Approximation in the calculus of variations

Iwona Chlebicka

MIMUW @ University of Warsaw, Poland

Colloquium Of MIM 9.03.2023

1 of 22

Variational functionals

Consider a functional

$$u\mapsto \mathcal{F}[u]=\int_{\Omega} F(x,u,Du)\,dx\,,\quad \Omega\subset\mathbb{R}^n\,,\quad u:\Omega\to\mathbb{R}\,.$$

Variational functionals

Consider a functional

$$u\mapsto \mathcal{F}[u]=\int_{\Omega} F(x,u,Du)\,dx\,,\quad \Omega\subset\mathbb{R}^n\,,\quad u:\Omega o\mathbb{R}\,.$$

The calculus of variation asks if

 $\inf \mathcal{F}[u]$

is attained and what are the properties of the minimizer (e.g. $C^{0,\alpha}$, $C^{1,\alpha}$ regularity, partial regularity, higher integrability).

Variational functionals

Consider a functional

$$u\mapsto \mathcal{F}[u]=\int_{\Omega} F(x,u,Du)\,dx\,,\quad \Omega\subset\mathbb{R}^n\,,\quad u:\Omega o\mathbb{R}\,.$$

The calculus of variation asks if

inf $\mathcal{F}[u]$

is attained and what are the properties of the minimizer (e.g. $C^{0,\alpha}$, $C^{1,\alpha}$ regularity, partial regularity, higher integrability).

Typical regularity method

- consider nice enough $\mathcal{F}_{\varepsilon}$ and find a minimizer u_{ε} (for every ε)
- show that $u_{\varepsilon} \to u$ and $\mathcal{F}_{\varepsilon}[u_{\varepsilon}] \to \mathcal{F}[u]$ well enough
- show that the limit function u shares regularity with each u_{ε}

We note that

$$\inf_{u \in \mathcal{F}} \mathcal{F}[u] \leq \inf_{\substack{regular \ u}} \mathcal{F}[u],$$

where we think about all functions that make the functional finite.

We note that

$$\inf_{all \ u} \mathcal{F}[u] \leq \inf_{regular \ u} \mathcal{F}[u],$$

where we think about all functions that make the functional finite.

Lavrentiev, **1926**, **Mania**, **1934** First considerations on when $\inf_{all \ u} \mathcal{F}[u] < \inf_{regular \ u} \mathcal{F}[u]$.

We note that

$$\inf_{all \ u} \mathcal{F}[u] \leq \inf_{regular \ u} \mathcal{F}[u] \,,$$

where we think about all functions that make the functional finite.

Lavrentiev, **1926**, **Mania**, **1934** First considerations on when $\inf_{all \ u} \mathcal{F}[u] < \inf_{regular \ u} \mathcal{F}[u]$.

$$\mathcal{F}[u] = \int_0^1 (x - u^3)^2 (u')^6 \, dx \,, \qquad ext{for} \quad u(0) = 0, \quad u(1) = 1.$$

We note that

$$\inf_{all \ u} \mathcal{F}[u] \leq \inf_{regular \ u} \mathcal{F}[u] \,,$$

where we think about all functions that make the functional finite.

Lavrentiev, **1926**, **Mania**, **1934** First considerations on when $\inf_{all \ u} \mathcal{F}[u] < \inf_{regular \ u} \mathcal{F}[u]$.

$$\mathcal{F}[u] = \int_0^1 (x - u^3)^2 (u')^6 \, dx$$
, for $u(0) = 0$, $u(1) = 1$.

Then for $w \in C^1([0,1])$, $\mathcal{F}[w] > c > 0$,

We note that

$$\inf_{all \ u} \mathcal{F}[u] \leq \inf_{regular \ u} \mathcal{F}[u] \,,$$

where we think about all functions that make the functional finite.

Lavrentiev, **1926**, **Mania**, **1934** First considerations on when $\inf_{all \ u} \mathcal{F}[u] < \inf_{regular \ u} \mathcal{F}[u]$.

$$\mathcal{F}[u] = \int_0^1 (x - u^3)^2 (u')^6 \, dx$$
, for $u(0) = 0$, $u(1) = 1$.

Then for $w \in C^1([0, 1])$, $\mathcal{F}[w] > c > 0$, but there is an absolutely continuous function making $\mathcal{F}[u_{\min}] = 0$.

We note that

$$\inf_{all \ u} \mathcal{F}[u] \leq \inf_{regular \ u} \mathcal{F}[u] \,,$$

where we think about all functions that make the functional finite.

Lavrentiev, **1926**, **Mania**, **1934** First considerations on when $\inf_{all \ u} \mathcal{F}[u] < \inf_{regular \ u} \mathcal{F}[u]$.

$$\mathcal{F}[u] = \int_0^1 (x - u^3)^2 (u')^6 \, dx$$
, for $u(0) = 0$, $u(1) = 1$.

Then for $w \in C^1([0, 1])$, $\mathcal{F}[w] > c > 0$, but there is an absolutely continuous function making $\mathcal{F}[u_{\min}] = 0$.

$$\left(u_{\min}(x)=x^{\frac{1}{3}}\right)$$

Denoting

 $W(\Omega) := \{ all functions with finite natural energy for minimizers of <math>\mathcal{F}[u] \}$ $H(\Omega) := \{ regular functions from W(\Omega) \}$

Denoting

 $W(\Omega) := \{ all functions with finite natural energy for minimizers of <math>\mathcal{F}[u] \}$ $H(\Omega) := \{ regular functions from W(\Omega) \}$

we always have
$$\inf_{u \in u_0 + W} \mathcal{F}[u] \le \inf_{u \in u_0 + H} \mathcal{F}[u]$$
.

Denoting

 $W(\Omega) := \{ all functions with finite natural energy for minimizers of <math>\mathcal{F}[u] \}$ $H(\Omega) := \{ regular functions from <math>W(\Omega) \}$

we always have
$$\inf_{u \in u_0+W} \mathcal{F}[u] \leq \inf_{u \in u_0+H} \mathcal{F}[u]$$
.

When the inequality above is <, we call it **Lavrentiev's gap**.

Denoting

 $W(\Omega) := \{ all functions with finite natural energy for minimizers of <math>\mathcal{F}[u] \}$ $H(\Omega) := \{ regular functions from <math>W(\Omega) \}$

we always have
$$\inf_{u \in u_0+W} \mathcal{F}[u] \leq \inf_{u \in u_0+H} \mathcal{F}[u]$$
.

When the inequality above is <, we call it **Lavrentiev's gap**.

Previous example showed the functional with the **gap** between absolutely continuous functions AC([0, 1]) and $C^1([0, 1])$.

No gap in the classical case

Dirichlet principle. The scalar Euler-Lagrange equation

 $-\Delta u = 0$ in Ω

is associated to the energy functional

$$u\mapsto \mathcal{F}[u]=rac{1}{2}\int_{\Omega}|Du|^2\,dx\,.$$

No gap in the classical case

Dirichlet principle. The scalar Euler-Lagrange equation

 $-\Delta u = 0$ in Ω

is associated to the energy functional

$$u\mapsto \mathcal{F}[u]=rac{1}{2}\int_{\Omega}|Du|^2\,dx\,.$$

It does not matter if we minimize over

 $W(\Omega) := \left\{ \text{all functions with } Du \text{ such that } \int_{\Omega} |Du|^2 \, dx < \infty \right\}$ $H(\Omega) := \overline{C_0^{\infty}(\Omega)}^W$ because $\inf_{u \in u_0 + H} \mathcal{F}[u] = \inf_{u \in u_0 + W} \mathcal{F}[u].$

No gap in the power case

Consider a functional

$$u\mapsto \mathcal{F}[u]=\int_{\Omega} F(x,u,Du)\,dx,\quad \Omega\subset\mathbb{R}^n$$

with the growth of F governed by a power function for 1 :

 $u|\xi|^p \leq F(x,s,\xi) \leq L(|\xi|^p+1).$

No gap in the power case

Consider a functional

$$u\mapsto \mathcal{F}[u]=\int_{\Omega} F(x,u,Du)\,dx,\quad \Omega\subset\mathbb{R}^n$$

with the growth of F governed by a power function for 1 :

$$u|\xi|^p \leq F(x,s,\xi) \leq L(|\xi|^p+1).$$

Then the Meyes–Serrin theorem '64 (H = W) yields that

$$\inf_{u \in u_0+H} \mathcal{F}[u] = \inf_{u \in u_0+W} \mathcal{F}[u].$$

No gap in the power case

Consider a functional

$$u\mapsto \mathcal{F}[u]=\int_{\Omega} F(x,u,Du)\,dx,\quad \Omega\subset\mathbb{R}^n$$

with the growth of F governed by a power function for 1 :

$$u|\xi|^p \leq F(x,s,\xi) \leq L(|\xi|^p+1).$$

Then the Meyes–Serrin theorem '64 (H = W) yields that

$$\inf_{u \in u_0+H} \mathcal{F}[u] = \inf_{u \in u_0+W} \mathcal{F}[u].$$

This property **may fail** if *F* is governed by **not regular enough** inhomogeneous function, e.g. $|\xi|^{p(x)}$ or $|\xi|^{p} + a(x)|\xi|^{q}$.

6 of 22

1. Calculus of variations Is there a Lavrentiev's phenomenon?

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals?

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals? For how wild functionals? Is it sharp?

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals? For how wild functionals? Is it sharp?

One of the aims: prove that a minimizer shares the regularity with an approximate sequence.

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals? For how wild functionals? Is it sharp?

One of the aims: prove that a minimizer shares the regularity with an approximate sequence.

Other questions: how to relax dependence of the integrand for the theory to make sense?

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals? For how wild functionals? Is it sharp?

One of the aims: prove that a minimizer shares the regularity with an approximate sequence.

Other questions: how to relax dependence of the integrand for the theory to make sense? This I will NOT discuss.

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals? For how wild functionals? Is it sharp?

One of the aims: prove that a minimizer shares the regularity with an approximate sequence.

Other questions: how to relax dependence of the integrand for the theory to make sense? This I will NOT discuss.

2. Functional analysis

Can any function from an unconventional space be approximated?

1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals? For how wild functionals? Is it sharp?

One of the aims: prove that a minimizer shares the regularity with an approximate sequence.

Other questions: how to relax dependence of the integrand for the theory to make sense? This I will NOT discuss.

2. Functional analysis

Can any function from an unconventional space be approximated?

3. PDEs

What existence results one can provide thanks to the density properties?

7 of 22

Calculus of variations motivation

minimization of $u \mapsto \int_{\Omega} F(x, u, Du) dx$ for $u : \Omega \to \mathbb{R}$

Gap or no gap for minimizers

- Lavrentiev '26, Mania '34
- Gossez '82, Zhikov 80'-10'
- Buttazzo & Mizel '95, Belloni & Buttazzo '92
- Fonseca, Malý, Mingione '04, Esposito, Leonetti, Mingione '04, Balci, Diening, Surnachev '20
- Esposito, Leonetti, Petricca '19, Leonetti, De Filippis '22, Koch '22
- Bousquet '23
- 2018+ via density:

Ahmida, Alberico, Borowski, Buliček, Chlebicka (Skrzypczak), Cianchi, Gwiazda, Skrzeczkowski, Świerczewska-Gwiazda, Wróblewska-Kamińska, Youssfi, Zatorska-Golstein

Real-world motivation

Real-world motivation

Real-world motivation

cheese issue

Energy density: $\int_{\Omega} |Du|^p + a(x)|Du|^q dx$ with nasty weight a

Figure: Inhomogeneous medium

- not enough approximation properties of the function space
- no regularity of minimizers or solutions

Examples of spaces with functions that cannot be approximated 1/2 Variable exponent spaces

$$W := \{ f \in W_{loc}^{1,1} : |Df|^{p(x)} \in L^1 \}$$

when the exponent p is not log-Hölder continuous [Zhikov1986]

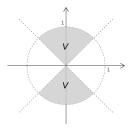
10 of 22

Examples of spaces with functions that cannot be approximated 1/2 Variable exponent spaces

$$W := \{ f \in W_{loc}^{1,1} : |Df|^{p(x)} \in L^1 \}$$

when the exponent p is not log-Hölder continuous [Zhikov1986]

- Checkerboard on a 2d-plane
 u₀ nice trace
- Nasty exponent: p > 2 in V and p < 2 outside V
- Bad u_{*} ∈ W has Du_{*} ≡ 0 in V (but it jumps)



Then

$$\inf_{u \in u_0 + W} \mathcal{F}[u] \leq \mathcal{F}[u_*] < \inf_{u \in u_0 + H} \mathcal{F}[u]$$

10 of 22

Examples of spaces with functions that cannot be approximated 2/2 Double phase spaces

. .

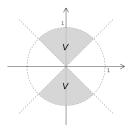
$$W := \{f \in W_{loc}^{1,1} : |Df|^p + \mathbf{a}(\mathbf{x})|Df|^q \in L^1\}$$

with $\mathbf{a} : \Omega \to [0, \infty)$, $\mathbf{a} \in C^{0,\alpha}$,
when powers do not satisfy $p < n < n + \alpha < q$
see [Zhikov1995], [Esposito, Leonetti, & Mingione, JDE2004]

Examples of spaces with functions that cannot be approximated 2/2 Double phase spaces

 $W := \{f \in W_{loc}^{1,1} : |Df|^p + a(x)|Df|^q \in L^1\}$ with $a : \Omega \to [0,\infty)$, $a \in C^{0,\alpha}$, when powers do not satisfy $p < n < n + \alpha < q$ see [Zhikov1995], [Esposito, Leonetti, & Mingione, JDE2004]

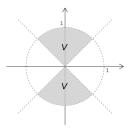
- Checkerboard on a 2d-plane, extended to n-d; u₀ - nice trace
- Nasty weight *a* ∈ C^{0,α} with supp *a* ⊂ V.
- Bad $u_* \in W$ with $Du_* \equiv 0$ in $B_1 \setminus V$ (but it jumps).



Examples of spaces with functions that cannot be approximated 2/2 Double phase spaces

 $W := \{f \in W_{loc}^{1,1} : |Df|^p + a(x)|Df|^q \in L^1\}$ with $a : \Omega \to [0,\infty)$, $a \in C^{0,\alpha}$, when powers do not satisfy $p < n < n + \alpha < q$ see [Zhikov1995], [Esposito, Leonetti, & Mingione, JDE2004]

- Checkerboard on a 2d-plane, extended to n-d; u₀ - nice trace
- Nasty weight *a* ∈ C^{0,α} with supp *a* ⊂ V.
- Bad $u_* \in W$ with $Du_* \equiv 0$ in $B_1 \setminus V$ (but it jumps).



Use of fractals to get rid of the dimensional threshold [Balci, Diening, & Surnachev, CalcVar2020]

11 of 22

Consequences for minimizers

Double phase spaces

[Fonseca, Malý, & Mingione, ARMA2004]

For a functional
$$\int_{\Omega} |Du|^p + a(x)|Du|^q dx$$
 with $a \in C^{0,\alpha}$,
if $p < n < n + \alpha < q$

(= the closeness condition on the weights is not satisfied), then **minimizers** are almost as bad as any Sobolev functions.

Consequences for minimizers

Double phase spaces

[Fonseca, Malý, & Mingione, ARMA2004]

For a functional
$$\int_{\Omega} |Du|^p + a(x)|Du|^q dx$$
 with $a \in C^{0,\alpha}$,
if $p < n < n + \alpha < q$

(= the closeness condition on the weights is not satisfied),

then minimizers are almost as bad as any Sobolev functions.

It is the fault of a.

Real-world motivation

Real-world motivation

thick soup case

Energy density: $\int_{\Omega} |Du|^p + a(x)|Du|^q dx$ with **nice** weight *a*

Figure: Inhomogeneous medium

- good approximation properties of the function space
- **possible** for study regularity of minimizers or solutions 13 of 22

thick soup case

For a minimizer to the problem $u\mapsto \int_{\Omega}|Du|^p+a(x)|Du|^q\,dx$ with nice weight $a\in C^{0,lpha},$

thick soup case

For a minimizer to the problem $u \mapsto \int_{\Omega} |Du|^p + a(x)|Du|^q dx$ with nice weight $a \in C^{0,\alpha}$,

if any of those holds true

- $\frac{q}{p} < 1 + \frac{\alpha}{n}$, a priori $u \in L^{\infty}$ and q ,
- a priori $u \in C^{0,\gamma}$ and q),(=decay of *a* says how close have to be powers)

thick soup case

For a minimizer to the problem $u \mapsto \int_{\Omega} |Du|^p + a(x)|Du|^q dx$ with nice weight $a \in C^{0,\alpha}$,

if any of those holds true

- $\frac{q}{p} < 1 + \frac{\alpha}{n}$, a priori $u \in L^{\infty}$ and q ,
- a priori $u \in C^{0,\gamma}$ and q),(=decay of *a* says how close have to be powers)

then $Du \in C^{0,\beta}$ for some β .

thick soup case

For a minimizer to the problem $u \mapsto \int_{\Omega} |Du|^p + a(x)|Du|^q dx$ with nice weight $a \in C^{0,\alpha}$,

if any of those holds true

- $\frac{q}{p} < 1 + \frac{\alpha}{n}$, a priori $u \in L^{\infty}$ and q ,
- a priori $u \in C^{0,\gamma}$ and q),(=decay of *a* says how close have to be powers)

then $Du \in C^{0,\beta}$ for some β .

series of works by Baroni, Colombo, Mingione 2015-18 continued by Harjulehto, Hästö, Byun, and their collaborators

heating up a thick soup

Goal

General theory for nonlinear diffusion equations in inhomogeneous media.

heating up a thick soup

Goal

General theory for nonlinear diffusion equations in inhomogeneous media. Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M : [0, T] \times \Omega \times \mathbb{R}^n \to [0, \infty)$.

heating up a thick soup

Goal

General theory for nonlinear diffusion equations in inhomogeneous media. Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M : [0, T] \times \Omega \times \mathbb{R}^n \to [0, \infty)$.

In nonreflexive space needed density result \approx no gap If *M* is regular enough, then for any $u \in W$ there exists $\{u_k\} \subset C_0^\infty$:

heating up a thick soup

Goal

General theory for nonlinear diffusion equations in inhomogeneous media. Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M : [0, T] \times \Omega \times \mathbb{R}^n \to [0, \infty)$.

In nonreflexive space needed density result \approx no gap If *M* is regular enough, then for any $u \in W$ there exists $\{u_k\} \subset C_0^\infty$:

$$u_k o u ext{ in } L^1 ext{ and } \exists_{\lambda>0} \int_{\Omega_T} M\left(t, x, rac{Du_k - Du}{\lambda}
ight) \, dx \, dt \xrightarrow[k o \infty]{} 0 \; .$$

heating up a thick soup

Goal

General theory for nonlinear diffusion equations in inhomogeneous media. Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M : [0, T] \times \Omega \times \mathbb{R}^n \to [0, \infty)$.

In nonreflexive space needed density result \approx no gap If *M* is regular enough, then for any $u \in W$ there exists $\{u_k\} \subset C_0^\infty$:

$$u_k o u ext{ in } L^1 ext{ and } \exists_{\lambda>0} \int_{\Omega_T} M\left(t, x, rac{Du_k - Du}{\lambda}
ight) \, dx \, dt \xrightarrow[k o \infty]{} 0 \; .$$

In the classical case of $W^{1,p}$ we have $M(t, x, \xi) \equiv |\xi|^p$. Then the above density is in norm. It can be obtained by mollification.

heating up a thick soup

Existence result Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M(t, x, \xi)$.

heating up a thick soup

Existence result Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M(t, x, \xi)$.

Special cases of $\operatorname{div} \mathcal{A}$ are: $\Delta u = \operatorname{div} \mathcal{D} u$

heating up a thick soup

Existence result Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M(t, x, \xi)$.

Special cases of div \mathcal{A} are: $\Delta u = \operatorname{div} Du$ and $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du), \ 1$

heating up a thick soup

Existence result Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M(t, x, \xi)$.

Special cases of $\operatorname{div} \mathcal{A}$ are:

 $\Delta u = \operatorname{div} Du$

and $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du)$, 1 , $but also their counterparts that are inhomogeneous <math>\Delta_{p(x)}$,

heating up a thick soup

Existence result Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M(t, x, \xi)$.

Special cases of $\operatorname{div} \mathcal{A}$ are:

 $\Delta u = \operatorname{div} Du$

and $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du)$, 1 , $but also their counterparts that are inhomogeneous <math>\Delta_{p(x)}$, general growth (Orlicz) Δ_A ,

heating up a thick soup

Existence result Well-posedness of problems like

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x)$$

with $\mathcal{A}(t, x, \xi)$ of growth given by $M(t, x, \xi)$.

Special cases of $\operatorname{div} \mathcal{A}$ are:

 $\Delta u = \operatorname{div} Du$

and $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du)$, 1 , $but also their counterparts that are inhomogeneous <math>\Delta_{p(x)}$, general growth (Orlicz) Δ_A , anisotropic $\Delta_{\vec{p}}$ and more...

Sufficient conditions on M for H = W

thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018], [Hästo, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda, Świerczewska-Gwiazda, Wróblewska-Kamińska, Springer Monographs in Mathematics 2021], [Borowski & C, JFA 2022], [Buliček, Gwiazda, Skrzeczkowski, ARMA 2022] we know that

Balance condition (*B*)

Sufficient conditions on M for H = W

thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018], [Hästo, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda, Świerczewska-Gwiazda, Wróblewska-Kamińska, Springer Monographs in Mathematics 2021], [Borowski & C, JFA 2022], [Buliček, Gwiazda, Skrzeczkowski, ARMA 2022] we know that

Balance condition (B) For $M : \Omega \times \mathbb{R}^n \to [0, \infty)$ there exists a constant $C_M > 1$ such that

there holds $\sup_{y \in B(x)} M(y,\xi) \le M(x, C_M\xi)$

for prescribed ranges of x and $\xi \leftarrow$ we fight for these ranges

Sufficient conditions on M for H = W

thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018], [Hästo, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda, Świerczewska-Gwiazda, Wróblewska-Kamińska, Springer Monographs in Mathematics 2021], [Borowski & C, JFA 2022], [Buliček, Gwiazda, Skrzeczkowski, ARMA 2022] we know that

Balance condition (B) For $M : \Omega \times \mathbb{R}^n \to [0, \infty)$ there exists a constant $C_M > 1$ such that

there holds $\sup_{y \in B(x)} M(y,\xi) \le M(x, C_M\xi)$

for prescribed ranges of x and $\xi \leftarrow$ we fight for these ranges

implies needed **modular** density of H in W.

Basic ideas

thick soup case

Approximation is based on convolution
 Ω is decomposed to star-shaped sub-domains Ω_i
 For Ω_i star-shaped with respect to B_i(0, r), ξ ∈ L_M(Ω_i) with supp ξ ⊂ Ω and κ_δ < 1, we define

$$\mathcal{S}_{\delta}\xi(x) = \int_{\Omega_i}
ho_{\delta}(x-y)\xi(y/\kappa_{\delta}) \, dy.$$

4) we need a kind of Jensen inequality to take convolution S_{δ} with respect to x from inside of M to get

$$M\left(\mathbf{x},rac{D\mathcal{S}_{\delta}arphi(\mathbf{x})}{\lambda}
ight)\lesssim \mathcal{S}_{\delta}M\left(\cdot,rac{Darphi(\cdot)}{ ilde{\lambda}}
ight)(\mathbf{x})+1$$

but *M* **depends on** *x* (our space is defined via $\int_{\Omega} M(x,\xi) dx$) this step essentially requires a balance condition (*B*).

Functional

$$\int_{\Omega} |Du|^p + \frac{a(x)}{|Du|^q} \, dx$$

is typically considered with $a \in C^{0,\alpha}(\Omega)$ and 1 .

Functional

$$\int_{\Omega} |Du|^p + \frac{a(x)}{|Du|^q} \, dx$$

is typically considered with $a \in C^{0,\alpha}(\Omega)$ and 1 .There are various regimes treated as natural

- $q/p \leq 1 + \alpha/n$ is the scope when the maximal function is continuous,
- $q \leq p + \alpha$ is the scope for the absence of Lavrentiev's gap.

Functional

$$\int_{\Omega} |Du|^p + \frac{a(x)}{|Du|^q} \, dx$$

is typically considered with $a \in C^{0,\alpha}(\Omega)$ and 1 .There are various regimes treated as natural

- $q/p \leq 1 + \alpha/n$ is the scope when the maximal function is continuous,
- $q \leq p + \alpha$ is the scope for the absence of Lavrentiev's gap.

Is it possible to introduce a scale for a ensuring **good properties** of a Sobolev-type space for q and p **further apart**?

Functional

$$\int_{\Omega} |Du|^p + \frac{a(x)}{|Du|^q} \, dx$$

is typically considered with $a \in C^{0,\alpha}(\Omega)$ and 1 .There are various regimes treated as natural

- $q/p \leq 1 + \alpha/n$ is the scope when the maximal function is continuous,
- $q \le p + \alpha$ is the scope for the absence of Lavrentiev's gap. Is it possible to introduce a scale for *a* ensuring **good properties** of a Sobolev-type space for *q* and *p* **further apart**?

Answer YES is coming soon

Borowski, C, Miasojedow, De Filippis, Absence and presence of Lavrentiev's phenomenon in double phase functionals for every choice of exponents.

Summary 1/2

Inhomogeneous media

If M is **nice enough**, then we have the modular density of smooth functions in the inhomogeneous and anisotropic space of Sobolev type. Otherwise we are **not equipped** with the density.

Summary 1/2

Inhomogeneous media

If M is **nice enough**, then we have the modular density of smooth functions in the inhomogeneous and anisotropic space of Sobolev type. Otherwise we are **not equipped** with the density.

Summary 1/2

Inhomogeneous media

If M is **nice enough**, then we have the modular density of smooth functions in the inhomogeneous and anisotropic space of Sobolev type. Otherwise we are **not equipped** with the density.

Figure: Nasty M = bad medium

Figure: Nice M = good medium

Having the modular density result of smooth functions we can study

Summary 2/2

Having the modular density result of smooth functions we can study

• regularity and other properties of minimizers to

$$\int_{\Omega} F(x, u, Du) - f(x)u \, dx,$$

for broad class of $F(x, z, \xi)$ with growth controlled by $M(x, \xi)$,

Summary 2/2

Having the modular density result of smooth functions we can study

• regularity and other properties of minimizers to

$$\int_{\Omega} F(x, u, Du) - f(x)u \, dx,$$

for broad class of $F(x, z, \xi)$ with growth controlled by $M(\mathbf{x}, \xi)$,

• well-posedness of

$$\partial_t u - \operatorname{div} \mathcal{A}(t, x, Du) = f(t, x),$$

where $\mathcal{A}(t, x, \xi)$ has growth given by $M(t, x, \xi)$; then theory of PDEs (local and global qualitative properties of solutions like uniqueness, multiplicity, symmetry, local regularity, optimal transfer regularity from data to solutions, asymptotic behaviour...)

Thank you for your attention!

