Countable spaces, realcompactness, and cardinal characteristics

Lyubomyr Zdomskyy

TU Wien

Warsaw Topology and Set Theory seminar, May 22, 2024, online

Joint work with Claudio Agostini and Andrea Medini

Definitions and basic facts

All spaces are Tychonoff.
A space X is realcompact, if X can be closely embedded into \mathbb{R}^{κ} for some cardinal κ.

The minimal κ as above is denoted by $\operatorname{Exp}(X)$.
All Lindelöf spaces are realcompact. Thus all metrizable separable and σ-compact spaces are realcompact.
$k c(X)$ is the minimal cardinality of a cover of X by compact subsspaces. $k c^{*}(X):=k c(\beta X \backslash X)$.

Motivation

Theorem (van Douwen 1984)
For every $\kappa \leq \mathfrak{c}$ there exists a metrizable separable space X with $\operatorname{Exp}(X)=\kappa$.

Theorem (Hechler)
$\operatorname{Exp}(\mathbb{Q})=\mathfrak{o}$.
Question
Which cardinals can be realized as $\operatorname{Exp}(X)$ for a countable crowded space X ?

Main result

Theorem (AMZ 2023)
Let κ be an infinite cardinal. Then there exists a countable crowded space X with $\operatorname{Exp}(X)=\kappa$ iff $\mathfrak{p} \leq \kappa \leq \mathfrak{c}$.

The proof consists of four parts:

- No $\kappa<\mathfrak{p}$ can serve as $\operatorname{Exp}(X)$ for a countable crowded space;
- Producing an example for $\kappa=\mathfrak{p}$; the core of the proof;
- Modifying an example for \mathfrak{p} in such a way that it gets Exp equal to any given $\kappa \in[\mathfrak{p}, \mathfrak{c}]$;
- No $\kappa>\mathfrak{c}$ can serve as $\operatorname{Exp}(X)$ for a countable crowded space.

Main tool, P. 1

Proposition

Let X be a Lindelöf space. Then $\operatorname{Exp}(X)=\max \left\{w(X), k c^{*}(X)\right\}$. Proof. Set $\kappa=\operatorname{Exp}(X)$ and $\kappa^{\prime}=\max \left\{w(X), k c^{*}(X)\right\}$.
$\kappa \leq \kappa^{\prime}$: Fix a compactification γX such that $w(\gamma X)=w(X)$. Fix a compact cover $\left\{K_{\xi}: \xi \in \kappa^{\prime}\right\}$ of $\gamma X \backslash X$. Using the lindelöfness, find (exercise) a continuous $f_{\xi}: \gamma X \longrightarrow[0,1]$ for $\xi \in \kappa^{\prime}$ such that $f_{\xi}(z)=0$ for every $z \in K_{\xi}$ and $f_{\xi}(z)>0$ for every $z \in X$. Set $\mathcal{F}=\left\{f_{\xi}: \xi \in \kappa^{\prime}\right\}$.
Fix a collection \mathcal{G} of size at most $w(\gamma X)=w(X)$ consisting of continuous functions $g: \gamma X \rightarrow \mathbb{R}$ that separates points of γX. Define $\phi: \gamma X \rightarrow \mathbb{R}^{\mathcal{F} \cup \mathcal{G}}$ by $\phi(z)(f)=f(z)$, where $z \in \gamma X$ and $f \in \mathcal{F} \cup \mathcal{G}$.
ϕ is an embedding "thanks" to \mathcal{G}. Thus

$$
\phi[X]=\phi[\gamma X] \cap\left((0, \infty)^{\mathcal{F}} \times \mathbb{R}^{\mathcal{G}}\right)
$$

and hence $\kappa=\operatorname{Exp}(X)=\operatorname{Exp}(\phi[X]) \leq \max \{|\mathcal{F}|,|\mathcal{G}|\}=\kappa^{\prime}$.

Main tool, P. 2

$\kappa^{\prime} \leq \kappa$: Assume that X is a closed subspace of $(0,1)^{\kappa}$, and let $Z=\operatorname{cl}(X)$, where the closure is taken in $[0,1]^{\kappa} . Z$ is a compactification of X.

Denote by $\pi_{\xi}:[0,1]^{\kappa} \longrightarrow[0,1]$ the natural projection on the ξ-th coordinate. For every $z \in Z \backslash X$ there exists $\xi \in \kappa$ such that $z(\xi) \in\{0,1\}$. Therefore

$$
Z \backslash X=\bigcup_{\xi \in \kappa}\left(\pi_{\xi}^{-1}[\{0,1\}] \cap Z\right)
$$

Each $\pi_{\xi}^{-1}[\{0,1\}] \cap Z$ is compact, hence $k c^{*}(X) \leq \kappa$. Since also $w(X) \leq w\left((0,1)^{\kappa}\right)=\kappa$, it follows that $\kappa^{\prime} \leq \kappa$.

Van Douwen's and Hechler's results

- Let $X \subset[0,1]$ be a Bernstein set, $\kappa \leq \mathfrak{c}$ an infinite cardinal, and $X_{\kappa} \supset X$ such that $\left|[0,1] \backslash X_{\kappa}\right|=\kappa$. Then $\operatorname{Exp}\left(X_{\kappa}\right)=\kappa$.
- Since $k c^{*}(\mathbb{Q})=k c([0,1] \backslash \mathbb{Q})=\mathfrak{d}, \operatorname{Exp}(\mathbb{Q})=\mathfrak{d}$.

Main tool 2

Proposition

Let X be a Lindelöf space. Assume that $n \in \omega$ and X_{0}, \ldots, X_{n} are Lindelöf subspaces of X such that $X=X_{0} \cup \cdots \cup X_{n}$. Then

$$
\operatorname{Exp}(X) \leq \max \left\{\operatorname{Exp}\left(X_{0}\right), \ldots, \operatorname{Exp}\left(X_{n}\right), w(X)\right\}
$$

Proof.

A straightforward verification that $k c^{*}(X)$ is also bounded by the maximum above, using a compactification γX of X of weight $w(\gamma X)=w(X)$.

$<\mathfrak{p}$ is impossible, P. 1

Theorem

Let $\kappa<\mathfrak{p}$ be an infinite cardinal, and let X be a countable crowded subspace of ω^{κ}. Then X is not closed in ω^{κ}.
Proof. Define

$$
\mathbb{P}=\left\{x \upharpoonright a: x \in X \text { and } a \in[\kappa]^{<\omega}\right\} .
$$

Given $s, t \in \mathbb{P}$, declare $s \leq t$ if $s \supseteq t$.
\mathbb{P} is σ-centered: $\mathbb{P}=\bigcup_{x \in X}\left\{x \upharpoonright a: a \in[\kappa]^{<\omega}\right\}$. Given $x \in X$ and $a \in[\kappa]^{<\omega}$, define

- $D_{x}=\{s \in \mathbb{P}: s(\xi) \neq x(\xi)$ for some $\xi \in \operatorname{dom}(s)\}$,
- $D_{a}=\{s \in \mathbb{P}: s=x \upharpoonright b$ for some $x \in X$ and $b \in$ $[\kappa]^{<\omega}$ such that $\left.b \supseteq a\right\}$.
D_{x} 's and D_{a} 's are dense in \mathbb{P}. Bell's Theorem yields a filter G on \mathbb{P} that meets all of these dense sets. Then $\bigcup G \in \operatorname{cl}(X) \backslash X$, where $c l$ denotes closure in ω^{κ}.

$<\mathfrak{p}$ is impossible, P. 2

Suppose that X is a countable crowded closed subspace of \mathbb{R}^{κ}, where $\kappa<\mathfrak{p}$.

For every ξ pick a countable dense $Q_{\xi} \subset \mathbb{R} \backslash p r_{\xi}[X]$.
Then $\mathbb{R} \backslash Q_{\xi} \equiv \omega^{\omega}$, and thus X is a closed subspace of $\prod_{\xi \in \kappa}\left(\mathbb{R} \backslash Q_{\xi}\right) \equiv\left(\omega^{\omega}\right)^{\kappa}$, which is impossible.

There exists a crowded countable X with $\operatorname{Exp}(X)=\mathfrak{p}$, P. 1

Let \mathbb{P} and \mathbb{P}^{\prime} be posets. $i: \mathbb{P} \longrightarrow \mathbb{P}^{\prime}$ is a pleasant embedding, if
(1) $i\left(1_{\mathbb{P}}\right)=1_{\mathbb{P}^{\prime}}$,
(2) $\forall p, q \in \mathbb{P}(p \leq q \rightarrow i(p) \leq i(q))$,
(3) $\forall p, q \in \mathbb{P}(p \perp q \leftrightarrow i(p) \perp i(q))$.

We will say that i is a dense embedding if it satisfies all of the above conditions plus the following:
(4) $i[\mathbb{P}]$ is dense in \mathbb{P}^{\prime}.

Also recall that \mathbb{P} is separative, if for all $p, q \in \mathbb{P}$ such that $p \not \leq q$ there exists $r \in \mathbb{P}$ such that $r \leq p$ and $r \perp q$.
\mathbb{P} is meet-friendly if whenever $p, q \in \mathbb{P}$ are compatible, $\{p, q\}$ has a greatest lower bound, which we denote by $p \wedge q$.
Note that $p \wedge q \in \mathcal{F}$ whenever \mathcal{F} is a filter on \mathbb{P} and $p, q \in \mathcal{F}$.
Notice that \mathbb{P} is meet-friendly iff every centered finite subset $\left\{p_{0}, \ldots, p_{n}\right\}$ of \mathbb{P} has a greatest lower bound, which we will denote by $p_{0} \wedge \cdots \wedge p_{n}$.
Example: $\mathbb{B} \backslash\left\{0_{\mathbb{B}}\right\}$, where \mathbb{B} is a boolean algebra.

There exists a crowded countable X with $\operatorname{Exp}(X)=\mathfrak{p}$, P. 2

If \mathbb{P} is meet-friendly and \mathcal{C} is a non-empty centered subset of \mathbb{P},
$\mathcal{F}=\left\{p \in \mathbb{P}: p_{0} \wedge \cdots \wedge p_{n} \leq p\right.$ for some $n \in \omega$ and $\left.p_{0}, \ldots, p_{n} \in \mathcal{C}\right\}$ is the (smallest) filter \mathcal{F} generated by \mathcal{C}.
Let \mathbb{P} and \mathbb{P}^{\prime} be meet-friendly. A pleasant embedding $i: \mathbb{P} \rightarrow \mathbb{P}^{\prime}$ is meet-preserving if
(5) $\forall p, q \in \mathbb{P}(p \not \perp q \rightarrow i(p \wedge q)=i(p) \wedge i(q))$.

Lemma
Let \mathbb{P} be a meet-friendly partial order, and let \mathcal{F} be a filter on \mathbb{P}.
Then the following conditions are equivalent:
(A) \mathcal{F} is an ultrafilter,
(B) $\forall p \in \mathbb{P} \backslash \mathcal{F} \exists q \in \mathcal{F}(p \perp q)$.

There exists a crowded countable X with $\operatorname{Exp}(X)=\mathfrak{p}$, P. 3

Lemma

Let \mathbb{P} and \mathbb{P}^{\prime} be meet-friendly partial orders, and let $i: \mathbb{P} \rightarrow \mathbb{P}^{\prime}$ be a meet-preserving pleasant embedding. If \mathcal{G} is a filter on \mathbb{P}^{\prime} then $i^{-1}[\mathcal{G}]$ is a filter on \mathbb{P}.

Lemma

Let \mathbb{P} be a meet-friendly partial order, let \mathbb{B} be a boolean algebra, and let $i: \mathbb{P} \rightarrow \mathbb{B} \backslash\{0\}$ be a pleasant embedding. Assume that $i[\mathbb{P}]$ generates \mathbb{B} as a boolean algebra. If \mathcal{U} is an ultrafilter on \mathbb{P} then $i[\mathcal{U}]$ generates an ultrafilter on $\mathbb{B} \backslash\{0\}$.

Given $a, b \in[\omega]^{<\omega}$, we will write $a \preccurlyeq b$ to mean $a \subseteq b$ and $b \backslash a \subseteq \omega \backslash \max (a)$. We will also write $a \prec b$ to mean $a \preccurlyeq b$ and $a \neq b$.
Given a subset \mathcal{C} of $[\omega]^{\omega}$ with the SFIP, define

$$
\mathbb{P}(\mathcal{C})=\left\{(a, F): a \in[\omega]^{<\omega} \text { and } F \in[\mathcal{C}]^{<\omega}\right\} .
$$

There exists a crowded countable X with $\operatorname{Exp}(X)=$ p. P. 4

Order $\mathbb{P}(\mathcal{C})$ by declaring $(a, F) \leq(b, G)$ if the following conditions hold:

- $b \preccurlyeq a, G \subseteq F$,
- $a \backslash b \subseteq \bigcap G$.

This is the standard partial order that generically produces a pseudointersection of $\mathcal{C} . \mathbb{P}(\mathcal{C})$ is meet-friendly: If $(a, F) \not \perp(b, G)$, then $(a \cup b, F \cup G)$ is the greatest lower bound of $\{(a, F),(b, G)\}$.
Recall that $\mathcal{A} \subset[\omega]^{\omega}$ is independent, if $\bigcap_{i \in n} A_{i}^{\delta_{i}}$ is infinite for any injective $\left\langle A_{i}: i \in n\right\rangle \in \mathcal{A}^{n}$ and $\left\langle\delta_{i}: i \in n\right\rangle \in\{0,1\}^{n}$, where $A^{0}=A$ and $A^{1}=\omega \backslash A$.

Proposition (Nyikos)

There exists an independent family of size \mathfrak{p} with no pseudointersection.
Proof. Fix an independent family \mathcal{A} of size \mathfrak{p}, subset \mathcal{C} of $[\omega]^{\omega}$ of size \mathfrak{p} with the SFIP and no pseudointersection. Let $\mathcal{A}=\left\{A_{\xi}: \xi<\mathfrak{p}\right\}$ and $\mathcal{C}=\left\{C_{\xi}: \xi<\mathfrak{p}\right\}$ be injective enumerations. Set
$\Delta^{+}=\{(m, n) \in \omega \times \omega: m \leq n\}$. Then
$\left\{\left(A_{\xi} \times C_{\xi}\right) \cap \Delta^{+}: \xi<\mathfrak{p}\right\}$ is as required.

There exists a crowded countable X with $\operatorname{Exp}(X)=$ p. P. 5

Now we can pass to the actual construction
Fix an independent family \mathcal{A} of size \mathfrak{p} with no pseudointersection. Wlog, for every $n \in \omega$ there exists $A \in \mathcal{A}$ such that $n \notin A$. Set $\mathbb{P}=\mathbb{P}(\mathcal{A})$. For $a \in[\omega]^{<\omega}$, denote by \mathcal{U}_{a} the filter on \mathbb{P} generated by $\left\{(a, F): F \in[\mathcal{A}]^{<\omega}\right\}$.
Claim 1. Each \mathcal{U}_{a} is an ultrafilter on \mathbb{P}.
Proof. Enough to check that if $(b, G) \in \mathbb{P}$ is compatible with every element of \mathcal{U}_{a}, then $b \preccurlyeq a$ and $a \backslash b \subseteq \bigcap G$, hence $(a, G) \leq(b, G)$.
Claim 2. \mathbb{P} is separative.
Proof. Routine, using the independence of \mathcal{A}.
Given $p \in \mathbb{P}$, we set $p \downarrow=\{q \in \mathbb{P}: q \leq p\} . U \subseteq \mathbb{P}$ is open if $p \downarrow \subseteq U$ for every $p \in U$.
$R O(\mathbb{P})$ is the regular open algebra of \mathbb{P}.
The map $i: \mathbb{P} \rightarrow R O(\mathbb{P}) \backslash\{0\}$ such that $i(p)=p \downarrow$ for $p \in \mathbb{P}$, is known to be well-defined, dense and meet-preserving embedding, and the following stronger form of condition (2) holds:

$$
\text { (2') } \forall p, q \in \mathbb{P}(p \leq q \leftrightarrow i(p) \leq i(q)) \text {. }
$$

There exists a crowded countable X with $\operatorname{Exp}(X)=$ p. P. 6

Let \mathbb{B} be the boolean subalgebra of $R O(\mathbb{P})$ generated by $i[\mathbb{P}]$, and let Z be the Stone space of \mathbb{B}. Given $b \in \mathbb{B}$, we will denote by $[b]=\{\mathcal{V} \in Z: b \in \mathcal{V}\}$ the corresponding basic clopen subset of Z. It follows that each $i\left[\mathcal{U}_{a}\right]$ generates an ultrafilter on \mathbb{B}, which we will denote by \mathcal{V}_{a}. Finally, set

$$
X=\left\{\mathcal{V}_{a}: a \in[\omega]^{<\omega}\right\}
$$

Claim 3. Z is crowded.
Proof. This is equivalent to showing that \mathbb{B} has no atoms, which follows from \mathbb{P} having no atoms and (2^{\prime}).

Claim 4. X is a countable dense subset of Z.
Proof. $\bigcup_{a \in[\omega]<\omega} \mathcal{U}_{a}=\mathbb{P}$, and hence $\bigcup_{a \in[\omega]<\omega} \mathcal{V}_{a}=\mathbb{B} \backslash\{0\}$.
It follows from Claims 3 and 4 that X is a countable crowded space, and that Z is a compactification of X. Furthermore, $w(X) \leq w(Z)=|\mathbb{B}|=\mathfrak{p}$. Since $\operatorname{Exp}(X) \geq \mathfrak{p}$, it requires to show that $k c(Z \backslash X)=k c^{*}(X) \leq p$.

There exists a crowded countable X with $\operatorname{Exp}(X)=\mathfrak{p}$, P. 7

Fix an enumeration $\mathcal{A}=\left\{A_{\xi}: \xi \in \mathfrak{p}\right\}$. For every ξ set

$$
U_{\xi}=\bigcup_{a \in[\omega]<\omega}\left[\left(a, A_{\xi}\right) \downarrow\right],
$$

an open subset of Z.
Claim 5. $X=\bigcap_{\xi \in \mathfrak{p}} U_{\xi}$.
Proof. \subseteq is straightforward. In order to prove \supseteq, pick
$\mathcal{V} \in \bigcap_{\xi \in \mathfrak{p}} U_{\xi}$. Thus, for every $\xi \in \mathfrak{p}$ we can fix $a_{\xi} \in[\omega]^{<\omega}$ such that $\left(a_{\xi}, A_{\xi}\right) \downarrow \in \mathcal{V}$. Set $\mathcal{U}=i^{-1}[\mathcal{V}]$, and observe that \mathcal{U} is a filter on \mathbb{P}. Also, $\left(a_{\xi}, A_{\xi}\right) \in \mathcal{U}$ for all ξ.
Set $a=\bigcup_{\xi \in \mathfrak{p}} a_{\xi} . a$ is finite, because $a \backslash \max \left(a_{\xi}\right) \subseteq A_{\xi}$ for all ξ.
Fix $\xi \in \mathfrak{p}$ such that $a=a_{\xi}$, We check that $\mathcal{U}=\mathcal{U}_{a}$, which would give that $\mathcal{V}=\mathcal{V}_{a}$, thus concluding the proof.
Since \mathcal{U}_{a} is an ultrafilter, it will be enough to show that $\mathcal{U}_{a} \subseteq \mathcal{U}$. So pick $(a, F) \in \mathcal{U}_{a}$, where $F=\left\{A_{\xi_{0}}, \ldots, A_{\xi_{k}}\right\}$. Note that

$$
\left(a, F \cup\left\{A_{\xi}\right\}\right)=\left(a_{\xi_{0}}, A_{\xi_{0}}\right) \wedge \cdots \wedge\left(a_{\xi_{k}}, A_{\xi_{k}}\right) \wedge\left(a_{\xi}, A_{\xi}\right) \in \mathcal{U},
$$

which clearly implies $(a, F) \in \mathcal{U}$, as desired.

Open questions

Using the CDH property of \mathbb{R}^{κ} for $\kappa<\mathfrak{p}$, we get that any countable dense $X \subset \mathbb{R}^{\kappa}$ has a closed copy of any countable space of weight $\leq \kappa$, is a topological group, and $\operatorname{Exp}(X)=\mathfrak{d}$.

Using our Main Tool one can show that $\operatorname{Exp}(X)=\kappa$ for any countable dense $X \subset \mathbb{R}^{\kappa}$, provided that $\mathfrak{d} \leq \kappa \leq \mathfrak{c}$. In particular, this is true for dense countable subgroups of \mathbb{R}^{κ}.

This motivates the following

Question

For which cardinals κ such that $\mathfrak{p} \leq \kappa<\mathfrak{d}$ does there exist a countable crowded topological group (homogeneous space) X such that $\operatorname{Exp}(X)=\kappa$?

The last slide

Thank you for your attention.

