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Fréchet-Urysohn spaces

All spaces are Tychono�.

De�nition
I Y is a Fréchet-Urysohn space (or, equivalently, has the

Fréchet-Urysohn property) if for every A ⊂ Y and y ∈ Ā \A
there exists a sequence 〈an : n ∈ ω〉 ∈ Aω converging to y.

I Y has countable tightness (equivalently, t(Y ) ≤ ω) if for every
A ⊂ Y and y ∈ Ā \A there exists B ∈ [A]ω with y ∈ B̄. 2

Y is FU =⇒ t(Y ) ≤ ω

Example. All metrizable spaces are FU. More generally, all

�rst-countable spaces are FU. All spaces X with t(X) ≤ ω and

character < p are FU. 2

Theorem (Hrusak-Ramos Garcia 2014)
It is consistent that all separable FU topological groups are

metrizable.
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Function spaces

De�nition
Cp(X) = {f : X → R | f is continuous }. We consider Cp(X) with

the topology inherited from the Tychono� product RX . 2

Easy Fact. Cp(X) is metrizable i� Cp(X) is �rst-countable i�

|X| ≤ ω. 2

Theorem (Arkhangel'skii-Pytkeev 1980s)
t(Cp(X)) ≤ ω i� Xn is Lindelöf for all n ∈ ω. In particular,

t(Cp(X)) ≤ ω for every metrizable separable space.

3 / 17



FU spaces of functions

De�nition
A family U ⊂ P(X) is called

I an ω-cover of X, if X 6∈ U and for every K ∈ [X]<ω there

exists U ∈ U such that K ⊂ U .

I a γ-cover of X, if for every x ∈ X, the set {U ∈ U : x 6∈ U} is
at most �nite.

A space X is called a γ-space, if every open ω-cover of X contains

a γ-subcover. 2

Example. {(n, n+ 2) : n ∈ Z} is an open cover of R which is not

an ω-cover.
{(−n, n) : n ∈ ω} is a γ-cover of R.
{U ⊂ R : U is open and µ(U) < 1} is an ω-cover of R without any

γ-subcover, so R is not a γ-space. 2

Theorem (Gerlits-Nagy 1982)
Cp(X) is FU i� X is a γ-space.
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Intuition behind the proof of the Gerlits-Nagy theorem

For U ⊂ X and x ∈ X set χU (x) = 0 if x ∈ U and χU (x) = 1
otherwise. Let U be a family of clopen subsets of X.

Easy to check:

0 ∈ {χU : U ∈ U} \ {χU : U ∈ U} i� U is an ω-cover of X.

Indeed, pick a basic open neighbourhood

W := [1/2;x0, . . . , xn] = {f ∈ Cp(X) : ∀i ≤ n(|f(xi)| < 1/2)} of
0 in Cp(X) and note that χU ∈W i� {x0, . . . , xn} ⊂ U .

Equally easy to check:

For {Un : n ∈ ω} ⊂ U , {χUn : n ∈ ω} converges to 0 i�

{Un : n ∈ ω} is a γ-cover of X.

This proves the Gerlits-Nagy theorem for Cp(X, 2).
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Examples of γ-spaces

Observation
If X is a metrizable separable space of size < p, then X is a

γ-space. 2

Theorem (Gerlits-Nagy 1982)
If X ⊂ R is a γ-space, then X has the strong measure zero. In

particular, there are no uncountable metrizable γ-spaces in the

Laver model. 2

Theorem (Galvin-A. Miller 1984)
If p = c, then there exists a γ-space X ⊂ 2ω of size p. 2

Theorem (Orenshtein-Tsaban 2011)
If p = b, then there exists a γ-space X ⊂ 2ω of size p. 2

Previously was unknown even under d = ω1!
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γ-spaces and forcing

Theorem (A. Miller 2005)
In the Hechler model there are no uncountable metrizable γ-spaces.
In particular, the existence of uncountable strong measure zero sets

of reals does not imply the existence of uncountable γ-spaces of
reals. 2

Theorem (A. Miller-Tsaban-Z. 2016)
Metrizable γ-spaces are preserved by Cohen forcing. 2

Later, in a joint work with Repov² we have introduced a property of

proper posets which is satis�ed by Cohen, Miller, and Sacks

forcings, and such that metrizable γ-spaces are preserved by

countable support iterations of posets with this property.

Question (A. Miller)
Suppose that X ⊂ R is a γ-space and Y ⊂ R, |Y | < p. Is X × Y a

γ-space? What if |Y | = ω1 and MA plus non-CH hold?
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Weakening the FU property

De�nition
A space Y is

I sequential, if for every non-closed A ⊂ Y there exists

y ∈ Ā \A and a sequence of elements of A convergent to y.

I subsequential, if it can be embedded into a sequential space.

I Pytkeev, if for every A ⊂ Y and y ∈ Ā \A there exists a

countable family B of in�nite subsets of A such that for every

open O 3 y there exists B ∈ B with B ⊂ O. 2

Proposition (Pytkeev 1984)
Subsequential spaces have the Pytkeev property. 2

Theorem (Pytkeev 1982)
Cp(X) is sequential i� it is FU. 2
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Weakening the FU property, continued

FU =⇒ sequential =⇒ subsequential =⇒ Pytkeev =⇒ countable tightness.

Question (Arkhangel'skii 198?)
Is the subsequentiality equivalent to the FU property for Cp-spaces?
2

Theorem (Malykhin 1999)
Cp([0, 1]) is not Pytkeev, and hence it is not subsequential. 2

Theorem (A. Miller 2008)
Let X be a metrizable space. If Cp(X) is Pytkeev, then X has the

strong measure zero with respect to any totally bounded

continuous metric on it. Therefore X is zero-dimensional.

Moreover, in the Laver model |X| = ω i� Cp(X) is Pytkeev. 2

Question (Malykhin-Tironi 2000)
Does there exist a non-subsequential Pytkeev space in ZFC? 2
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M. Sakai 2006: Are the Pytkeev and FU properties
equivalent for Cp-spaces?

Theorem (Bardyla-�upina-Z. 2020)
(CH) There exists X ⊂ 2ω such that Cp(X) has the Pytkeev

property but fails to be FU. 2

Theorem (Simon-Tsaban 2008)
The minimal cardinality of a set X ⊂ R such that Cp(X) does not

have the Pytkeev property is equal to p. 2

Thus no solution to Sakai's problem by playing around with cardinal

characteristics.
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Ingredient 1 of the proof: Simon-Tsaban characterization

Theorem (Simon-Tsaban 2008)
TFAE for a zero-dimensional space X:

I Cp(X) has the Pytkeev property;

I Each clopen ω-cover U of X contains in�nite subsets

U0,U1,U2, . . . such that {∩Un : n ∈ ω} is an ω-cover of X. 2

The latter property of X will be denoted by (π).

Note that if there exists an in�nite U∞ ⊂ U such that U∞ ⊂∗ Un
for all n, then U∞ is a γ-cover of X. This will give us later a hint

which witnesses for (π) we should have in a potential

counterexample.

Remark. In the characterization above it is enough to demand that

for all �nite K ⊂ X there exists n such that K ⊂ U for almost all

U ∈ Un.
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Ingredient 2 of the proof: Galvin-Miller Lemma

Lemma (Galvin-Miller 1984)
Let U be an ω-cover of [ω]<ω consisting of clopen subsets of P(ω).

Then there exist an increasing number sequence 〈kn : n ∈ ω〉 and
〈Un : n ∈ ω〉 ∈ Uω such that for every n and x ⊂ ω, if
x ∩ [kn, kn+1) = ∅, then x ∈ Un.
Proof. Enough to prove the following:

For every k ∈ ω there exists k′ > k and U ∈ U such that

for every x ⊂ ω, if x ∩ [k, k′) = ∅, then x ∈ U .

Hint: take U ∈ U such that U ⊃ P(k) and using that it is open

�nd suitable k′. 2.
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Su�cient conditions for getting a counterexample

Lemma
Let G be an ultra�lter on ω. If the set {aα : α < c} ⊂ G∗ satis�es

∀x ∈ [ω]ω∃α (|x ∩ aα| = ω),

then X := {aα : α < c} ∪ [ω]<ω is not a γ-space.

Proof. Note that O = {On : n ∈ ω}, where On = {x ⊂ ω : n 6∈ x}
is an ω-cover of X. The assumption on X states literally that O
has no γ-subcover of X. 2
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Su�cient conditions for getting a counterexample II

Lemma
(CH). Let {kα : α < ω1} be an enumeration of all increasing sequences from
ωω (each sequence repeated ω1 many times) and G be an ultra�lter on ω. If for
a partition {In : n ∈ ω} ⊂ [ω]ω of ω, the set {aα : α < ω1} satis�es{

n ∈ ω : (∀∞j ∈ In) [kβ(j), kβ(j + 1)) ∩ aα = ∅
}
∈ G

for all β ≤ α, then X := {aα : α < ω1} ∪ [ω]<ω has (π).

Proof. Given an ω-cover U of X, �nd β and 〈Uj : j ∈ ω〉 ∈ Uω such that
x ∩ [kα(j), kα(j + 1)) = ∅ implies x ∈ Uj . . Set Un = {Uj : j ∈ In} and pick a
�nite s ⊂ ω1 \ β. For every α ∈ s the set

Gα :=
{
n ∈ ω : (∀∞j ∈ In) [kβ(j), kβ(j + 1)) ∩ aα = ∅

}
belongs to G, and note that

Gα ⊂
{
n ∈ ω : (∀∞j ∈ In) aα ∈ Uj

}
.

Pick n ∈
⋂
α∈sGα and note that {aα : α ∈ s} ⊂ Uj for almost all j ∈ In, i.e.,

for almost all Uj ∈ Un. Thus,

{∩V : V is a co�nite subset of Un for some n}

is an ω-cover of {aα : α < ω1} ∪ [ω]<ω. This is almost (π) for X :-) 2
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Bringing together two halves

Let {kα : α < ω1} be an enumeration of all increasing sequences

from ωω (each sequence repeated ω1 many times) and G be an

ultra�lter on ω. Let {In : n ∈ ω} ⊂ [ω]ω be a partition of ω.

If the set {aα : α < ω1} ⊂ G∗ satis�es{
n ∈ ω : (∀∞j ∈ In) [kβ(j), kβ(j + 1)) ∩ aα = ∅

}
∈ G

for all β ≤ α, and

∀x ∈ [ω]ω∃α (|x ∩ aα| = ω),

then X := {aα : α < c} ∪ [ω]<ω is not a γ-space but still satis�es

(π).
Now just do a rather straightforward trans�nite construction to get

the two conditions above ful�lled...

Remark. The construction could be done under p = c, but there is

a model of p = b where all sets we can get in such constructions

are γ-sets.
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Is our result optimal/satisfactory?

No!!!

The property (π) is typical combinatorial covering property (selection
principle), and being a γ-space is the strongest �standard� one. The
weakest �standard� selection principle is the following Menger property:

For every sequence 〈Un : n ∈ ω〉 of open covers of X there is a

sequence 〈Vn : n ∈ ω〉 such that Vn ∈ [Un]<ω and {∪Vn : n ∈
ω} is a cover of X.

Question
Does (π) imply Menger? What about the subsets of 2ω? 2

Would be very helpful (among other, su�cient for the answer of the
question above) to know the answer to the following

Question
Is (π) for subsets of 2ω preserved by the Cohen forcing? 2

If yes, then in ZFC we would be able to conclude that (π) implies all
�nite powers being both Rothberger and Hurewicz, thus pushing it rather
close to γ-spaces in the Scheepers diagram.
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The last slide

Dzi¦kuj¦ za uwag¦.

Thank you for your attention.
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