Computational Social Choice and Fair Participatory Budgeting

Piotr Skowron
University of Warsaw

What is Computational Social Choice?

What is Computational Social Choice?

What is Computational Social Choice?

Studying situations where a group must make a decision, yet the members of the group have contradictory preferences regarding the outcome.

What is Computational Social Choice?

Studying situations where a group must make a decision, yet the members of the group have contradictory preferences regarding the outcome.

What is Computational Social Choice?

Studying situations where a group must make a decision, yet the members of the group have contradictory preferences regarding the outcome.

What is Computational Social Choice?

Studying situations where a group must make a decision, yet the members of the group have contradictory preferences regarding the outcome.

What is Computational Social Choice?

Studying situations where a group must make a decision, yet the members of the group have contradictory preferences regarding the outcome.

VOTE

Preferences

decision
Outcome

What is Computational Social Choice?

Studying situations where a group must make a decision, yet the members of the group have contradictory preferences regarding the outcome.

Preferences
decision
Outcome

What is Computational Social Choice?

Studying situations where a group of the group have contradictory

Preferences
decision
Outcome

What is Computational Social Choice?

What is Computational Social Choice?

What is Computational Social Choice?

What is Computational Social Choice?

The model for participatory budgeting

The model for participatory budgeting

1. A set of candidates or projects $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$.

Each candidate c comes with a cost, $\operatorname{cost}(c)$.
2. There is a budget constraint b : We have to select a subset of projects W s.t. $\sum_{c \in W} \operatorname{cost}(c) \leq b$.
3. A set of voters $N=\{1,2, \ldots, n\}$.

Each voter has preferences over the projects.

How this is currently done

How this is currently done

How this is currently done

How this is currently done

Solution: Divide the budget upfront between the districts!

How this is currently done

Solution: Divide the budget upfront between the districts!
But this causes other problems!

How this is currently done

Solution: Divide the budget upfront between the districts!

But this causes other problems!

parents who want a playground

How this is currently done

Solution: Divide the budget upfront between the districts!

But this causes other problems!

parents who want a playground

voters close to the border

How this is currently done

Solution: Divide the budget upfront between the districts!

But this causes other problems!

parents who want a playground

voters close to the border

cyclists who want a bike trail

How this is currently done

Districts are not the only division of voters

How this is currently done

せ. \begin{tabular}{c}
30% voters

(green areas)

30% voters

(playgrounds)

40% voters

(bike infrastructure)
\end{tabular}

How this is currently done

Choosing by the number of votes

How this is currently done

30% voters

(green areas) $\mathrm{l}^{30 \%}$ voters (playgrounds) | 40% voters |
| :---: |
| (bike infrastructure) |

The rule should be fair to all groups of voters

Criterion of fairness．

voter	
入ob	$170 €$
$\square{ }^{\circ}$	$25 €$
X 見	$124 €$
\square－－	$93 €$
\square	$74 €$
年	$155 €$
x	$130 €$

$A(i)$ ：a subset of projects that voter i approves．

Criterion of fairness.

voter	
Х \downarrow	$170 €$
$\square{ }^{\square}$	$25 €$
X 慁	$124 €$
$\square \boldsymbol{\square}$	$93 €$
\square	$74 €$
\square 名	$155 €$
X	$130 €$

Extended justified representation (EJR):

We say that a group of voters S is T-cohesive for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} A(i)
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each T-cohesive group S of voters there exists a voter $i \in S$ such that

$$
|A(i) \cap \mathscr{R}(E)| \geq|T|
$$

$A(i)$: a subset of projects that voter i approves.

Criterion of fairness.

voter		
X	$170 €$	
$\square \Psi^{\square}$	$25 €$	
X 目	$124 €$	
$\square \boldsymbol{\\|}$ -	$93 €$	
8	$74 €$	
-	155 €	
χ^{\square}	$130 €$	

$A(i)$: a subset of projects that voter i approves.

Extended justified representation (EJR):

We say that a group of voters S is T-cohesive for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} A(i)
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each T-cohesive group S of voters there exists a voter $i \in S$ such that

$$
|A(i) \cap \mathscr{R}(E)| \geq|T| .
$$

10 voters: 思 $b=500$

10 voters:

10 voters: N-1
10 voters:
10 voters:

Criterion of fairness.

voter	
X	$170 €$
$\square \Psi^{\square}$	$25 €$
X 目	124 €
$\square 1$ -	$93 €$
8	$74 €$
-	$155 €$
X	$130 €$

$A(i)$: a subset of projects that voter i approves.

Extended justified representation (EJR):

We say that a group of voters S is T-cohesive for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} A(i)
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each T-cohesive group S of voters there exists a voter $i \in S$ such that

$$
|A(i) \cap \mathscr{R}(E)| \geq|T| .
$$

Criterion of fairness.

voter	
X	$170 €$
$\square \Psi^{\square}$	$25 €$
X 目	$124 €$
\square-1-1	$93 €$
$\square 8$	$74 €$
\square 晨	155 €
X	$130 €$

$A(i)$: a subset of projects that voter i approves.

Extended justified representation (EJR):

We say that a group of voters S is T-cohesive for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} A(i)
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each T-cohesive group S of voters there exists a voter $i \in S$ such that

$$
|A(i) \cap \mathscr{R}(E)| \geq|T|
$$

Criterion of fairness.

voter			
X 6	$170 €$		
$\square \underbrace{}_{\text {¢ }}$	$25 €$		
X 莵	$124 €$		
$\square \boldsymbol{\\|} \boldsymbol{\\|}$	$93 €$		
$\square 9$	$74 €$		
\square	155 €		
X	$130 €$		

$A(i)$: a subset of projects that voter i approves.

Exterided' jusified represemtation ([1]in): Core:
We say that a group of voters S is T-cohesive for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} \Lambda(i)
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each T-cohesive group S of voters there exists a voter $i \in S$ such that

$$
|A(i) \cap \mathscr{R}(E)| \geq|T|
$$

Criterion of fairness.

voter		
X	$170 €$	
$\square \psi^{\circ}$	25 €	
X 自	$124 €$	
$\square \boldsymbol{\\|} \boldsymbol{\square}$	$93 €$	
\square	$74 €$	
\square 名	155 €	
\pm My	$130 €$	

$A(i)$: a subset of projects that voter i approves.

Exterrded justified represemtation ([12n): Core:
We say that a group of voters S is T-cohesi for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} \Lambda(t)
$$

A rule \mathscr{R} satisfies extended justified repres \in ntation if for each election instance E and each T-cohesi e group S of voters there exists a voter $i \in S$ such that
$|A(i) \cap \mathscr{R}(E)| \geq|T|$.

Criterion of fairness.

1. K. Munagala, Y. Shen, K. Wang, Z. Wang. Approximate Core for Committee Selection via Multilinear Extension and Market Clearing. SODA-2022.
2. Z. Jiang, K. Munagala, and K. Wang. Approximately stable committee selection. STOC-2020.
3. D. Peters and P. Skowron. Proportionality and the limits of welfarism. ACM-EC-2020.
4. Y. Cheng, Z. Jiang, K. Munagala, and K. Wang. Group fairness in committee selection. ACM-EC-2019.
5. M. Brill, P. Golz, D. Peters, U. Schmidt-Kraepelin, and K. Wilker. Approval-based apportionment. AAAI-2020.
6. G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

Method of Equal Shares: Idea

Method of Equal Shares: Idea

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.
D. Peters, P. Skowron: Proportionality and the Limits of Welfarism. ACM-EC 2020.

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

$b=\$ 1000$	(20 votes)	(26 votes)	(11 votes)	(9 votes)	(20 votes)	14 votes)
A (costs \$200)	$A \checkmark$	$A \checkmark$				$\mathrm{A} \square$
B (costs \$200)	В \checkmark	B \checkmark				
C (costs \$200)	C \downarrow	C \checkmark		C \checkmark		C
D (costs \$200)	D \checkmark	D \downarrow	$\mathrm{D} \checkmark$	$\mathrm{D} \checkmark$		D
E (costs \$200)	$\mathrm{E} \quad \checkmark$	E $\sqrt{ }$	E		E	E
F (costs \$200)	$\mathrm{F} \checkmark$			$F \square$		F \checkmark
G (costs \$200)		G	$\mathrm{G} \square$	$\mathrm{G} \quad \checkmark$		G $\sqrt{ }$
H (costs \$200)					$\mathrm{H} \square$	

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

$b=\$ 1000$	(20 votes)	(26 votes)	(11 votes)	(9 votes)	(20 votes)	(14 votes)
A (costs \$ 200)	$A \checkmark$	$A \checkmark$			A	$A \square$
B (costs \$200)	В \checkmark	В \downarrow				
C (costs \$200)	C \downarrow	C \checkmark		$\mathrm{C} \square$		
D (costs \$200)	D \downarrow	D \downarrow	$\mathrm{D} \square$	$\mathrm{D} \square$	D	D
E (costs \$200)	$\mathrm{E} \quad \checkmark$	$\mathrm{E} \quad \checkmark$	E		E	
F (costs \$200)	$\mathrm{F} \square$			$F \square$		$F \longrightarrow$
G (costs \$200)		G	\checkmark	$\mathrm{G} \quad \checkmark$		$\mathrm{G} \quad \checkmark$
H (costs \$200)					H	
	20 voters:	26 voters:	11 voters:	9 voters:	20 voters:	14 voters:
\$10	3.33	3.33				
\downarrow	3.03	3.03	3.03	3.03		3.33

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

$b=\$ 1000$	(20 votes)	(26 votes)	(11 votes)	(9 votes)	(20 votes)	(14 votes)
A (costs \$200)	A	A				A
B (costs \$200)	В \checkmark	B \downarrow				B
C (costs \$200)	C \downarrow	C \checkmark		C \square	C	C
D (costs \$200)	D \checkmark	D \downarrow	D \checkmark	$\mathrm{D} \square$	D	D
E (costs \$200)	E \downarrow	$\mathrm{E} \quad \checkmark$			E	E
F (costs \$200)	$F \square$			$F \square$		$F \square$
G (costs \$200)	G	G	$\mathrm{G} \square$	$\mathrm{G} \quad \checkmark$		$\mathrm{G} \square$
H (costs \$200)					H \square	
	20 voters:	26 voters:	11 voters:	9 voters:	20 voters:	14 voters:
	3.64	3.64				
\$10	3.33	3.33		3.64		
\downarrow	3.03	3.03	3.03	3.03		3.33

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

$b=\$ 1000$	(20 votes)	(26 votes)	(11 votes)	(9 votes)	(20 votes)	(14 votes
A (costs \$ 200)	$A \square$	A \checkmark				$A \square$
B (costs \$200)	B \checkmark	B \checkmark				B
C (costs \$200)	C \checkmark	C \checkmark		C \square	C	C
D (costs \$200)	$D \checkmark$	D \downarrow	D \checkmark	$\mathrm{D} \square$	D	D
E (costs \$200)	$\mathrm{E} \quad \checkmark$	$\mathrm{E} \quad \checkmark$				E
F (costs \$200)	$\mathrm{F} \quad \checkmark$			$F \square$		$F \square$
G (costs \$200)	G	G	$\mathrm{G} \sqrt{ }$	$\mathrm{G} \checkmark$		$\mathrm{G} \quad \checkmark$
H (costs \$200)					$\mathrm{H} \square$	
	20 voters:	26 voters:	11 voters:	9 voters:	20 voters:	14 voters:
	3.64	3.64		3.33		
\$10	3.33	3.33	6.97	3.64		6.67
	3.03	3.03	3.03	3.03		3.33

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

$b=\$ 1000$	(20 votes)	(26 votes)	(11 votes)	(9 votes)	(20 votes)	(14 votes)
A (costs \$200)	$A \square$	$A \square$		A		A
B (costs \$200)	$B \square$	B \checkmark				
C (costs \$200)	C \checkmark	C \checkmark		C \checkmark	C	
D (costs \$200)	D \checkmark	D \checkmark	$\mathrm{D} \square$	D \checkmark	D	
E (costs \$200)	$\mathrm{E} \quad \checkmark$	E \checkmark				
F (costs \$200)	$F \square$			$F \square$		$F \square$
G (costs \$200)			$\mathrm{G} \checkmark$	$\mathrm{G} \checkmark$	G	$\mathrm{G} \sqrt{ }$
H (costs \$200)					H \checkmark	
	20 voters:	26 voters:	11 voters:	9 voters:	20 voters:	14 voters:
	3.64	3.64		3.33		
\$10	3.33	3.33	6.97	3.64	10	6.67
	3.03	3.03	3.03	3.03		3.33

Method of Equal Shares for Approvals

1. The budget is evenly divided among the voters.
2. If a candidate $c \in C$ is selected its cost is divided among the voters who voted for c.
3. The rule selects the projects which can be paid this way, starting with those that minimise the voters' marginal costs per utility.

Theorem: For approval ballots, when all costs are equal the method of equal shares satisfies extended justified representation.

Ideally it should work for cardinal utilities

voter	
4 ¢	$170 €$
$2{ }^{2}$	$25 €$
9 目	$124 €$
7 リール	$93 €$
2 g	$74 €$
1 \％${ }^{\text {d }}$	155 €
3 m	$130 €$

Extended justified representation（EJR）：

We say that a group of voters S is T－cohesive for $T \subseteq C$ if

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } T \subseteq \bigcap_{i \in S} A(i)
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each T－cohesive group S of voters there exists a voter $i \in S$ such that

$$
|A(i) \cap \mathscr{R}(E)| \geq|T|
$$

$u_{i}(c):$ a utility that voter i assigns to c ．

Ideally it should work for cardinal utilities

voter	
45	$170 €$
2 \％	$25 €$
9 9 自	$124 €$
7 リール	$93 €$
28	$74 €$
¢	$155 €$
3 m	$130 €$

Extended justified representation（EJR）：

We say that a group of voters S is (α, T)－cohesive for $\alpha: C \rightarrow \mathbb{R}$ and $T \subseteq C$ if：

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } u_{i}(c) \geq \alpha(c) \text { for all } i \in S, c \in T
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each（ α, T ）－cohesive group S of voters there exists a voter $i \in S$ such that

$$
\sum_{c \in \mathscr{R}(E)} u_{i}(c) \geq \sum_{c \in T} \alpha(c)
$$

$u_{i}(c):$ a utility that voter i assigns to c ．

Ideally it should work for cardinal utilities

voter		
4 ¢	$170 €$	
2 \%	$25 €$	
9 貝	$124 €$	
7 \\|-1	$93 €$	
2)	$74 €$	
18	155 €	
$3{ }^{3}$	$130 €$	

$u_{i}(c)$: a utility that voter i assigns to c.

Extended justified representation (EJR):

We say that a group of voters S is (α, T)-cohesive for $\alpha: C \rightarrow \mathbb{R}$ and $T \subseteq C$ if:

$$
\frac{\operatorname{cost}(T)}{|S|} \leq \frac{b}{n} \text { and } u_{i}(c) \geq \alpha(c) \text { for all } i \in S, c \in T
$$

A rule \mathscr{R} satisfies extended justified representation if for each election instance E and each (α, T)-cohesive group S of voters there exists a voter $i \in S$ such that

$$
\sum_{c \in \mathscr{R}(E)} u_{i}(c) \geq \sum_{c \in T} \alpha(c)
$$

A rule \mathscr{R} satisfies extended justified representation up-to-one if for each election instance E and each (α, T)-cohesive group S of voters there exists a voter $i \in S$ and a candidate $d \in C$ such that

$$
u_{i}(d)+\sum_{c \in \mathscr{R}(E)} u_{i}(c) \geq \sum_{c \in T} \alpha(c)
$$

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
2. We start with an empty outcome $W=\varnothing$ and sequentially add candidates to W.
G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
2. We start with an empty outcome $W=\varnothing$ and sequentially add candidates to W.
3. Let $p_{i}(c)$ denote the amount that voter i pays for c.

To add a candidate c to W, we will need that $\sum_{i \in N} p_{i}(c)=\operatorname{cost}(c)$.
G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
2. We start with an empty outcome $W=\varnothing$ and sequentially add candidates to W.
3. Let $p_{i}(c)$ denote the amount that voter i pays for c.

To add a candidate c to W, we will need that $\sum_{i \in N} p_{i}(c)=\operatorname{cost}(c)$.
2. For $\rho>0$, we say that a candidate $c \notin W$ is ρ-affordable if

$$
\sum_{i \in N} \min \left(\frac{b}{n}-\sum_{c \in W} p_{i}(c), u_{i}(c) \cdot \rho\right)=\operatorname{cost}(c)
$$

G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
2. We start with an empty outcome $W=\varnothing$ and sequentially add candidates to W.
3. Let $p_{i}(c)$ denote the amount that voter i pays for c.

To add a candidate c to W, we will need that $\sum_{i \in N} p_{i}(c)=\operatorname{cost}(c)$.
2. For $\rho>0$, we say that a candidate $c \notin W$ is ρ-affordable if

$$
\sum_{i \in N} \min \left(\frac{b}{n}-\sum_{c \in W} p_{i}(c), u_{i}(c) \cdot \rho\right)=\operatorname{cost}(c)
$$

3. If no candidate is ρ-affordable for any ρ, the rule returns W.
G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
2. We start with an empty outcome $W=\varnothing$ and sequentially add candidates to W.
3. Let $p_{i}(c)$ denote the amount that voter i pays for c.

To add a candidate c to W, we will need that $\sum_{i \in N} p_{i}(c)=\operatorname{cost}(c)$.
2. For $\rho>0$, we say that a candidate $c \notin W$ is ρ-affordable if

$$
\sum_{i \in N} \min \left(\frac{b}{n}-\sum_{c \in W} p_{i}(c), u_{i}(c) \cdot \rho\right)=\operatorname{cost}(c)
$$

3. If no candidate is ρ-affordable for any ρ, the rule returns W.
4. Otherwise it selects a candidate $c \notin W$ that is ρ-affordable for a minimum ρ.

Individual payments are given by $p_{i}(c)=\min \left(\frac{1}{n}-p_{i}(W), u_{i}(c) \cdot \rho\right)$
G. Pierczyński, P. Skowron, and D. Peters. Proportional participatory budgeting with additive utilities. NeurIPS-2021.

MES for Cardinal Utilities

$b=\$ 2500$	(65 votes)	(35 votes)	(35 votes)	(50 votes)	(10 votes)	(55 votes)
A (costs \$ 120)				A 1	2	
B (costs \$200)	B 30	B 30			B	B
C (costs \$500)		C 30			C	C 10
D (costs \$600)				D 100	D	D
E (costs \$500)	E 10		E 30		E	E
F (costs \$180)			F 10	F 10		F 10
G (costs \$1000)	G 10	G 10	G 40	G 100	G 40	G 40
H (costs \$110)				H 2	H 1	H

MES for Cardinal Utilities

$b=\$ 2500$	(65 votes)	(35 votes)	(35 votes)	(50 votes)	(10 votes)	(55 votes)
A (costs \$ 120)					2	
B (costs \$200)	B 30	B 30				B
C (costs \$500)		C 30			C 5	C 10
D (costs \$600)				D 100		D
E (costs \$500)	E 10		E 30		E	E
F (costs \$180)			F 10	F 10		F 10
G (costs \$1000)	G 10	G 10	G 40	G 100	G 40	G 40
H (costs \$110)				H 2	H 1	H 1

65 voters:
35 voters:
35 voters

MES for Cardinal Utilities

$$
b=\$ 2500 \quad(65 \text { votes })(35 \text { votes })(35 \text { votes) (50 votes) (10 votes) (55 votes) }
$$

65 voters:
35 voters:

MES for Cardinal Utilities

$$
b=\$ 2500 \quad(65 \text { votes })(35 \text { votes })(35 \text { votes })(50 \text { votes })(10 \text { votes })(55 \text { votes })
$$

35 voters:

MES for Cardinal Utilities

$b=\$ 2500$	(65 votes)	(35 votes)	(35 votes)	(50 votes)	S)	(55 votes)
A (costs \$ 120)				A	A 2	
B (costs \$200)	B 30	B 30				B
C (costs \$500)	C	C 30	C		C 5	C 10
D (costs \$600)	D		D	D 100		D
E (costs \$500)	E 10		E 30		E	E
F (costs \$180)	F		F 10	F 10		F 10
G (costs \$1000)	G 10	G 10	G 40	G 100	G 40	G 40
H (costs \$110)				H 2	H 1	H 1

65 voters:
35 voters:
35 voters
50 voters:
10 voters:
55 voters:

MES for Cardinal Utilities

$b=\$ 2500$	(65 votes)	(35 votes)	(35 votes)	(50 votes)	(10 votes)	(55 votes)
A (costs \$ 120)					A 2	A
B (costs \$200)	B 30	B 30				B
C (costs \$500)	C	C 30	C		C	C 10
D (costs \$600)	D			D 100	D	D
E (costs \$500)	E 10		E 30		E	
F (costs \$180)	F		F 10	F 10		F 10
G (costs \$1000)	G 10	G 10	G 40	G 100	G 40	G 40
H (costs \$110)				H 2	H 1	H

65 voters:
35 voters:
35 voters
50 voters:
10 voters:
55 voters:

MES for Cardinal Utilities

$b=\$ 2500$	(65 votes)	(35 votes)	(35 votes)	(50 votes)	(10 votes)	(55 votes)
A (costs \$120)				A	A 2	A
B (costs \$200)	B 30	B 30				B
C (costs \$500)	C	C 30			C 5	C 10
D (costs \$600)	D	D		D 100	D	D
E (costs \$500)	E 10	E	E 30			E
F (costs \$180)	F		F 10	F 10		F 10
G (costs \$1000)	G 10	G 10	G 40	G 100	G 40	G 40
H (costs \$110)				H 2	H 1	H

65 voters:

35 voters:
35 voters: 50 voters:
10 voters:
55 voters:

3.5
4

MES for Cardinal Utilities

1. Each voter is initially given an equal fraction of the budget, i.e., b / n dollars.
2. We start with an empty outcome $W=\varnothing$ and sequentially add candidates to W.
3. Let $p_{i}(c)$ denote the amount that voter i pays for c.

To add a candidate c to W, we will need that $\sum_{i \in N} p_{i}(c)=\operatorname{cost}(c)$.
2. For $\rho>0$, we say that a candidate $c \notin W$ is ρ-affordable if

$$
\sum_{i \in N} \min \left(\frac{b}{n}-\sum_{c \in W} p_{i}(c), u_{i}(c) \cdot \rho\right)=\operatorname{cost}(c)
$$

3. If no candidate is ρ-affordable for any ρ, the rule returns W.
4. Otherwise it selects a candidate $c \notin W$ that is ρ-affordable for a minimum ρ. Individual payments are given by $p_{i}(c)=\min \left(\frac{1}{n}-p_{i}(W), u_{i}(c) \cdot \rho\right)$

Theorem: Method of equal shares satisfies extended justified representation up-to-one.

Can we get EJR (without up-to-one)?

Can we get EJR (without up-to-one)?

Theorem: There exists no polynomial-time algorithm that satisfies EJR.
Proof: For one voter this is simply the knapsack problem which is NP-hard.

Knapsack problem:

We are given a set of items, each with a weight and a value, and two integers: B, K. Determine whether there exists a subset of items with total weight not exceeding B and with the total value at least equal to K.

How to use MES with approval ballots?

Given approval ballots we need to decide what is the utility?

There are two main choices:

1. The utility of a voter is the total amount of money spent on approved projects:

$$
u_{i}(c)=\operatorname{cost}(c) \text { if } i \text { approves } c \text {, and } u_{i}(c)=0, \text { otherwise. }
$$

2. The utility of a voter is the number of approved projects:

$$
u_{i}(c)=1 \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

How to use MES with approval ballots?

Given approval ballots we need to decide what is the utility?

There are two main choices:

1. The utility of a voter is the total amount of money spent on approved projects:

$$
u_{i}(c)=\operatorname{cost}(c) \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

2. The utility of a voter is the number of approved projects:

$$
u_{i}(c)=1 \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

Which of these two approaches is used in the current method?

How to use MES with approval ballots?

Given approval ballots we need to decide what is the utility?

There are two main choices:

1. The utility of a voter is the total amount of money spent on approved projects:

$$
u_{i}(c)=\operatorname{cost}(c) \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

2. The utility of a voter is the number of approved projects:

$$
u_{i}(c)=1 \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

Which of these two approaches is used in the current method?

Knapsack problem:

We are given a set of items, each with a weight and a value, and two integers: B, K. Determine whether there exists a subset of items with total weight not exceeding B and with the total value at least equal to K.

How to use MES with approval ballots?

Given approval ballots we need to decide what is the utility?

There are two main choices:

1. The utility of a voter is the total amount of money spent on approved projects:

$$
u_{i}(c)=\operatorname{cost}(c) \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

2. The utility of a voter is the number of approved projects:

$$
u_{i}(c)=1 \text { if } i \text { approves } c \text {, and } u_{i}(c)=0, \text { otherwise. }
$$

Which of these two approaches is used in the current method?

Knapsack problem:

We are given a set of items, each with a weight and a value, and two integers: B, K. Determine whether there exists a subset of items with total weight not exceeding B and with the total value at least equal to K.

Greedy Algorithm:

Select candidates with the highest ratio of value to the weight.

How to use MES with approval ballots?

Given approval ballots we need to decide what is the utility?

There are two main choices:

1. The utility of a voter is the total amount of money spent on approved projects:

$$
u_{i}(c)=\operatorname{cost}(c) \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

2. The utility of a voter is the number of approved projects:

$$
u_{i}(c)=1 \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

Which of these two approaches is used in the current method?

The current method selects the project with maximal numbers of approvals first.

How to use MES with approval ballots?

Given approval ballots we need to decide what is the utility?

There are two main choices:

1. The utility of a voter is the total amount of money spent on approved projects:

$$
u_{i}(c)=\operatorname{cost}(c) \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

2. The utility of a voter is the number of approved projects:

$$
u_{i}(c)=1 \text { if } i \text { approves } c, \text { and } u_{i}(c)=0, \text { otherwise. }
$$

Which of these two approaches is used in the current method?

The current method selects the project with maximal numbers of approvals first.

Such project maximises the value divided by the cost, where the value is the sum of utilities that the voters enjoy from the project, assuming the utility is defined using approach 1.

Summary

Motivation [edit]

The method is an alternative to knapsack algorithm which is used by most cities even though it is a disproportional method. For example, if 51% of the population support 10 red projects and 49% support 10 blue projects, and the money suffices only for 10 projects, the knapsack budgeting will choose the 10 red supported by the 51%, and ignore the 49% altogether. ${ }^{[4]}$ In contrast, the method of equal shares would pick 5 blue and 5 red projects.

The method guarantees proportional representation: it satisfies the strongest known variant of the justified representation axiom that is known to be satisfiable in participatory budgeting

Intuitive explanation [edit]

In the context of participatory budgeting the method assumes that the municipal budget is initially evenly distributed among the voters. Each time a project is selected its cost is

Analysing data

Analysing data

Analysing data

Analysing data

Analysing data

－目 1 く 〉
＠dominik－peters．de
\qquad （1）
N \qquad ₹ $Q \odot \bigcirc$ Wed $15 \operatorname{Dec} 14: 58$
W．Dratt：Method of Equal Shares－Wikipedia

