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Basics

Polish space = a separable completely metrizable space

Polish group = a topological group whose group topology is
Polish

Standard Borel space = a set X equipped with the σ-algebra of
sets Borel with respect to a Polish topology on X

Borel measure = a measure defined on the σ-algebra of a
standard Borel space

All atomless Borel probability measures are isomorphic to each
other, so we can think of such a measure as Lebesgue measure λ
on [0, 1].
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The group of measure preserving transformations

(X , γ) = a standard Borel space with an atomless Borel probability
measure

Aut = the Polish group of all measure preserving transformations
of (X , γ)

Measure preserving transformations are identified if they coincide
on a set of full measure.

Aut is taken with composition and is topologized so that

Tn → T iff γ
(
Tn(A)4T (A)

)
→ 0, for each Borel A ⊆ X .
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Genericity

X a Polish space, P a property

A generic x ∈ X has P if {x ∈ X | x does not have P} is meager.
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The subject matter of the talk

For a Polish group G and g ∈ G , let

〈g〉c = closure
(
{gn | n ∈ Z}

)
.

We study closed subgroups of Aut generated by generic
elements of Aut, that is, groups of the form

〈T 〉c ,

for a generic measure preserving transformation T .
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Boolean actions

G a Polish group

A boolean action of G on (X , γ) is a continuous homomorphism
ζ : G → Aut.

The word action is justified by viewing G as acting on the boolean
algebra of measure classes of measurable subsets of (X , γ) by

gB = ζ(g)
(
B
)
.

For example, the Polish group 〈T 〉c , for T ∈ Aut, has a natural
boolean action being a subgroup of Aut.
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Two more groups

The group of measurable functions

T = the group of all complex numbers of unit length taken with
multiplication

λ = Lebesgue measure on [0, 1]

L0(λ,T) = the Polish group of all measurable functions from [0, 1]
to T

L0(λ,T) is taken with pointwise multiplication and the topology of
convergence in measure.

Notation: We write L0 for L0(λ,T).
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L0(λ,R) = the Polish linear space of all measurable functions from
[0, 1] to R

There is a continuous surjective homomorphism

L0(λ,R)→ L0,

namely,
f → exp(if ).
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The unitary group

H = the separable, infinite dimensional, complex Hilbert space

U = the Polish group of unitary transformations of H

U is taken with composition and the strong operator topology.
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The question and the theorem

Recall, for T ∈ Aut,

〈T 〉c = closure
(
{T n | n ∈ Z}

)
.

Glasner–Weiss: Is it the case that for a generic T ∈ Aut, 〈T 〉c is
isomorphic to L0?
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Motivation for the question

Qualifications

Glasner: L0 is monothetic.

Analogy

Melleray–Tsankov: 〈U〉c is isomorphic to L0 for a generic U ∈ U .
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Structure

Ageev: For a generic T ∈ Aut, each finite abelian group embeds
into 〈T 〉c .

S.: For a generic T ∈ Aut, there is a Polish linear space LT and a
continuous surjective homomorphism LT → 〈T 〉c .

Dynamics

Glasner–Weiss: For a generic T ∈ Aut, the natural boolean
action of 〈T 〉c on (X , γ) is whirly.
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Theorem (S., 2021)

For a generic transformation T ∈ Aut,
the group 〈T 〉c is not isomorphic to L0.
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A rough outline of the proof

Prove the following two points.

1. If L0 ∼= 〈T 〉c < Aut, for a generic T ∈ Aut, then some ergodic
boolean action of L0 has spectral properties similar to spectral
properties of a generic T ∈ Aut.

2. No ergodic boolean actions of L0 has spectral properties
similar to spectral properties of a generic T ∈ Aut.
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Spectral behavior

Spectral behavior of a generic T ∈ Aut

ν(T ) = maximal spectral type of T ∈ Aut.

Building on earlier work of Choksi–Nadkarni, Katok, and Stepin,
del Junco–Lemańczyk proved the following theorem.

Theorem (del Junco–Lemańczyk, 1992)

For a generic T ∈ Aut and `1, . . . , `p, `
′
1, . . . , `

′
p′ ∈ N,

if (`1, . . . , `p) and (`′1, . . . , `
′
p′) are not rearrangements, then

ν(T `1) ∗ · · · ∗ ν(T `p) ⊥ ν(T `′1) ∗ · · · ∗ ν(T
`′
p′ ).

Call the condition above the del Junco–Lemańczyk condition.
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Spectral behavior of L0

A unitary representation of L0 can be constructed as follows.

Given φ ∈ L0, let

L2(λ) 3 f → φ · f ∈ L2(λ).

This is a unitary representation in U
(
L2(λ)

)
.
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Spectral behavior of L0

A unitary representation of L0 can be constructed as follows.

Given φ ∈ L0, let

L2(µ) 3 f → φ · f ∈ L2(µ),

for µ � λ. This is a unitary representation in U
(
L2(µ)

)
.
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Spectral behavior of L0

A unitary representation of L0 can be constructed as follows.

Given φ ∈ L0, let

L2(µ) 3 f → φk · f ∈ L2(µ),

for µ � λ and k ∈ Z. This is a unitary representation in U
(
L2(µ)

)
.
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Z× = Z \ {0}

N[Z×] consists of all finite functions x such that

∅ 6= dom(x) ⊆ Z× and rng(x) ⊆ N
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For x ∈ N[Z×], let

D(x) = {(k , i) | k ∈ dom(x), i ≤ x(k)},

and
Cx = [0, 1]D(x).

For (k , i) ∈ D(x), let

πk,i : Cx → [0, 1] = projection onto coordinate (k, i).

A permutation δ of D(x) is good if, for each (k, i) ∈ D(x),
δ(k , i) = (k , j) for some j .
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A finite Borel measure µ on Cx is compatible with x ∈ N[Z×] if

— the marginals of µ given by πk,i , for (k, i) ∈ D(x), are
absolutely continuous with respect to λ;

— µ is invariant under good permutations of D(x);

— all diagonals of Cx have measure zero with respect to µ.
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µ compatible with x

L̃2(µ) = the closed subspace of L2(µ) consisting of all functions
invariant under good permutations
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For x ∈ N[Z×] and φ ∈ L0,

Rx(φ) =
∏

(k,i)∈D(x)

(φ ◦ πk,i )k .

If µ is compatible with x , then

f ∈ L̃2(µ)⇒ Rx(φ) · f ∈ L̃2(µ).
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Fix ξ : L0 → U a unitary representation without non-zero fixed
points.

Theorem (S., 2014)

ξ is determined by finite Borel measures (µx)x∈N[Z×] with
µx compatible with x.

ξ is isomorphic to the `2-sum over x ∈ N[Z×] of the
representations

L0 × L̃2(µx) 3 (φ, f )→ Rx(φ) · f ∈ L̃2(µx).

The sequence (µx)x∈N[Z×] is unique up to mutual absolute
continuity of its entries.

The above is true modulo multiplicity.
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Theorem (S., 2014)

ξ is determined by a sequence of finite Borel measures
(µjx)x∈N[Z×],j∈N such that, for each j,

µjx is compatible with x, and µj+1
x � µjx .

ξ is isomorphic to the `2-sum over x ∈ N[Z×] and j ∈ N of the
representations

L0 × L̃2(µjx) 3 (φ, f )→ Rx(φ) · f ∈ L̃2(µjx).

The sequence (µjx)x∈N[Z×],j∈N is unique up to mutual absolute
continuity of its entries.
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The del Junco–Lemańczyk condition for L0

N[Z×] comes equipped with coordinatewise addition

x ⊕ y .

Given: µ on Cx compatible with x , and ν on Cy compatible with y
Since Cx⊕y ∼ Cx × Cy , we can define the “symmetried” product

µ⊗ ν

on Cx⊕y compatible with x ⊕ y .
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Spectral behavior

Recall: we have ξ : L0 → U , a unitary representation without
non-zero fixed points, with H separable.
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Theorem (Etedadialiabadi, 2016/20)

Assume: for a generic φ ∈ L0 and `1, . . . , `p, `
′
1, . . . , `

′
p′ ∈ N such

that (`1, . . . , `p) and (`′1, . . . , `
′
p′) are not rearrangements, we have

ν(φ`1) ∗ · · · ∗ ν(φ`p) ⊥ ν(φ`
′
1) ∗ · · · ∗ ν(φ

`′
p′ ),

where ν(ψ) = maximal spectral type of ξ(ψ).

Then: for x1, . . . , xp ∈ N[Z×] with p > 1, we have

µx1 ⊗ · · · ⊗ µxp ⊥ µx1⊕···⊕xp .
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Theorem on Koopman
representations of L0
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Theorem on Koopman representations of L0

Given a boolean action ζ : G → Aut, the Koopman
representation associated with ζ is given by

G 3 g → Ug ∈ U
(
L2(γ)

)
,

where, for f ∈ L2(γ),

Ug (f ) = f ◦
(
ζ(g)

)−1
.
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Theorem on Koopman representations of L0

The proposition below gives a connection of Etedadialiabadi’s
theorem with the Glasner–Weiss question.

Proposition (S., 2021)

Assume that there is a non-meager set of T ∈ Aut such that 〈T 〉c
is isomorphic to L0.

There exists an ergodic boolean action of L0 on (X , γ), whose
Koopman representation is such that

µx ⊗ µx ⊥ µx⊕x , for all x ∈ N[Z×].
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Theorem (S. 2021)

ξ = the Koopman representation associated with an ergodic
boolean action of L0.

Then, for x1, . . . , xp ∈ N[Z×], we have

µx1 ⊗ · · · ⊗ µxp � µx1⊕···⊕xp .
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In particular, for ergodic Koopman representations of L0

µx ⊗ µx � µx⊕x , for all x .

Contrast the above statement with

µx ⊗ µx ⊥ µx⊕x , for all x ,

for the ergodic Koopman representation of L0 found in the
proposition.
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Questions

Is there a Polish group G such that 〈T 〉c is isomorphic to G , for a
generic T ∈ Aut?

Glasner–Weiss: Is the group 〈T 〉c a Lévy group for a generic
T ∈ Aut?
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