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Research in our lab

Method development

= Machine learning
» Probabilistic graphical models
» Deep learning

= Statistical data analysis

= Always at the service of an important medical cause
= Cancer
= Antimicrobial peptides
= COVID-19

= Part 1: overview
= Part 2: more detail on drug sensitivity prediction

= https://www.mimuw.edu.pl/~szczurek/
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Part 1. Overview



Applications: how to model and understand...
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Sensitivity of cancer
cells to drugs
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Synthetic lethality, genetic
interactions
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Method development: deep learning

ARA-CNN
CNNs, uncertainty, active learning (Raczkowski et al., Sci Rep, 2019, BioRxiv 2021)
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Conditional variational autoencoders
DEERS (Szymczak, Mozejko et al., in preparation)
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Method development: deep learning

ARA-CNN = Highly flexible models

CNNSss, uncertainty, active learning (Raczkowski et al., SciRe| =  Highly predictive
A B C D
g Seeenanen = Large numbers of

Auxiliary output

LN m%\% \% parameters
e N = Difficult to interpret —

% custom approach to

interpretability needed
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Conditional variational autoencoders
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DEERS (Szymczak, Mozejko et al., in preparation)
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Method development: probabilistic graphical models

Celloscope (Geras et al., in preparation)
» Metropolis Hastings within Gibbs
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CACTUS (Darvish Shafighi et al., Genome Med, 2021)
* Gibbs sampler
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Method development: probabilistic graphical models

Celloscope (Geras et al., in preparation) = Relatively smaller
» Metropolis Hastings within Gibbs = Each random variable corresponds
to some entity in the system
1< 5= Nopots = Conditional probability distributions

describe relations between variables
. @ N " = More precise description
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CACTUS (Darvish Shafighi et al., Genome Med, 2021)
1 <t < Neypes « Gibbs sampler
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Method development: probabilistic graphical models with

tree structure model learning

CONET (Markowska, Cakata et al., BioRxiv 2021)
« MCMC sampler
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Method development: probabilistic graphical models with

tree structure model learning

CONET (Markowska, Cakata et al., BioRxiv202] " The tree describes the evolutionary

+ MCMC sampler history of the tumor
= A probabilistic graphical model of the data
conditional on the tree
mz,k%x%ﬁﬁmﬁm = Difficulty: learning the probabilistic model

e of the data and learning the tree structure
G — at the same time
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Others working on similar topics in Poland

= Probabilisttic graphical models of biological phenomena: Anna Gambin,
Btazej Miasojedow (MIM UW)

= Deep learning applied to biological phenomena: Bartek Wilczynski, (MIM
UW)

= Feature selection: Witold Rudnicki (Biatystok University)

= Interpretability: Przemystaw Biecek (MIM UW and Warsaw University of
Technology)

= Single cell sequencing in tumors: Bozena Kaminska (Nencki Institute),
Marcin Tabaka (International Centre for Translational Eye Research)

= Medical image analysis, machine learning: Tomasz Trzcinski (\Warsaw
University of Technology)

= Gaussian mixture autoencoders: Marek Smieja, Jacek Tabor (Jagiellonian
University)
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Part 2. Modeling sensitivity of cancer cell lines to drugs

Krzysztof Koras



Measuring sensitivity of cancer cell lines to drugs

Primary tissues Response of cancer
cells to drugs (AUC)
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Understanding sensitivity of cancer cell lines to drugs

Primary tissues Response of cancer

cells to drugs (AUC)
«

9 = C/,

&

Molecular features
of cancer cells

=~ Mutations

Gene
expression

Platforms

Machine learning task:

» Given: features of a drug
and molecular features of
a cancer cell line

* Predict the response
(AUC value) of the cell line
to the drug.

Mimics precision medicine
application in the clinic.
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How can ML help to understand the drug action on cancer

cell lines?

Primary tissues

Response of cancer
cells to drugs (AUC)
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3Koras et al., in preparation
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Feature selection: which
cell line features are
predictive of the
response?’

Multi-task learning:
capturing the action of
multiple drugs on multiple
cancer cell lines in a single
model?

Interpretability
(explainability): what are
the mechanisms behind
the drug action on the
cell?2

Representation learning
finding low-dimensional
representations of drugs,

- 2.3
cell lines 15146




www._nature.com/scientiricreports

scientific reports

W) Check for updates

Interpretable deep recommender
system model for prediction

of kinase inhibitor efficacy

across cancer cell lines

Krzysztof Koras?!, Ewa Kizling?!, Dilafruz Juraeva?, Eike Staub? & Ewa Szczurek!*!

Computational models for drug sensitivity prediction have the potential to significantly improve
personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and
drugs become increasingly available for training such models. Multiple methods were proposed for
predicting drug sensitivity from cancer cell line features, some in a multi-task fashion. So far, no such
model leveraged drug inhibition profiles. Importantly, multi-task models require a tailored approach
to model interpretability. In this work, we develop DEERS, a neural network recommender system for
kinase inhibitor sensitivity prediction. The model utilizes molecular features of the cancer cell lines
and kinase inhibition profiles of the drugs. DEERS incorporates two autoencoders to project cell line
and drug features into 10-dimensional hidden representations and a feed-forward neural network

to combine them into response prediction. We propose a novel interpretability approach, which in
addition to the set of modeled features considers also the genes and processes outside of this set. Our
approach outperforms simpler matrix factorization models, achieving R = 0.82 correlation between
true and predicted response for the unseen cell lines. The interpretability analysis identifies 67
biological processes that drive the cell line sensitivity to particular compounds. Detailed case studies
are shown for PHA-793887, XMD14-99 and Dabrafenib. 16/46



What do we know about how the kinase inhibitors work?

= Kinase inhibitors: drugs which
target kinases (proteins)

= These kinases are usually part
of some biological process
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What do we know about how the kinase inhibitors work?

= Kinase inhibitors: drugs which
target kinases (proteins)

= These kinases are usually part
of some biological process

= This biological process can be
important for cancer
progression

= When the target kinase is
inhibited, the process is
perturbed
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What do we know about how the kinase inhibitors work?

= Kinase inhibitors: drugs which
target kinases (proteins)

= These kinases are usually part
of some biological process

= This biological process can be
important for cancer
progression

= When the target kinase is
inhibited, the process is
perturbed

= Kinase inhibitors have their off-
targets

= Their inhibition strengths on
targets and and off-targets is
measured by inhibition profiles
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Multi-task modeling approach: recommender system

Data: 922 cell lines, 74 drugs, 52730 drug-cell line pairs in total

AUC

74 drugs

[]
4 922 cell lines

v
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Multi-task modeling approach: recommender system

Data: 922 cell lines, 74 drugs, 52730 drug-cell line pairs in total

Xc
4 922 cell lines .
. A
Tissue type
. . .
Mutations of kinases 7.
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= v
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Inhibition strengths
[ ]
I AUC

294 kinases
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Multi-task modeling approach: recommender system

Data: 922 cell lines, 74 drugs, 52730 drug-cell line pairs in total
Recommender system: recommending movies to users
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22/46



Multi-task modeling approach: recommender system

Data: 922 cell lines, 74 drugs, 52730 drug-cell line pairs in total
Recommender system: recommending revies to users

drugs cancer cell lines
Xc
4 922 cell lines .
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Multi-task modeling approach: recommender system

Data: 922 cell lines, 74 drugs, 52730 drug-cell line pairs in total
Recommender system: recommending revies to users

drugs cancer cell lines
Xc
4 922 cell lines .
g A
Tissue type
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Simple model: Matrix factorization with side information (MF)

dot product

A

projection

<

Cell line
projection

Linear model
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DEERS: autoencoders for embedding and a feed forward

network for the transformation

Drug Efficacy Estimation Recommender System

Forward
R294 R128 RI0 RI28  R204  network

Dropout

autoencoder

25

Cell line
autoencoder

2 PRI S I ST ST -
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Non-linear model
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DEERS: autoencoders for embedding and a feed forward

network for the transformation

Drug Efficacy Estimation Recommender System

Forward
R294¢  network
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Q
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Latent
representation
of cell line ¢
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DEERS: autoencoders for embedding and a feed forward

network for the transformation

Drug Efficacy Estimation Recomr]
Us: The model performs great

Forw| Pharma colleagues: OK, but
294 R128 RI10 RI128 294 netw why?
' prop{ Us: Latent dimensions — good

representations of drug and
cell line data

Pharma colleagues: OK, but
what biology has this model

autoencoder

Latent learned?
representation Us: Off-the-shelf approaches
of cell line ¢ Cell line to interpretability

autoencoder - Tell what in the input is

associated with the
response

- Are not enough.
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Custom interpretability analysis of the cell line autoencoder

=  Z-— 10 x 922 matrix of latent dimension values for the cell lines
= Z[:, c]— vector of 922 values for dimension ¢
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Custom interpretability analysis of the cell line autoencoder

=  Z-— 10 x 922 matrix of latent dimension values for the cell lines
= Z[:, c]— vector of 922 values for dimension ¢

= Gc— matrix of gene expression values for the cell lines — for ~17,000 genes not
seen by the model

" G¢[:, g]— vector of 922 values of expression of gene g
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Custom interpretability analysis of the cell line autoencoder

=  Z-— 10 x 922 matrix of latent dimension values for the cell lines
= Z[:, c]— vector of 922 values for dimension ¢

= Gc— matrix of gene expression values for the cell lines — for ~17,000 genes not
seen by the model

" G¢[:, g]— vector of 922 values of expression of gene g

Zc[:, ), Gel:, 9] € R%2

corr(Zc|:,c],Gel:, g]) Enrichment
S 3 l
2 S
c GSEA Preranked a
: > 3
Ranked list = g

Processes
Genes

Genes are ranked by their correlation with the latent dimension 31/46



Custom interpretability analysis of the cell line autoencoder

= GSEA pre-ranked — what is it?
= Computing enrichment of a set of genes S on the top of a ranked list

Leading edge subset
—--.\_K Gene set S

Correlation with Phenotype

%

Random Walk

—~ 2
- —~—

ES(S) Y e

Maximum deviation Gene List Rank
from zero provides the
enrichment score ES(S)
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Custom interpretability analysis of the drugs

PHA-793887
CDK inhibitor
Used to treat leukemia

True response

DNA metabolic proc.
reg. of cellul. macromol. biosyn. proc.
RNA metabolic proc.
rRNA metabolic proc.
ribonucleoprotein complex assembly
reg. of cell migration
reg. of MAPK cascade
reg. of angiogenesis

Latent dimension 3
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Custom interpretability analysis of the drugs

corr(Z¢|:,cl,y,) for drug d

Response

Dimension

All drugs
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All dimensions

+ enriched
processes

Drugs

Processes
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Summary of the DEERS model

= Deep recommender system approach to predicting response of cancer cell
lines to drugs based on drug and cell line features

= Custom approach to model interpretability

= Revealing general mechanisms of drug action
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Drug variational autoencoders with latent space clustering
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Drug variational autoencoders with latent space clustering

CN=C=0

l Featurizer
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Drug variational autoencoders with latent space clustering

CN=C=0 | = Extension of DEERs
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Drug variational autoencoders with latent space clustering

CN=C=0 = Main assumptions:
lFeamer - Drugs cluster by their
. - inhibition profiles (quiding

1
e
Juw
i

data)

- Drugs with similar inhibition
profiles should also cluster in
the latent space

Mean
Bem
Std. dev | al
Pl

Drugs VAE
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Drug variational autoencoders with latent space clustering

Generative : :
cN=C-0 probabilistic = Main assumptions:
i Oraphicalmodel | _ - |8
eaturize . . f .
for clustering in - Drugs cluster by their
.- the latent space inhibition profiles (quiding
v — . space
g _Eﬂ_e_ag__”[ -~ / | data)
= o l - Drugs with similar inhibition
¥ { ) \ profiles should also cluster in
.- | the latent space
Drugs VAE o RS
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Drug variational autoencoders with latent space clustering

(1)
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Drug variational autoencoders with latent space clustering

(2)
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M M iy
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Learning the clustering in the guiding Learning the clustering in the
data latent space
Mixtures of Gaussians Mixtures of Gaussians
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Positions, collaboration

= https://www.mimuw.edu.pl/~szczurek/positions.html
= Looking for 2 postdocs!
= Please apply at szczurek@mimuw.edu.pl

Thank you for your attention!
Questions?
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www.nature.com/scientificreports

SCIENTIFIC
REPORTS

natureresearch

W) Check for updates

Feature selection strategies for
drug sensitivity prediction

Krzysztof Koras?, Dilafruz Juraeva?, Julian Kreis?, Johanna Mazur?, Eike Staub()? &
Ewa Szczurek(H'=

Drug sensitivity prediction constitutes one of the main challenges in personalized medicine. Critically,
the sensitivity of cancer cells to treatment depends on an unknown subset of a large number of biological
features. Here, we compare standard, data-driven feature selection approaches to feature selection
driven by prior knowledge of drug targets, target pathways, and gene expression signatures. We asses
these methodologies on Genomics of Drug Sensitivity in Cancer (GDSC) dataset, evaluating 2484

unique models. For 23 drugs, better predictive performance is achieved when the features are selected
according to prior knowledge of drug targets and pathways. The best correlation of observed and
predicted response using the test set is achieved for Linifanib (r=0.75). Extending the drug-dependent
features with gene expression signatures yields the most predictive models for 60 drugs, with the best
performing example of Dabrafenib. For many compounds, even a very small subset of drug-related
featuresis highly predictive of drug sensitivity. Small feature sets selected using prior knowledge are
more predictive for drugs targeting specific genes and pathways, while models with wider feature sets
perform better for drugs affecting general cellular mechanisms. Appropriate feature selection strategies
facilitate the development of interpretable models that are indicative for therapy design. 4746



High-dimensional cell line data & drug response

measurements
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Prediction

Cell line data X Response variable: Y(AUC)
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18,485 features

= Use X, and Y44 ;a8 training data for a model f
= When a new observation x comes, f(x) should be close to the true y
= Our models: elastic net (linear), random forest (non-linear)

= Evaluation measure: Correlation, RMSE 49746



Feature selection

Cell line data X Response variable: Y(AUC)
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= Given a model f, identify such a relatively small set of features that are most
informative for that model’s prediction.

= FElastic net and random forest offer that.

= Use prior knowledge
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What do we know about how the drugs work?

Drugs have their targets

Drugs have their target
pathways

Expression of many genes
participating in a certain
phenomenon can be
summarized by a gene
expression signature of a
smaller set of genes
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Courtney et al, Journal of clinical oncology, 2010
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towards no response
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Experimental setup

Original features

e )

Gene expression
(17737 features)

\ J

Copy number variants
(425 features)

Coding variants
(310 features)

Features
pre-selection

Tissue type
(13 features)

Elastic net (EN)

Random forest (RF)

2484 models in total

Repeated 5 times
X

Training & evaluation

2 Traning set )
Hyperparameter tuning

3-fold cross-validation

B J

4 )

Test set

0.3 of the data
Correlation
RMSE
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Feature selection based on target genes gives very few

features
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For some drugs, the very few features based on targets give

the best predictive performance
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