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Variational functionals

Consider a functional

u 7→ F [u] =
∫
Ω
F (x , u,Du) dx , Ω ⊂ Rn , u : Ω→ R .

The calculus of variation asks if

inf F [u]

is attained and what are the properties of the minimizer
(e.g. C 0,α,C 1,α regularity, partial regularity, higher integrability).

Typical regularity method

• consider nice enough Fε and find a minimizer uε (for every ε)

• show that uε → u and Fε[uε]→ F [u] well enough
• show that the limit function u shares regularity with each uε

2 of 22



Variational functionals

Consider a functional

u 7→ F [u] =
∫
Ω
F (x , u,Du) dx , Ω ⊂ Rn , u : Ω→ R .

The calculus of variation asks if

inf F [u]

is attained and what are the properties of the minimizer
(e.g. C 0,α,C 1,α regularity, partial regularity, higher integrability).

Typical regularity method

• consider nice enough Fε and find a minimizer uε (for every ε)

• show that uε → u and Fε[uε]→ F [u] well enough
• show that the limit function u shares regularity with each uε

2 of 22



Variational functionals

Consider a functional

u 7→ F [u] =
∫
Ω
F (x , u,Du) dx , Ω ⊂ Rn , u : Ω→ R .

The calculus of variation asks if

inf F [u]

is attained and what are the properties of the minimizer
(e.g. C 0,α,C 1,α regularity, partial regularity, higher integrability).

Typical regularity method

• consider nice enough Fε and find a minimizer uε (for every ε)

• show that uε → u and Fε[uε]→ F [u] well enough
• show that the limit function u shares regularity with each uε

2 of 22



Natural space to minimize a functional 1/2

We note that
inf
all u
F [u] ≤ inf

regular u
F [u] ,

where we think about all functions that make the functional finite.

Lavrentiev, 1926, Mania, 1934

First considerations on when infall u F [u] < infregular u F [u].

F [u] =
∫ 1

0
(x − u3)2(u′)6 dx , for u(0) = 0, u(1) = 1.

Then for w ∈ C 1([0, 1]), F [w ] > c > 0,
but there is an absolutely continuous function making F [umin] = 0.

(umin(x) = x
1
3 )
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Natural space to minimize a functional 2/2

Denoting

W (Ω) := {all functions with finite natural energy for minimizers of F [u]}
H(Ω) := {regular functions from W (Ω)}

we always have inf
u∈u0+W

F [u]≤ inf
u∈u0+H

F [u] .

When the inequality above is <, we call it Lavrentiev’s gap.

Previous example showed the functional with the gap between
absolutely continuous functions AC ([0, 1]) and C 1([0, 1]).
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No gap in the classical case

Dirichlet principle. The scalar Euler–Lagrange equation

−∆u = 0 in Ω

is associated to the energy functional

u 7→ F [u] = 1

2

∫
Ω
|Du|2 dx .

It does not matter if we minimize over

W (Ω) :=

{
all functions with Du such that

∫
Ω
|Du|2 dx <∞

}
H(Ω) := C∞

0 (Ω)
W

because inf
u∈u0+H

F [u] = inf
u∈u0+W

F [u] .
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No gap in the power case

Consider a functional

u 7→ F [u] =
∫
Ω
F (x , u,Du) dx , Ω ⊂ Rn

with the growth of F governed by a power function for 1 < p <∞:

ν|ξ|p ≤ F (x , s, ξ) ≤ L
(
|ξ|p + 1

)
.

Then the Meyes–Serrin theorem ’64 (H = W ) yields that

inf
u∈u0+H

F [u] = inf
u∈u0+W

F [u] .

This property may fail if F is governed by not regular enough
inhomogeneous function, e.g. |ξ|p(x) or |ξ|p + a(x)|ξ|q.
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FAQ

1. Calculus of variations
Is there a Lavrentiev’s phenomenon?

= Can we approximate functions minimizing variational functionals?
For how wild functionals? Is it sharp?
One of the aims: prove that a minimizer shares the regularity with
an approximate sequence.
Other questions: how to relax dependence of the integrand for the
theory to make sense? This I will NOT discuss.

2. Functional analysis

Can any function from an unconventional space be approximated?

3. PDEs
What existence results one can provide thanks to the density
properties?
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Calculus of variations motivation
minimization of u 7→

∫
Ω
F (x , u,Du) dx for u : Ω → R

Gap or no gap for minimizers

• Lavrentiev ’26, Mania ’34

• Gossez ’82, Zhikov 80’-10’

• Buttazzo & Mizel ’95, Belloni & Buttazzo ’92

• Fonseca, Malý, Mingione ’04, Esposito, Leonetti, Mingione ’04,
Balci, Diening, Surnachev ’20

• Esposito, Leonetti, Petricca ’19, Leonetti, De Filippis ’22, Koch ’22

• Bousquet ’23

• 2018+ via density:
Ahmida, Alberico, Borowski, Buliček, Chlebicka (Skrzypczak), Cianchi,
Gwiazda, Skrzeczkowski, Świerczewska-Gwiazda, Wróblewska-Kamińska,
Youssfi, Zatorska-Golstein

8 of 22



Real-world motivation

cheese issue

Energy density:
∫
Ω |Du|

p + a(x)|Du|q dx with nasty weight a

Figure: Inhomogeneous medium

• not enough approximation properties of the function space

• no regularity of minimizers or solutions
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Examples of spaces with functions that cannot be approximated 1/2

Variable exponent spaces

W := {f ∈W 1,1
loc : |Df |p(x) ∈ L1}

when the exponent p is not log-Hölder continuous [Zhikov1986]

• Checkerboard on a 2d-plane
u0 – nice trace

• Nasty exponent: p > 2 in V
and p < 2 outside V

• Bad u∗ ∈W has Du∗ ≡ 0 in V
(but it jumps)

Then
inf

u∈u0+W
F [u] ≤ F [u∗]< inf

u∈u0+H
F [u]
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Examples of spaces with functions that cannot be approximated 2/2

Double phase spaces

W := {f ∈W 1,1
loc : |Df |p + a(x)|Df |q ∈ L1}

with a : Ω→ [0,∞), a ∈ C 0,α,
when powers do not satisfy p < n < n + α < q

see [Zhikov1995], [Esposito, Leonetti, & Mingione, JDE2004]

• Checkerboard on a 2d-plane,
extended to n-d; u0 – nice trace

• Nasty weight a ∈ C 0,α with
supp a ⊂ V .

• Bad u∗ ∈W with Du∗ ≡ 0 in
B1 \ V (but it jumps).

Use of fractals to get rid of the dimensional threshold
[Balci, Diening, & Surnachev, CalcVar2020]
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Consequences for minimizers
Double phase spaces

[Fonseca, Malý, & Mingione, ARMA2004]

For a functional

∫
Ω
|Du|p + a(x)|Du|q dx with a ∈ C 0,α,

if p < n < n + α < q

(= the closeness condition on the weights is not satisfied),

then minimizers are almost as bad as any Sobolev functions.

It is the fault of a.
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Real-world motivation

thick soup case

Energy density:

∫
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|Du|p + a(x)|Du|q dx with nice weight a

Figure: Inhomogeneous medium

• good approximation properties of the function space

• possible for study regularity of minimizers or solutions
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Regularity of minimizers
thick soup case

For a minimizer to the problem

u 7→
∫
Ω
|Du|p + a(x)|Du|q dx with nice weight a ∈ C 0,α,

if any of those holds true
• q

p < 1 + α
n ,

• a priori u ∈ L∞ and q < p + α,
• a priori u ∈ C 0,γ and q < p + α

1−γ ),

(=decay of a says how close have to be powers)

then Du ∈ C 0,β for some β.

series of works by Baroni, Colombo, Mingione 2015-18

continued by Harjulehto, Hästö, Byun, and their collaborators
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continued by Harjulehto, Hästö, Byun, and their collaborators

14 of 22



Regularity of minimizers
thick soup case

For a minimizer to the problem

u 7→
∫
Ω
|Du|p + a(x)|Du|q dx with nice weight a ∈ C 0,α,

if any of those holds true
• q

p < 1 + α
n ,

• a priori u ∈ L∞ and q < p + α,
• a priori u ∈ C 0,γ and q < p + α

1−γ ),

(=decay of a says how close have to be powers)

then Du ∈ C 0,β for some β.

series of works by Baroni, Colombo, Mingione 2015-18

continued by Harjulehto, Hästö, Byun, and their collaborators

14 of 22



PDE motivation
heating up a thick soup

Goal
General theory for nonlinear diffusion equations in inhomogeneous media.

Well-posedness of problems like

∂tu − divA(t, x ,Du) = f (t, x)

with A(t, x , ξ) of growth given by M : [0,T ]× Ω× Rn → [0,∞).

In nonreflexive space needed density result ≈ no gap
If M is regular enough, then for any u ∈W there exists {uk} ⊂ C∞

0 :

uk → u in L1 and ∃λ>0

∫
ΩT

M

(
t, x ,

Duk − Du

λ

)
dx dt −−−→

k→∞
0 .

In the classical case of W 1,p we have M(t, x , ξ) ≡ |ξ|p.
Then the above density is in norm. It can be obtained by mollification.

15 of 22
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with A(t, x , ξ) of growth given by M : [0,T ]× Ω× Rn → [0,∞).

In nonreflexive space needed density result ≈ no gap
If M is regular enough, then for any u ∈W there exists {uk} ⊂ C∞

0 :

uk → u in L1 and ∃λ>0

∫
ΩT

M

(
t, x ,

Duk − Du

λ

)
dx dt −−−→

k→∞
0 .
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PDE motivation
heating up a thick soup

Existence result
Well-posedness of problems like

∂tu − divA(t, x ,Du) = f (t, x)

with A(t, x , ξ) of growth given by M(t, x , ξ).

Special cases of divA are:

∆u = divDu

and ∆pu = div(|Du|p−2Du), 1 < p <∞,
but also their counterparts that are inhomogeneous ∆p(x),
general growth (Orlicz) ∆A, anisotropic ∆p⃗ and more...
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Sufficient conditions on M for H = W
thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018],
[Hästo, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda,
Świerczewska-Gwiazda, Wróblewska-Kamińska, Springer Monographs in
Mathematics 2021], [Borowski & C, JFA 2022], [Buliček, Gwiazda,
Skrzeczkowski, ARMA 2022] we know that

Balance condition (B)

For M : Ω× Rn → [0,∞) there exists a constant CM > 1 such that

there holds sup
y∈B(x)

M(y , ξ) ≤ M(x ,CMξ)

for prescribed ranges of x and ξ ← we fight for these ranges

implies needed modular density of H in W .
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Skrzeczkowski, ARMA 2022] we know that

Balance condition (B)

For M : Ω× Rn → [0,∞) there exists a constant CM > 1 such that

there holds sup
y∈B(x)

M(y , ξ) ≤ M(x ,CMξ)

for prescribed ranges of x and ξ ← we fight for these ranges

implies needed modular density of H in W .

17 of 22



Sufficient conditions on M for H = W
thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018],
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Basic ideas
thick soup case

1) Approximation is based on convolution
2) Ω is decomposed to star-shaped sub-domains Ωi

3) For Ωi star-shaped with respect to Bi (0, r), ξ ∈ LM(Ωi ) with
supp ξ ⊂ Ω and κδ < 1, we define

Sδξ(x) =

∫
Ωi

ρδ(x − y)ξ(y/κδ) dy .

4) we need a kind of Jensen inequality to take convolution Sδ
with respect to x from inside of M to get

M
(
x , DSδφ(x)

λ

)
≲ SδM

(
·, Dφ(·)

λ̃

)
(x) + 1

but M depends on x (our space is defined via
∫
ΩM(x , ξ) dx)

this step essentially requires a balance condition (B).
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Fight for the range of exponents

Functional ∫
Ω
|Du|p + a(x)|Du|q dx

is typically considered with a ∈ C 0,α(Ω) and 1 < p ≤ q.

There are various regimes treated as natural
• q/p ≤ 1 + α/n is the scope when the maximal function is
continuous,

• q ≤ p + α is the scope for the absence of Lavrentiev’s gap.

Is it possible to introduce a scale for a ensuring good properties of a
Sobolev-type space for q and p further apart?

Answer YES is coming soon

Borowski, C, Miasojedow, De Filippis, Absence and presence of
Lavrentiev’s phenomenon in double phase functionals for every choice
of exponents.
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Summary 1/2
Inhomogeneous media

If M is nice enough, then we have the modular density of smooth
functions in the inhomogeneous and anisotropic space of Sobolev
type. Otherwise we are not equipped with the density.

Figure: Nasty M = bad medium Figure: Nice M = good medium
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Summary 2/2

Having the modular density result of smooth functions we can study

• regularity and other properties of minimizers to∫
Ω

F (x , u,Du)− f (x)u dx ,

for broad class of F (x , z , ξ) with growth controlled by M(x , ξ),

• well-posedness of

∂tu − divA(t, x ,Du) = f (t, x) ,

where A(t, x , ξ) has growth given by M(t, x , ξ); then theory of PDEs
(local and global qualitative properties of solutions like uniqueness,
multiplicity, symmetry, local regularity, optimal transfer regularity from
data to solutions, asymptotic behaviour...)
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Thank you for your attention!

22 of 22


