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Motivation: the Cauchy equation

A function f : R→ R is
• additive if ∀x , y ∈ R f (x + y) = f (x) + f (y);
• linear if ∃a ∈ R ∀x ∈ R f (x) = ax .

Theorem (Cauchy, 1821)

A function f : R→ R is linear iff it is additive and continuous.

Problem (Cauchy)

Are there any nonlinear (and hence discontinuous) solutions of the
Cachy function equation f (x + y) = f (x) + f (y)?

Example (Haar, 1905)

The Axiom of Choice implies the existence of a discontinuous
additive function f : R→ R.
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BP-Measurable homomorphisms are continuous

Theorem (Banach, Schwartz)

Any BP-measurable additive function between Banach spaces is
continuous.

Def: A function f : X → Y between topological spaces is
BP-measurable if for every open set U ⊆ Y the preimage f −1[U]
has the Baire Property, i.e., belongs to the smallest σ-algebra
containing all open sets and all meager subsets of X .

It is clear that every continuous function is BP-measurable.

Theorem (Pettis, 1950)

Every BP-measurable homomorphism between Polish groups is
continuous.
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The reason of automatic continuity

Theorem (Piccard, 1939; Pettis, 1951)

If a subset A of a topological group X is not meager and has the
Baire property, then AA−1 is a neighborhood of the identity in X .

Def: A topological group G is ω-narrow if for every nonempty open
set U ⊆ G there exists a countable set C ⊆ G such that UC = G .

Corollary (Pettis)

Eacy BP-measurable homomorphism h : X → Y from a nonmeager
topological group to an ω-narrow topological group is continuous.

Proof: Given any nbhd U of eY in Y , choose a nbhd V ⊆ Y of eY such

that VV−1 ⊆ U. By ω-narrowness of Y , find a countable set C ⊆ X

such that Y = V · h[C ]. Then X = h−1[V ] · C and hence A = h−1[V ] is

nonmeager in X . Since h is BP-measurable, A has the Baire property in

X and then AA−1 is a neighborhood of eX by the Piccard-Pettis

Theorem. Then h[AA−1] = h[A]h[A]−1 ⊆ VV−1 ⊆ U and hence

h−1[U] ⊇ AA−1 is a nbhd of eX , so h is continuous.
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Haar measurable homomorphisms are continuous

Theorem (Weil, 1965)

Every Haar-measurable homomorphism from a locally compact
topological group to any ω-narrow topological group is continuous.

Reason?

Theorem (Steinhaus, 1920; Weil, 1965)

For every Haar-measurable set A of positive Haar measure in a
locally compact topological group the set AA−1 is a neighborhood
of the identity.

Therefore we have two results on automatic continuity of
homomorphisms from Baire or locally compact groups with values
in ω-narrow topological groups.

Are those results still true without ω-narrowness of the range
group?
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Homomorphisms between locally compact groups

Theorem (Kleppner, 1989)

Any Haar-measurable homomorphism between locally compact
groups is continuous.

Theorem (Kuznetsova, 2012)

Under Martin’s Axiom, every Haar-measurable homomorphism
from a locally compact group to any topological group is
continuous.

Problem (Kuznetsova, 2012)

Is the preceding theorem true in ZFC?
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Main Results

Theorem (B., 2022)

Every Haar-measurable homomorphism from any locally compact
topological group to any topological group is continuous.

A Tychonof space X is Čech-complete if it is a Gδ-set in its
compactification.

Theorem (B., 2022)

Every BP-measurable homomorphism from an ω-narrow
Čech-complete top group to any top group is continuous.

Corollary (B., 2022)

Every Borel homomorphism from a Čech-complete topological
group to an arbitrary topological group is continuous.
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Four Poles Theorem and its corollary

Theorem (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski, 1997)

Let I be a σ-ideal with a Borel base on a Polish space X . Any
point-finite subfamily J ⊆ I with

⋃
J /∈ I contains a subfamily

J ′ ⊆ J whose union
⋃
J ′ does not belong to the smallest

σ-algebra BI containing all Borel sets and all sets in the ideal I.

Corollary

Let I be a left-invariant σ-ideal with a Borel base on a Polish
group X . For any BI-measurable homomorphism h : X → Y to an
arbitrary topological group Y and any neighborhood U ⊆ Y of the
identity we have h−1[U] /∈ I.
If I is Steinhaus or ccc, then h is continuous.

What are nonmetrizable generalizations of those results?
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Analytic generalization of the Four Poles Theorem

Let I be a σ-ideal on a Polish space X . A subset M ⊆ X is called
analytically I-measurable if for any analytic set A ⊆ X with
A∩M /∈ I there exists an analytic set B ⊆ A∩M such that B /∈ I.

Theorem (B., Ra lowski, Żeberski, 2021)

Let I be a σ-ideal on a Polish space X . For any point-finite
subfamily J ⊆ I with

⋃
J /∈ I there exists a subfamily J ′ ⊆ I

whose union
⋃
J ′ is not analytically I-measurable.
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K -analytic spaces and groups

A Tychonoff space is K-analytic if it is a continuous image of a
Lindelöf Čech-complete space.

It is known that a metrizable space is K -analytic iff it is analytic.

Theorem (B., 2022)

For a topological group X the following conditions are equivalent:

1 X is K-analytic and Baire;

2 X is Lindelöf and Čech-complete;

3 X is ω-narrow and Čech-complete;

4 X is countably cellular and Čech-complete.
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Functionally Borel and (co)analytic sets

Let P is some property of subsets in Polish spaces, for example,
Borel, analytic, coanalytic, etc.

A subset A of a topological space X is called functionally P if
there exists a continuous function f : X → Y to a Polish space Y
and a set B ⊆ Y with property P such that A = f −1[B].

Let I be a σ-ideal on a Tychonoff space X . A subset M ⊆ X is
called K-analytically I-measurable if for any K -analytic subspace
A ⊆ X with A ∩M /∈ I there exists a K -analytic subspace
B ⊆ A ∩M such that B /∈ I.

Theorem (B., 2022)

Let I be a left-invariant σ-ideal with functionally coanalytic base
on a K-analytic topological group. Assume that h : X → Y is a
homomorphism to a topological group Y such that for every open
set U ⊆ Y the preimage h−1[U] is K-analytically I-measurable in
X . Then for every neighborhood U ⊆ Y of the identity we have
h−1[U] /∈ I. If I has is Steinhaus or ccc, then h is continuous.
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Steinhaus ideals

A left-invariant σ-ideal I on a topological group X is defined to be

n-Steinhaus if for any K -analytic subspace A /∈ I in X the set
(AA−1)n is a neighborhood of the identity in X ;

Steinhaus if it is n-Steinhaus for some n ∈ N;

ccc if X contains no uncountable family of I-positive
K -analytic subsets.

Example

1 By Piccard–Pettis Theorem, the σ-ideal M of meager sets
any Baire topological group is 1-Steinhaus;

2 By Steinhaus–Weil Theorem, the ideal N of Haar-null sets in
a locally compact group is 1-Steinhaus.

3 Every left-invariant ccc-ideal on a Baire topological group is
2-Steinhaus.
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Main result

Theorem

Let X be an ω-narrow Čech-complete group and I be a Steinhaus
left-invariant σ-ideal with a functionally coanalytic base on X .
Every BI-measurable homomorphism h : X → Y to any
topological group Y is continuous.

Corollary

1 Every Haar-measurable homomorphism from a locally
compact group to any topological group is continuous.

2 Every BP-measurable homomorphism from any ω-narrow
Čech-complete group to any topological group is continuous.

3 Every Borel homomorphism from any Čech complete group to
any topological group is continuous.
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Thank you!
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