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Manifolds and their classification

Definition
A smooth manifold is a space which is a patchwork of the real affine spaces Rn glued
together with smooth threads. A map between manifolds is smooth if it is smooth on
each patch.

A cartesian product and a direct sum (coproduct) of manifolds is a manifold.

Classification of compact, connected manifolds in low dimensions up to
diffeomorphism:

n = 0 Point

n = 1 Circle S1

n = 2 Sphere, connected sums of tori (orientable) and of projective planes
(non-orientable)

n = 3 Very complicated.... W. Thurston (Fields medal 1986), G. Perelman
(Fields medal 2006, not accepted)

n = 4 Impossible in general. (simply connected case: M. Freedman, S. Donaldson
(Fields medals 1986)
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(Co-)boridsm of manifolds

Definition

Manifolds M i N are (co-)bordant if there exist a manifold with boundary W such
that ∂W = M ⊔ N. (Co-)bordism is an equivalence relation.

Example for analysts: If Rm ⊃ U
f−→ Rn is a smooth map and y0, y1 ∈ Rn are regular

values of f . Then if U is connected then the inverse images f −1(y0), f −1(y1) ⊂ U are
cobordant manifolds.

Theorem (V.A.Rokhlin, 1952)

Every 3-dimensional compact manifold bounds.
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(Co-)bordism - a bridge between algebra and geometry

1 There are algebraic (homotopical) invariants detecting cobordism.
(a corollary of the main theorem)

2 If two manifolds are cobordant then one can be constructed from the other
via surgery.

3 Surgery is controlled via the Morse functions.

Classify compact manifolds up to cobordism.

To classify compact manifolds up to bordism R. Thom introduced the cobordism ring
N∗ whose elements are bordism classes of compact manifolds. Addition is defined
defined by the disjoint sum ⊔ and multiplication by the cartesian product ×.
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Cobordism ring

The set of diffeomorphism classes of compact manifoldsM∗ is a graded, abelian
semiring with

Addition: disjoint sum (coproduct) M1 ⊔M2

Multiplication: cartesian product M1 ×M2

Empty manifold as neutral element with respect to addition

One-point manifold as neutral element with respect to multiplication

Gradation is defined by the dimension of the manifold:M∗ = ⊕Mq whereMq -
the semigroup of −q dimensional manifolds.

Very important!

For an arbitrary manifold M its double M ⊔M bounds the manifold M × [0, 1]. Thus
when we pass to cobordism classes we obtain the cobordism graded ring

N∗ =

q=+∞⊕
q=−∞

Nq .

where Nq consists of −q-dimensional manifolds. It is even an algebra over the
two-element field F2.

Find generators and relations in the ring N∗.
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Cobordism ring - cont

Very important!

For an arbitrary manifold M its double M ⊔M bounds the manifold M × [0, 1]. Thus
when we pass to cobordism classes we obtain the cobordism graded ring

N∗ =

q=+∞⊕
q=−∞

Nq .

where Nq consists of −q-dimensional manifolds. It is even an algebra over the
two-element field F2. Find generators and relations in the ring N∗.

Twierdzenie (R. Thom (1954),.... , D. Quillen (1969/1971)

Cobordism ring is isomorphic to a polynomial algebra over F2 of infinitely many
variables in negative dimensions ̸= 1− 2j

N∗ ≃ F2[xi | i ¬ 0, i ̸= 1− 2j ]

Generators ... (Projective spaces in even dimensions, Milnor, Dold manifolds. . . )

Projective space of dim n: Pn is a space of all 1-dim subspaces in Rn+1. It is
diffeomorphic to Sn/{x ∼ −x} i.e. it is a compact manifold.
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Idea of Quillen’s proof

Twierdzenie (R. Thom,.... , D. Quillen)

There is a F2-algebra isomorphism N∗ ≃ F2[xi | deg xi = −i , i ̸= 1− 2j ].

Study modules over the ring N∗ (in fact extend it to a functor into a category
of the graded N∗-modules). On the functor introduce additional algebraic
structures defined by geometry to make it unique.

Milestones.
1 Define a (bi-)functor defined on the category of manifolds and smooth maps

N∗(−) :M→ N∗-modules such that N∗(pt) = N∗.

2 Calculate N∗(X × Pn) ≃ N∗(X )[xn]/(x
n+1
n ), where xn = e(Hn)

3 The Segre map σn,m : Pn × Pm → P(n+1)(m+1)−1 defines a power series (formal
group)

∑
aijx

iy j ∈ N∗[[x , y ]] =: FN∗ (x , y), deg x = deg y = 1, aij ∈ N1−i−j .

4 The Stiefel-Whitney classes and Steenrod squares in N∗(−) =⇒ aij ∈ N∗ are
generators.

5 Input: Lazard theorem: structure of the universal formal group (L,FL),
L = Z2[xi | deg xi = −i , i ̸= 2j − 1] and existence of its logarithm.

6 The Landweber-Novikov operations in N∗(−) =⇒ the ring homomorphism
L → N∗ classifying the formal group FN∗ is an isomorphism.
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Cobordism theory functor via proper maps

Definicja

A continuous map f : X → Y is proper iff for every compact subset K ⊂ Y its inverse
image f −1(K) ⊂ X is compact.

Definicja

Let ϕi : Vi → Y , i = 0, 1 be two smooth proper maps. They are cobordant if there
exists a manifold with boundary W and a proper map F : W → Y such that
V0 ⊔ V1 = ∂W and F |Vi = ϕi . Cobordism of proper maps is an equivalence relation.

1 Nk (X ) := {ϕ : V → X |ϕ-proper, dimX − dimV = k}/ ∼proper cobordism

2 [ϕ] + [ψ] := [ϕ ⊔ ψ], Nk is a F2-vector space.
3 f : X → Y a smooth map. We define f ∗ : N∗(Y )→ N∗(X ):

f ∗([ϕ : V → Y ]) := [ϕ : X ×Y V → X ]

Homotopic maps induce the same homomorphism.

X ×Y V

ϕ⋔f

f̄ //

ϕ̄

��

V

ϕ

��
X

f // Y
4 The Mayer-Vietoris exact sequence for decomposition X = U1 ∪ U2

· · · → Nn(X )→ Nn(U1)⊕ Nn(U2)→ Nn(U1 ∩ U2)
δ−→ Nn+1(X )→ . . .
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Umkehr (transfer) map in cobordism - "double coset" formula

Let g : X → Y be a smooth proper map dim g = dimX − dimY =: m. ∀k we define
"Umkehr" (transfer) homomorphism:

g# : Nk (X )→ Nk−m(Y ), g#([ϕ : V → X ]) := [V
ϕ−→ X

g−→ Y ]

Proposition

The assignment g : X → Y 7→ g# : N∗(X )→ N∗−m(Y ) is a covariant homotopy
functor from the category of proper smooth maps to the category of F2-vector spaces.
A transversal pull-back where g is a proper map:

X ×Y Z
f̄ //

ḡ

��

Z

g

��
X

f // Y

defines c.d. Nk (X ×Y Z)

ḡ#

��

Nk (Z)

g#

��

f̄ ∗oo

Nk−m(X ) Nk−m(Y )
f ∗oo

(1)
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Multiplicative structure in cobordism

External product is defined by the cartesian product of maps:

× : Nn(X )⊗ Nm(Y )→ Nn+m(X × Y )

Definition (Ring structure on N∗(X ))

Nn(X )⊗ Nm(X )
×−→ Nn+m(X × X )

∆∗−−→ Nn+m(X )

Cup-product of two transversal maps ϕ : Vi → X , i = 1, 2, is represented by the
diagonal in the pull-back diagram:

V1 ×X V2 //

��

ϕ1∪ϕ2

$$

V2

ϕ2

��
V1

ϕ1 // X

(2)

Proposition

1 Induced homomorphisms f ∗ : N∗(Y )→ N∗(X ) are ring homomorphisms.
2 For a proper map g : X → Y the transfer g# : N∗(X )→ N∗−dim g (Y ) is a

N∗(Y )-module homomorphism i.e. g#(g∗([ψ]) ∪ [ϕ]) = [ψ]g#([ϕ]).
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(Co-)bordism of spheres and projective spaces

Proposition

For any n  0.
1 The cobordism ring of a sphere N∗(Sn) is a free N∗-module with two generators

[Sn id−→ Sn] ∈ N0(Sn) and ιn := [pt → Sn] ∈ Nn(Sn).
2 For n > 0 there is an isomorphism of the graded rings N∗(Sn) = N∗[ιn]/(ι2n).

Theorem

Let Pn = RPn be a n-dim real projective space.

The homomorphism of the graded rings where deg(xn) = 1

N∗[xn]/(x
n+1
n )→ N∗(Pn),

s.t. xn 7→ [Pn−1 ⊂ Pn] ∈ N1(Pn) is an isomorphism.

Projections on factors define a ring isomorphism:

N∗(Pn × Pm) ≃ N∗(Pn)⊗N∗ N
∗(Pm) ≃ N∗[xn, ym]/(x

n+1
n , y

m+1
m )
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The Segre map and the formal group of cobordism

Definicja (Segre map / embedding)

Let P(Rn+1) := Pn be a projective space i.e. space of 1-dim subspaces of Rn+1.

σn,m : P(Rn+1)× P(Rm+1)→ P(Rn+1 ⊗ Rm+1) = P(R(n+1)(m+1)) =: Pd

σn,m((L1, L2)) := L1 ⊗ L2

σ∗n,m : N∗(Pd ) = N∗[z]/(zd+1)→ N∗[x , y ]/(xn+1, ym+1)

Passing to infinity n,m→ +∞ we obtain a power series of two variables:

σ∗(z) = FN∗ (x , y) = x + y +

+∞∑
i,j1

aijx
iy j ∈ N∗[[x , y ]]

where deg x = deg y = 1, aij ∈ N1−i−j .

Proposition

FN∗ (x , y) =

x + y +
∞∑

m,n>0
[H(m, n)]xmyn

P(x)P(y)
where P(x) :=

∑
i
[Pi ]x i and H(m, n) := {(x , y) ∈ Pn × Pm | x0y0 + ...+ xmzm = 0}.
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Formal group laws (FGL) over graded F2-algebras - a crash course 1

1 R∗ - a graded F2-algebra such that Rq = 0 for q > 0.
2 Graded ring of formal power series R∗[[x , y ]] in two variables x , y in gradation 1.
3 Series of gradation n are of the form

∑
i,j0 aijx

iy j where deg(aij ) = n− (i + j).

Definition

A commutative formal group law (FGL) over a graded F2-algebra R∗ is a power series
F ∈ R∗[[x , y ]] satisfying the following conditions:

1 (Neutral Element ) F (x , 0) = x , F (0, y) = y .

2 (Associativity) F (F (x , y), z) = F (x ,F (y , z)),

3 (Commutativity & Antisymmetry) F (x , y) = F (y , x), F (x , x) = 0

Usually one writes FGL’s in the form F (x , y) = x + y +
∑

i,j>0 aijx
iy j .

Examples of FGL

Additive F+(x , y) = x + y (FGL of singular cohomology)

Multiplicative Fm(x , y) = x + y + xy (FGL of complex K -theory)

Formal group of cobordism FN∗(x , y) ∈ N∗[[x , y ]]
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Formal groups (FGL) over graded F2-algebras - a crash course 2
The set of all FGL over R∗ is the set of objects of a category, denoted FGL(R∗)

Definition (Morphisms of formal groups over fixed ring)

For F ,G ∈ ob FGL(R∗)

HomR∗ (F ,G) = {α(x) =
∑
i>0

aix
i | degα = 1, α(F (x , y)) = G(α(x), α(y))}

Composition is defined as the composition of series. Identity is the series ι(x) = x .

Definition (Push forward of formal groups via homomomorphisms)

Any ring homomorphism h : R∗ → S∗ defines push-forward functor
h∗ : FGL(R∗)→ FGL(S∗)

h∗F (x , y) := x + y +
∑

h(aij )x
iy j

.

Proposition (Universal formal group)

There exists (L,FL) such that the map

HomRings∗ (L, S) ∋ h 7→ h∗FL ∈ FGL(R∗)

is bijective i.e. for every FGL (R∗,F ) there is the unique ring homomorphism
hF : L → R∗ such that hF ∗FL = F .
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Logarithm of a formal group

Definition

Logarithm of F ∈ FGL(R∗) is a series λ which defines an isomorphism λ : F → F+ i.e.

λ(F (λ−1(x), λ−1(y)) = x + y =: .F+(x , y)

Theorem (M. Lazard)

Let R∗ be a graded ring of char. 2, and F (x , y) an FGL over R∗. Then F jest is
isomorphic to the additive formal group. Moreover there exists a unique logarithm
λF (x) = x + a1x2 + a2x3 + ... such that aj = 0 if j = 2i − 1 for some i .

Theorem (Universal formal group)

Let L := F2[a2, a4, a5, ..] be a graded polynomial ring such that deg ai = −i and
i ̸= 2j − 1. Let λL(x) ∈ L[[x]] be defined as λL(x) := x +

∑
i>0 aix

i+1 and

FL(x , y) := λ−1
L (λL(x) + λL(y)).

Then (L,FL) is a universal FGL for FGL’s over graded F2-algebras.

In particular it exists unique homomorphism

h : L = F2[a2, a4, a5, ..]→ N∗ such that h∗FL = FN∗

We’d like to prove that h is an isomorphism!
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Why h : L → N∗ is an isomorphism

Proof that h : L → N∗ is an epimorphism proceeds by induction w.r.t.
dimension of manifold. Tool: Steenrod operations (squares) in cobordism.

Proof that h : L → N∗ is an isomorphism uses cobordism functors twisted
by formal groups. Tool: Landweber-Novikov operations.

Let (L,FL) be the universal FGL and h : L → N∗ be the homomorphism
corresponding to the formal group of cobordism. It defines a L-module
structure on N∗, thus on N∗(X ). For an arbitrary homomorphism a : L → R
(i.e. a FGL) we define a functor:

N∗a (X ) := R∗ ⊗L,a N∗(X ).

Proposition

The functor N∗a (−) is a (bi-)functor. FGL of N∗a is equal to Fa ⊗ 1, where Fa is
FGL defined by the homomorphism a : L → R.
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Cobordism twisted by FGL - functoriality with respect to FGL

Theorem

Any isomorphism of FGL over R, θ : Fa → Fb (i.e. Fa(x , y) = θFb(θ
−1(x), θ−1(y)))

defines a natural transformation of Mackey functors with values in R-modules

θ̂ : N∗a (X )→ N∗b (X )

Let Fa
ϕ−→ Fb

ψ−→ Fc be morphisms of FGL’s, and a, b, c : L → R the corresponding
homomorphisms. Then the following diagram commutes:

N∗a (X )
ϕ̂ //

ψ̂◦ϕ $$

N∗b (X )

ψ̂

��
N∗c (X )

(3)

Hence any isomorphism θ defines an isomorphism θ̂ : Na(X )→ Nb(X ).

Dowód.

Proof uses the Landweber-Novikov operations in cobordism.
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Finally....h : L → N∗ is an isomorphism of rings

(L,FL) - universal FGL, ε : L → Z2 - augumentation homomorphism.
The composition L ε−→ Z2

ι−→ L defines the additive FGL on L.

Theorem

Let λ be the canonical logarithm of FL. Then

λ̂ : L ⊗ (Z2 ⊗L N∗(X ))
≃−→ N∗(X )

is a natural isomorphism of rings. In particular,

L ≃ N∗

Moreover Z2 ⊗N∗ N
∗(X ) ≃ H∗(X ;Z2).

Dowód.

L ⊗ (Z2 ⊗ε N∗(X )) = L ⊗ι◦ε N∗(X )
λ̂−→ L⊗id N∗(X ) = N∗(X ).
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Half a century ago...

G. Lusztig, D. Quillen, G. Segal, M. F. Atiyah. Princeton 1970

50 years teaching at WMIM. Thank you!
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