £ € p}. For every ¢ set

Uf = Uae[w}<“[(a7A§) \L]a

an open subset of Z.
Claim 5. X = ¢, Ue.
Proof. C is straightforward. In order to prove D, pick
V € eep Us- Thus, for every § € p we can fix a¢ € [w]=* such
that (ag, A¢) L€ V. Set U =i~ '[V], and observe that U/ is a filter
on P. Also, (ag, A¢) € U for all &.
Set a = e ae. ais finite, because a \ max(ag) C Ag for all €.
Fix & € p such that a = a¢, We check that U/ = U,, which would
give that V =V, thus concluding the proof.
Since U, is an ultrafilter, it will be enough to show that U, C U.
So pick (a, F') € Uy, where F' = {Ag,, ..., A¢, }. Note that

(a, FU{Ac}) = (ag, Agy) N+ Alag,, Ag,) A (ag, Ag) €U,
which clearly implies (a, F') € U, as desired. 18/20



Open questions

Using the CDH property of R” for k < p, we get that any
countable dense X C R” has a closed copy of any countable space
of weight < k, is a topological group, and Ezp(X) = 0.

Using our Main Tool one can show that Exp(X) = & for any
countable dense X C R*, provided that 0 < s < ¢. In particular,
this is true for dense countable subgroups of R*.

This motivates the following

Question
For which cardinals k such that p < k < 0 does there exist a

countable crowded topological group (homogeneous space) X such
that Exp(X) = kK7 O
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The last slide

Thank you for your attention.
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