Let \mathbb{M}_{ω_2} be an iterated Miller forcing of length ω_2 with countable support and G_{ω_2} be an \mathbb{M}_{ω_2} -generic over V satisfying CH.

Lemma 0.1. For each set $X \subseteq 2^{\omega} \cap V[G_{\omega_2}]$ such that $X \in V[G_{\omega_2}]$, there is an ordinal number $\beta < \omega_2$ such that $X \cap V[G_{\beta}] \in V[G_{\beta}]$.

Proof. Let $X = \{x_{\alpha} : \alpha < \omega_2\}$. In V we have a sequence $\langle \dot{x}_{\alpha} : \alpha < \omega_2 \rangle$, where each \dot{x}_{α} is a name for a real and $X = \{\dot{x}_{\alpha}[G_{\omega_2}] : \alpha < \omega_2\}$. Every antichain in \mathbb{M}_{ω_2} has size at most ω_1 . Fix $\alpha < \omega_2$. Without loss of generality we may assume that \dot{x}_{α} is the set of all pairs $\langle \langle i, \check{k}_{i,\xi}^{\alpha} \rangle, p_{i,\xi}^{\alpha} \rangle$, where $i < \omega$ and $\xi < \omega_1$ such that:

- $k_{i,\xi}^{\alpha} \in \{0,1\},\$
- for each *i*, the set $A_i^{\alpha} := \{ p_{i,\xi}^{\alpha} : \xi < \omega_1 \}$ is a maximal antichain in \mathbb{M}_{ω_2} ,
- for each ξ , we have $p_{i,\xi}^{\alpha} \Vdash \dot{x}_{\alpha}(i) = k_{i,\xi}^{\alpha}$.

Since the set $\bigcup \{ \operatorname{supp}(p) : p \in A_i^{\alpha}, i < \omega \}$ has size at most ω_1 , it is contained in some ordinal number $g(\alpha) > \alpha$. Let C_0 be the club of all fixed points of the map g, i.e., for all $\beta \in C_0$ and $\alpha < \beta$, we have $g(\alpha) < \beta$.

For each $\beta \in C_0$, we have $\{x_{\alpha} : \alpha < \beta\} \in V[G_{\beta}]$: The sequence $\langle \dot{x}_{\alpha} : \alpha < \beta \rangle$ is in V. Since all antichains A_i^{α} for $\alpha < \beta$ and $i < \omega$ are subsets of \mathbb{M}_{β} , we have $G_{\omega_2} \cap A_i^{\alpha} = G_{\beta} \cap A_i^{\alpha}$ and thus,

$$\dot{x}_{\alpha}[G_{\omega_2}] = \{ \langle i, k_{i,\xi}^{\alpha} \rangle : i < \omega, \{ p_{i,\xi}^{\alpha} \} = G_{\omega_2} \cap A_i^{\alpha} = G_{\beta} \cap A_i^{\alpha} \} = \dot{x}_{\alpha}[G_{\beta}]$$

for all $\alpha < \beta$.

For each ordinal number $\alpha < \omega_2$, there is an ordinal number $h(\alpha) > \alpha$ such that $X \cap V[G_{\alpha}] \subseteq \{x_{\beta} : \beta < h(\alpha)\}$. Let C_1 be a club in ω_2 such that for all $\beta \in C_1$ and $\alpha < \beta$, we have $h(\alpha) < \beta$.

For each $\beta \in C_1$ with $\operatorname{cf}(C_1 \cap \beta) = \omega_1$, we have $X \cap V[G_\beta] \subseteq \{x_\alpha : \alpha < \beta\}$: Fix a real $x \in X \cap V[G_\beta]$. Then there is an ordinal number $\gamma < \beta$ such that $x \in X \cap V[G_\gamma]$, and thus $x \in \{x_\alpha : \alpha < h(\gamma)\} \subseteq \{x_\alpha : \alpha < \beta\}$.

Let *D* be the set of all $\beta \in C_0 \cap C_1$ such that there is an increasing sequence in $C_0 \cap C_1$ of length ω_1 whose supremum is β . Then the set *D* is an ω_1 -club. Pick $\beta \in D$. Since $\beta \in C_0$, we have $\{x_\alpha : \alpha < \beta\} \in V[G_\beta]$, and thus $\{x_\alpha : \alpha < \beta\} \subseteq X \cap V[G_\beta]$. On the other hand, since $\beta \in C_1$ and $cf(C_1 \cap \beta) = \omega_1$, we have $X \cap V[G_\beta] \subseteq \{x_\alpha : \alpha < \beta\}$. Finally, we have that $X \cap V[G_\beta] = \{x_\alpha : \alpha < \beta\} \in V[G_\beta]$.