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Undecidable problems in Banach space theory

Questions concerning Banach spaces that cannot be
resolved on the basis of standard set theory, i.e. that
may have a positive or negative answer depending on
the adoption of different additional set theoretic
assumptions.

Examples of additional set theoretic assumptions:

CH - the Continuum Hypothesis: ℵ1 = c (continuum)

MA - Martin’s Axiom
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Universal Banach spaces

For a compact space K , C(K ) is the Banach space of real-valued
continuous functions on K (with the sup norm).

For a Banach space X , X ∗ denotes the dual space, and BX∗ is the
closed unit ball in X ∗.

Theorem (Banach-Mazur, 1932)
The Banach space C([0,1]) contains an isometric copy of any
separable Banach space.

3 / 21



Theorem (Banach-Mazur)
The Banach space C([0,1]) contains an isometric copy of any
separable Banach space.

A sketch of a proof:

1 For a Banach space X , the map e : X → C((BX∗ ,w∗)) given by

e(x)(x∗) = x∗(x) for x ∈ X , x∗ ∈ BX∗

is an isometric embedding;
2 If a Banach space X is separable, then the compact space

(BX∗ ,w∗) is metrizable;
3 Every nonempty metrizable compact space is a continuous image

of the Cantor set C;
4 If φ : K → L is a continuous surjection of compact spaces, then

the map f 7→ f ◦ φ is an isometric embedding of C(L) into C(K );
5 C([0,1]) contains an isometric copy of C(C).

4 / 21



For a topological space X , d(X ) - the density of X is the minimal
cardinality of a dense subspace of X , and w(X ) - the weight of X is the
minimal cardinality of a (topological) base of X .
For metrizable spaces X , we have d(X ) = w(X ).

Let B be a class of Banach spaces. We say that X ∈ B is injectively
isomorphically (isometrically) universal for B if for every Y ∈ B there is
an isomorphic (isometric) embedding of Y into X .

Problem 1
Let κ be an infinite cardinal number, and Bκ be the class of Banach
spaces X of density d(X ) ≤ κ. Does there exist a Banach space which
is injectively isomorphically (isometrically) universal for Bκ?

C([0,1]) is injectively isometrically universal for Bℵ0 - the class of
separable Banach spaces.
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Let K be a class of compact spaces. We say that K ∈ K is surjectively
universal for K if for every nonempty L ∈ K there is a continuous
surjection of K onto L.

Problem 2
Let κ be an infinite cardinal number, and Kκ be the class of compact
spaces K of weight w(K ) ≤ κ. Does there exist a compact space
which is surjectively universal for Kκ?

YES to Problem 2 =⇒ YES to Problem 1 (w(K ) = d(C(K ))).

A compact space K is totally disconnected if it has a base consisting of
closed and open subsets.

Problem 3
Let κ be an infinite cardinal number, and T DKκ be the class of totally
disconnected compact spaces K of weight w(k) ≤ κ. Does there exist
a compact space which is surjectively universal for T DKκ?

Problems 2 and 3 are equivalent (every compact space is a continuous
image of a totally disconnected compact space of the same weight).
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Let BA be a class of Boolean algebras. We say that A ∈ BA is
injectively universal for BA if for every B ∈ BA there is an isomorphic
embedding of B into A.

Problem 4
Let κ be an infinite cardinal number, and BAκ be the class of Boolean
algebras A of cardinality |A| ≤ κ. Does there exist a Boolean algebra
which is injectively universal for BAκ?

Problems 3 and 4 are equivalent (the Stone duality).

The cases of κ = ℵ1 or κ = c (continuum)

Theorem (Esenin-Volpin, 1949)
Assuming the Continuum Hypothesis there exists a compact space
surjectively universal for Kc
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βN is the Čech-Stone compactification of the space of natural numbers
N, and N∗ = βN \ N.

The algebra of all closed and open subsets of N∗ is isomorphic to the
Boolean algebra P(N)/fin, and the Banach space C(N∗) is isometric to
the quotient space ℓ∞/c0.

w(N∗) = d(ℓ∞/c0) = c.

Theorem (Parovičenko, 1963)
Every Boolean algebra of size ≤ ℵ1 embeds isomorphically into
algebra P(N)/fin.
Hence, assuming the Continuum Hypothesis the space N∗ is
surjectively universal for Kc, and the space ℓ∞/c0 is injectively
isometrically universal for Bc.
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Theorem (Dow-Hart, 2001)
It is consistent that there is no surjectively universal compact space for
Kc.

Theorem (Shelah-Usvyatsov, 2006)
It is consistent that there is no injectively isometrically universal
Banach space for Bc.

Theorem (Brech-Koszmider, 2012)
It is consistent that there are no injectively isomorphically universal
Banach spaces for Bℵ1 and Bc.
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Biorthogonal systems
X - a Banach space
A family of pairs {(xγ , x∗

γ ) : γ ∈ Γ} in X × X ∗ is called a biorthogonal
system in X × X ∗ if

x∗
α(xβ) =

{
1 if α = β

0 if α ̸= β

If {eγ : γ ∈ Γ} is an orthonormal basis in a Hilbert space (H, < ·, · >),
and e∗

γ ∈ H∗ is defined by e∗
γ(x) =< x ,eγ >, then {(eγ ,e∗

γ) : γ ∈ Γ} is a
biorthogonal system in H × H∗.

Theorem (Markushevich, 1943)
Every infinite dimensional separable Banach space has a biorthogonal
system {(xn, x∗

n ) : n ∈ N} such that span{xn : n ∈ N} = X and
span{x∗

n : n ∈ N}w∗
= X ∗.
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Problem 5
Let X be a nonseparable Banach space X . Does there exist an
uncountable biorthogonal system in X × X ∗?

Example (Kunen, 1980)
Assuming the Continuum Hypothesis there exists a nonseparable
space C(K ) without any uncountable biorthogonal system.

Theorem (Todorčević, 2006)
Assuming Martin’s Maximum axiom every Banach space X of density
ℵ1 has a biorthogonal system {(xγ , x∗

γ ) : γ ∈ Γ} of size ℵ1, and such
that span{xγ : γ ∈ Γ} = X.
In particular, every nonseparable Banach space contains an
uncountable biorthogonal system.
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Twisted sums

A twisted sum of Banach spaces Y and Z is a short exact sequence

0 → Y → X → Z → 0

where X is a Banach space and the maps are bounded linear
operators.
Such twisted sum is called trivial if the exact sequence splits, i.e., if the
map Y → X admits a left inverse (equivalently, if the map X → Z
admits a right inverse).
The twisted sum is trivial iff the range of the map Y → X is
complemented in X ; in this case, X ∼= Y ⊕ Z .

We write Ext(Z ,Y ) = 0 if every twisted sum of Y and Z is trivial.
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Example

0 → c0 → ℓ∞ → ℓ∞/c0 → 0

Phillips (1940): c0 is not complemented in l∞

For a compact space K , C(K ) is the Banach space of real-valued
continuous functions on K (with the sup norm).

For a closed A ⊂ K , C(K |A) = {f ∈ C(K ) : f |A ≡ 0},

In the sequence 0 → c0 → ℓ∞ → ℓ∞/c0 → 0
we can replace all spaces by isometric function spaces obtaining

0 → C(βN|N∗) → C(βN) → C(N∗) → 0

This twisted sum is nontrivial because there is no isomorphic
embedding of C(N∗) into C(βN) (C(βN) has a separating sequence of
functionals and C(N∗) does not have).
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By the classical Sobczyk theorem any isomorphic copy of the space c0
is complemented in any separable superspace. This implies
Ext(Y , c0) = 0 for every separable Banach space Y . In particular

Remark
If K is a metrizable compact space, then every twisted sum of c0 and
C(K ) is trivial.

Problem 6 (Cabello, Castillo, Kalton, Yost, 2000)
Let K be a nonmetrizable compact space. Does there exist a nontrivial
twisted sum of c0 and C(K )?
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Some classes of compacta K with Ext(C(K ), c0) ̸= 0

(Castillo, Correa-Tausk, 2016) For a non-metrizable K , there exists a
nontrivial twisted sum of c0 and C(K ) in any of the following cases:

K is a weakly compact subspace of a Banach space;
the weight w(K ) of K is equal to ℵ1 and ((C(K ))∗,w∗) is not
separable;
C(K ) contains an isomorphic copy of ℓ∞;
K contains a copy of 2c;
K is an ordinal space, i.e., K = [0, κ] for some ordinal number κ.
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Theorem (Plebanek-M., 2018)
(MA + ¬CH) The spaces c0 and C(2ℵ1) do not have a nontrivial twisted
sum.

A topological space X is scattered if no nonempty subset A ⊆ X is
dense-in-itself.
For an ordinal α, X (α) is the αth Cantor-Bendixson derivative of the
space X . For a scattered space X , the scattered height

ht(X ) = min{α : X (α) = ∅} .

Theorem (Plebanek-M., 2018)
(MA + ¬CH) let K be a separable scattered compact space of height 3
and weight ℵ1. Then every twisted sum of c0 and C(K ) is trivial.

In the above theorems ℵ1 can be replaced by any infinite cardinal
number λ < c.

Theorem (Avilés-Plebanek-M., 2020)
(CH) If K is a compact nonmetrizable space then Ext(C(K ), c0) ̸= 0.
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Some consequences of Ext(C(K ), c0) = 0
Theorem (Plebanek-M., 2018)
(MA + ¬CH) let K be a separable scattered compact space of height 3
and weight λ < c. Then Ext(C(K ), c0) = 0.

Theorem (Cabello Sánchez-Castillo-Plebanek-Salguero-Alarcón-M., 2020)

(MA + ¬CH) let K and L be separable scattered compact space of
height 3 and weight λ < c. Then the Banach spaces C(K ) and C(L)
are isomorphic, and C(K ) is isomorphic to its square C(K )⊕ C(K ).

Theorem (Pol-M., 2009)
There exist 2c pairwise nonisomorphic Banach spaces C(K ) for
separable scattered compact spaces K of height 3 and weight c.

Theorem (M., 1988)
There exists a separable scattered compact space K of height 3 and
weight c such that C(K ) is not isomorphic (not weakly homeomorphic)
to its square C(K )⊕ C(K ).
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A bounded operator T : Y → ℓ∞/c0 can be lifted to ℓ∞ if there is a
bounded operator T̃ : Y → ℓ∞ such that T = Q ◦ T̃ , where
Q : ℓ∞ → ℓ∞/c0 is the quotient operator.

Theorem (Avilés-Plebanek-M., 2020)
For an infinite dimensional Banach space Y the following are
equivalent:

(i) Ext(Y , c0) = 0;
(ii) every continuous function N∗ −→ (Y ∗,weak∗) extends to a

continuous function βN −→ (Y ∗,weak∗);
(iii) every bounded operator T : Y → ℓ∞/c0 can be lifted to ℓ∞.

easy application: Ext(ℓ1(κ), c0) = 0, for any cardinal number κ.
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Theorem
For an infinite dimensional Banach space Y the following are
equivalent:

(i) Ext(Y , c0) = 0;
(ii) every continuous function N∗ −→ (Y ∗,weak∗) extends to a

continuous function βN −→ (Y ∗,weak∗);

Corollary
If Y is a Banach space satisfying Ext(Y , c0) = 0, then
|C(N∗,BY∗)| ≤ |Y ∗|.

Lemma
If K is a compact space of weight ℵ1, then |C(N∗,K )| ≥ 2ℵ1 .

Corollary

If Y is a Banach space of density ℵ1 and |Y ∗| < 2ℵ1 , then
Ext(Y , c0) ̸= 0.
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Some open questions

Problem
Let K be a compact space of weight ≥ c. Is Ext(C(K ), c0) ̸= 0?

Problem
Let K be a scattered compact space of weight ≥ c. Is
Ext(C(K ), c0) ̸= 0?

Problem
Let K be a scattered compact space of countable height and weight
≥ c. Is Ext(C(K ), c0) ̸= 0?
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