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Fréchet-Urysohn spaces

All spaces are Tychonoff.
Definition
» Y is a Fréchet-Urysohn space (or, equivalently, has the

Fréchet-Urysohn property) if for every ACY and y € A\ A
there exists a sequence (a, : n € w) € A converging to y.

» Y has countable tightness (equivalently, t(Y) < w) if for every
ACY and y € A\ A there exists B € [A]* withy € B. O

YisFU=t(Y)<w

Example. All metrizable spaces are FU. More generally, all
first-countable spaces are FU. All spaces X with ¢(X) < w and
character < p are FU. a

Theorem (Hrusak-Ramos Garcia 2014)

It is consistent that all separable FU topological groups are

metrizable.
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Function spaces

Definition
Cp(X)={f: X = R| fis continuous }. We consider Cp,(X) with
the topology inherited from the Tychonoff product RX. ]

Easy Fact. C,(X) is metrizable iff Cp(X) is first-countable iff
|X| < w. O

Theorem (Arkhangel'skii-Pytkeev 1980s)

t(Cp(X)) <w iff X™ is Lindelof for all n € w. In particular,
t(Cp(X)) < w for every metrizable separable space.
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FU spaces of functions

Definition
A family U C P(X) is called
» an w-cover of X, if X €U and for every K € [X]<“ there
exists U € U such that K C U.
» a ~-cover of X, if for every x € X, theset {U cU :x ¢ U} is
at most finite.
A space X is called a y-space, if every open w-cover of X contains
a y-subcover. |
Example. {(n,n +2) :n € Z} is an open cover of R which is not
an w-cover.
{(—=n,n) : n € w} is a y-cover of R.
{U CR:U is open and u(U) < 1} is an w-cover of R without any
~-subcover, so R is not a y-space. O

Theorem (Gerlits-Nagy 1982)
Cp(X) is FU iff X is a y-space.
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Intuition behind the proof of the Gerlits-Nagy theorem

ForUC X and z € X set xpy(z) =0ifz € U and xp(z) =1
otherwise. Let U be a family of clopen subsets of X.

Easy to check:

Oe{xv:UeU}\{xv:UelU}iffdis an w-cover of X.
Indeed, pick a basic open neighbourhood

W= [1/2z0,...,25) ={f € Cp(X) : Vi < n(|f(xi)] <1/2)} of
0 in Cp(X) and note that xp € W iff {zo,...,z,} C U.

Equally easy to check:
For {U,, : n e w} C U, {xu, : n € w} converges to 0 iff
{Up :n € w} is a y-cover of X.

This proves the Gerlits-Nagy theorem for C),(X, 2).
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Examples of y-spaces

Observation
If X is a metrizable separable space of size < p, then X is a
~-space. O

Theorem (Gerlits-Nagy 1982)

If X C R is a y-space, then X has the strong measure zero. In
particular, there are no uncountable metrizable vy-spaces in the
Laver model. O

Theorem (Galvin-A. Miller 1984)
If p = ¢, then there exists a y-space X C 2 of size p. O

Theorem (Orenshtein-Tsaban 2011)
If p = b, then there exists a y-space X C 2“ of size p. |

Previously was unknown even under 0 = wy!
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~v-spaces and forcing

Theorem (A. Miller 2005)

In the Hechler model there are no uncountable metrizable ~y-spaces.
In particular, the existence of uncountable strong measure zero sets
of reals does not imply the existence of uncountable ~y-spaces of

reals. O
Theorem (A. Miller-Tsaban-Z. 2016)
Metrizable ~-spaces are preserved by Cohen forcing. |

Later, in a joint work with Repovs we have introduced a property of
proper posets which is satisfied by Cohen, Miller, and Sacks
forcings, and such that metrizable v-spaces are preserved by
countable support iterations of posets with this property.

Question (A. Miller)

Suppose that X C R isa y-spaceand Y C R, |[Y| <p. s X xY a
~v-space? What if |Y | = wy and MA plus non-CH hold?
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Weakening the FU property

Definition
A space Y is

» sequential, if for every non-closed A C Y there exists
y € A\ A and a sequence of elements of A convergent to y.

» subsequential, if it can be embedded into a sequential space.

» Pytkeev, if for every A C Y and y € A\ A there exists a
countable family B of infinite subsets of A such that for every
open O > y there exists B € B with B C O. a

Proposition (Pytkeev 1984)
Subsequential spaces have the Pytkeev property. O

Theorem (Pytkeev 1982)
Cp(X) is sequential iff it is FU. |
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Weakening the FU property, continued

FU = sequential = subsequential = Pytkeev = countable tightness.

Question (Arkhangel’skii 1987)

Is the subsequentiality equivalent to the FU property for Cp-spaces?
Od

Theorem (Malykhin 1999)
Cy([0,1]) is not Pytkeev, and hence it is not subsequential. O

Theorem (A. Miller 2008)

Let X be a metrizable space. If C\,(X) is Pytkeev, then X has the
strong measure zero with respect to any totally bounded
continuous metric on it. Therefore X is zero-dimensional.
Moreover, in the Laver model | X| = w iff C,,(X) is Pytkeev. O

Question (Malykhin-Tironi 2000)
Does there exist a non-subsequential Pytkeev space in ZFC? O
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M. Sakai 2006: Are the Pytkeev and FU properties

equivalent for C)-spaces?

Theorem (Bardyla-Supina-Z. 2020)
(CH) There exists X C 2 such that C,(X) has the Pytkeev
property but fails to be FU. O

Theorem (Simon-Tsaban 2008)

The minimal cardinality of a set X C R such that C,(X) does not
have the Pytkeev property is equal to p. O

Thus no solution to Sakai’s problem by playing around with cardinal
characteristics.
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Ingredient 1 of the proof: Simon-Tsaban characterization

Theorem (Simon-Tsaban 2008)
TFAE for a zero-dimensional space X :
» C,(X) has the Pytkeev property;

» Each clopen w-cover U of X contains infinite subsets
Uy, U1, Us, . .. such that {NU, : n € w} is an w-cover of X. O

The latter property of X will be denoted by (7).

Note that if there exists an infinite U, C U such that Us, C* U,
for all n, then U, is a y-cover of X. This will give us later a hint
which witnesses for (7) we should have in a potential
counterexample.

Remark. In the characterization above it is enough to demand that
for all finite K’ C X there exists n such that K C U for almost all
U el,.
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Ingredient 2 of the proof: Galvin-Miller Lemma

Lemma (Galvin-Miller 1984)
Let U be an w-cover of [w|<“ consisting of clopen subsets of P(w).

Then there exist an increasing number sequence (ky, : n € w) and
(Up :n € w) € UY such that for every n and x C w, if
x N [kn,kni1) =0, then x € U,.
Proof. Enough to prove the following:
For every k € w there exists k' > k and U € U such that
forevery x Cw, ifx N[k, k') =0, then x € U.

Hint: take U € U such that U D P(k) and using that it is open
find suitable £’ .
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Sufficient conditions for getting a counterexample

Lemma
Let G be an ultrafilter on w. If the set {as : o < ¢} C G* satisfies

Vo € [w]¥3a (|zNaq| = w),

then X :={aq : a < ¢} U[w]<¥ is not a y-space.

Proof. Note that O = {O,, : n € w}, where O,, = {z Cw:n & x}
is an w-cover of X. The assumption on X states literally that O
has no ~y-subcover of X. O
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Sufficient conditions for getting a counterexample

Lemma

(CH). Let {ko : & < w1} be an enumeration of all increasing sequences from
“w (each sequence repeated w1 many times) and G be an ultrafilter on w. If for
a partition {I,, : n € w} C [w]” of w, the set {an : @ < w1} satisfies

{new: (V7)€ L) [ks(§),ka(j + 1) Naa =0} €G

for all B < «, then X = {aa : @ < w1} U [w]< has (7).
Proof. Given an w-cover U of X, find 8 and (U, : j € w) € U such that
N ka(j), ka(j+1)) =0 implies z € U;. . Set U, = {U; : j € I,,} and pick a
finite s C w1 \ . For every a € s the set
Ga ={n€w:(¥V°jeI,) [ks(j), ka(j + 1)) Naa = 0}
belongs to G, and note that

Go C{new: (V°j€l,)aa € Uj}.
G and note that {aq : a € s} C Uj for almost all j € I, i.e.,
for almost all U; € U,. Thus,

Pick n € N

aEs

{NV : Vis a cofinite subset of U, for some n}

is an w-cover of {aq : @ < w1} U [w]<*. This is almost () for X :-) ]
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Bringing together two halves

Let {kq : @ < w1} be an enumeration of all increasing sequences
from “w (each sequence repeated wy many times) and G be an
ultrafilter on w. Let {I,, : n € w} C [w]¥ be a partition of w.

If the set {aq : @ < wy} C G* satisfies
{new: (v ely) ks(i) ks(G+1))Naa =0} €6
for all 8 < «, and
Ve € [w]¥3a (|zNas] =w),

X :={an: a <c}U[w]<¥ is not a y-space but still satisfies
(). .
Now just do a rather straightforward transfinite construction to get
the two conditions above fulfilled...

Remark. The construction could be done under p = ¢, but there is
a model of p = b where all sets we can get in such constructions

are -y-sets.
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s our result optimal/satisfactory?

Noll!

The property () is typical combinatorial covering property (selection
principle), and being a ~-space is the strongest “standard” one. The
weakest “standard” selection principle is the following Menger property:

For every sequence (U,, : n € w) of open covers of X there is a

sequence (V,, : n € w) such that V,, € [U,]<% and {UV,, : n €
w} is a cover of X.

Question
Does (m) imply Menger? What about the subsets of 2?7 O

Would be very helpful (among other, sufficient for the answer of the
question above) to know the answer to the following

Question
Is () for subsets of 2“ preserved by the Cohen forcing? a

If yes, then in ZFC we would be able to conclude that (7) implies all
finite powers being both Rothberger and Hurewicz, thus pushing it rather

close to y-spaces in the Scheepers diagram.
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The last slide

Dziekuje za uwage.

Thank you for your attention.
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