Automatic continuity of homomorphisms on topological groups

Taras Banakh

Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University in Kielce (Poland)

Warsaw, 26 January 2022

1/14

Motivation: the Cauchy equation

A function $f : \mathbb{R} \to \mathbb{R}$ is

- additive if $\forall x, y \in \mathbb{R}$ f(x+y) = f(x) + f(y);
- linear if $\exists a \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad f(x) = ax.$

Theorem (Cauchy, 1821)

A function $f : \mathbb{R} \to \mathbb{R}$ is linear iff it is additive and continuous.

Problem (Cauchy)

Are there any nonlinear (and hence discontinuous) solutions of the Cachy function equation f(x + y) = f(x) + f(y)?

Example (Haar, 1905)

The Axiom of Choice implies the existence of a discontinuous additive function $f : \mathbb{R} \to \mathbb{R}$.

A (1) > (1) > (1)

Theorem (Banach, Schwartz)

Any BP-measurable additive function between Banach spaces is continuous.

Def: A function $f : X \to Y$ between topological spaces is *BP-measurable* if for every open set $U \subseteq Y$ the preimage $f^{-1}[U]$ has the *Baire Property*, i.e., belongs to the smallest σ -algebra containing all open sets and all meager subsets of X.

It is clear that every continuous function is *BP*-measurable.

Theorem (Pettis, 1950)

Every BP-measurable homomorphism between Polish groups is continuous.

Theorem (Piccard, 1939; Pettis, 1951)

If a subset A of a topological group X is not meager and has the Baire property, then AA^{-1} is a neighborhood of the identity in X.

Def: A topological group G is ω -narrow if for every nonempty open set $U \subseteq G$ there exists a countable set $C \subseteq G$ such that UC = G.

Corollary (Pettis)

Eacy BP-measurable homomorphism $h: X \to Y$ from a nonmeager topological group to an ω -narrow topological group is continuous.

Proof: Given any nbhd U of e_Y in Y, choose a nbhd $V \subseteq Y$ of e_Y such that $VV^{-1} \subseteq U$. By ω -narrowness of Y, find a countable set $C \subseteq X$ such that $Y = V \cdot h[C]$. Then $X = h^{-1}[V] \cdot C$ and hence $A = h^{-1}[V]$ is nonmeager in X. Since h is BP-measurable, A has the Baire property in X and then AA^{-1} is a neighborhood of e_X by the Piccard-Pettis Theorem. Then $h[AA^{-1}] = h[A]h[A]^{-1} \subseteq VV^{-1} \subseteq U$ and hence $h^{-1}[U] \supseteq AA^{-1}$ is a nbhd of e_X , so h is continuous.

Theorem (Weil, 1965)

Every Haar-measurable homomorphism from a locally compact topological group to any ω -narrow topological group is continuous.

Reason?

Theorem (Steinhaus, 1920; Weil, 1965)

For every Haar-measurable set A of positive Haar measure in a locally compact topological group the set AA^{-1} is a neighborhood of the identity.

Therefore we have two results on automatic continuity of homomorphisms from Baire or locally compact groups with values in ω -narrow topological groups.

Are those results still true without ω -narrowness of the range group?

Theorem (Kleppner, 1989)

Any Haar-measurable homomorphism between locally compact groups is continuous.

Theorem (Kuznetsova, 2012)

Under Martin's Axiom, every Haar-measurable homomorphism from a locally compact group to any topological group is continuous.

Problem (Kuznetsova, 2012)

Is the preceding theorem true in ZFC?

< 🗇 🕨 < 🖃 🕨

Theorem (B., 2022)

Every Haar-measurable homomorphism from any locally compact topological group to any topological group is continuous.

A Tychonof space X is <u>Čech-complete</u> if it is a G_{δ} -set in its compactification.

Theorem (B., 2022)

Every BP-measurable homomorphism from an ω -narrow Čech-complete top group to any top group is continuous.

Corollary (B., 2022)

Every Borel homomorphism from a Čech-complete topological group to an arbitrary topological group is continuous.

< ロ > < 同 > < 三 > < 三 >

Theorem (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski, 1997)

Let \mathcal{I} be a σ -ideal with a Borel base on a Polish space X. Any point-finite subfamily $\mathcal{J} \subseteq \mathcal{I}$ with $\bigcup \mathcal{J} \notin \mathcal{I}$ contains a subfamily $\mathcal{J}' \subseteq \mathcal{J}$ whose union $\bigcup \mathcal{J}'$ does not belong to the smallest σ -algebra \mathcal{BI} containing all Borel sets and all sets in the ideal \mathcal{I} .

Corollary

Let \mathcal{I} be a left-invariant σ -ideal with a Borel base on a Polish group X. For any \mathcal{BI} -measurable homomorphism $h: X \to Y$ to an arbitrary topological group Y and any neighborhood $U \subseteq Y$ of the identity we have $h^{-1}[U] \notin \mathcal{I}$. If \mathcal{I} is Steinhaus or ccc, then h is continuous.

What are nonmetrizable generalizations of those results?

Let \mathcal{I} be a σ -ideal on a Polish space X. A subset $M \subseteq X$ is called *analytically* \mathcal{I} -*measurable* if for any analytic set $A \subseteq X$ with $A \cap M \notin \mathcal{I}$ there exists an analytic set $B \subseteq A \cap M$ such that $B \notin \mathcal{I}$.

Theorem (B., Rałowski, Żeberski, 2021)

Let \mathcal{I} be a σ -ideal on a Polish space X. For any point-finite subfamily $\mathcal{J} \subseteq \mathcal{I}$ with $\bigcup \mathcal{J} \notin \mathcal{I}$ there exists a subfamily $\mathcal{J}' \subseteq \mathcal{I}$ whose union $\bigcup \mathcal{J}'$ is not analytically \mathcal{I} -measurable.

9/14

A Tychonoff space is K-analytic if it is a continuous image of a Lindelöf Čech-complete space.

It is known that a metrizable space is K-analytic iff it is analytic.

Theorem (B., 2022)

For a topological group X the following conditions are equivalent:

- X is K-analytic and Baire;
- 2 X is Lindelöf and Čech-complete;
- **3** *X* is ω -narrow and Čech-complete;
- X is countably cellular and Čech-complete.

Functionally Borel and (co)analytic sets

Let \mathcal{P} is some property of subsets in Polish spaces, for example, Borel, analytic, coanalytic, etc.

A subset A of a topological space X is called *functionally* \mathcal{P} if there exists a continuous function $f: X \to Y$ to a Polish space Y and a set $B \subseteq Y$ with property \mathcal{P} such that $A = f^{-1}[B]$.

Let \mathcal{I} be a σ -ideal on a Tychonoff space X. A subset $M \subseteq X$ is called *K*-analytically \mathcal{I} -measurable if for any *K*-analytic subspace $A \subseteq X$ with $A \cap M \notin \mathcal{I}$ there exists a *K*-analytic subspace $B \subseteq A \cap M$ such that $B \notin \mathcal{I}$.

Theorem (B., 2022)

Let \mathcal{I} be a left-invariant σ -ideal with functionally coanalytic base on a K-analytic topological group. Assume that $h: X \to Y$ is a homomorphism to a topological group Y such that for every open set $U \subseteq Y$ the preimage $h^{-1}[U]$ is K-analytically \mathcal{I} -measurable in X. Then for every neighborhood $U \subseteq Y$ of the identity we have $h^{-1}[U] \notin \mathcal{I}$. If \mathcal{I} has is Steinhaus or ccc, then h is continuous.

Steinhaus ideals

A left-invariant σ -ideal $\mathcal I$ on a topological group X is defined to be

- *n-Steinhaus* if for any K-analytic subspace A ∉ I in X the set (AA⁻¹)ⁿ is a neighborhood of the identity in X;
- *Steinhaus* if it is *n*-Steinhaus for some $n \in \mathbb{N}$;
- *ccc* if X contains no uncountable family of *I*-positive *K*-analytic subsets.

Example

- By Piccard–Pettis Theorem, the *σ*-ideal *M* of meager sets any Baire topological group is 1-Steinhaus;
- By Steinhaus-Weil Theorem, the ideal N of Haar-null sets in a locally compact group is 1-Steinhaus.
- Every left-invariant ccc-ideal on a Baire topological group is 2-Steinhaus.

Theorem

Let X be an ω -narrow Čech-complete group and \mathcal{I} be a Steinhaus left-invariant σ -ideal with a functionally coanalytic base on X. Every \mathcal{BI} -measurable homomorphism $h: X \to Y$ to any topological group Y is continuous.

Corollary

- Every Haar-measurable homomorphism from a locally compact group to any topological group is continuous.
- Every BP-measurable homomorphism from any ω-narrow
 Čech-complete group to any topological group is continuous.
- Severy Borel homomorphism from any Čech complete group to any topological group is continuous.

Thank you!

æ

э