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Variational functionals

Consider a functional

u»—>}"[u]:/F(X,u,Du)dx, QcR", u:Q—-R.
Q

The calculus of variation asks if
inf 7 [u]
is attained and what are the properties of the minimizer
(e.g. CO CH regularity, partial regularity, higher integrability).
Typical regularity method
e consider nice enough F. and find a minimizer u. (for every ¢)

e show that u. — v and F.[uz] — F|[u] well enough

e show that the limit function u shares regularity with each u.
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Natural space to minimize a functional 1/2

We note that
inf Flu] < inf  F[u],
all u

regular u

where we think about all functions that make the functional finite.

Lavrentiev, 1926, Mania, 1934
First considerations on when inf,; , F[u] < inf eguiar o Flu].

f[u]:/o (x— PP dx,  for u(0)=0, u(l)=1.

Then for w € C*([0,1]), F[w] > ¢ >0,
but there is an absolutely continuous function making F[umin] = 0.

(Umin(x) = x3)
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Natural space to minimize a functional 2/2

Denoting

W () := {all functions with finite natural energy for minimizers of F[u]}
H(L2) := {regular functions from W(Q)}

we always have in

f  Flul< inf Flu].
u€ug+W u€ug+H

When the inequality above is <, we call it Lavrentiev’s gap.

Previous example showed the functional with the gap between
absolutely continuous functions AC([0,1]) and C([0, 1]).
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No gap in the classical case

Dirichlet principle. The scalar Euler-Lagrange equation
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No gap in the classical case

Dirichlet principle. The scalar Euler-Lagrange equation
—Au=0 in Q

is associated to the energy functional

u— Flu]l = ;/ |Dul? dx .
Q

It does not matter if we minimize over
Ww(Q) := {all functions with Du such that / |Dul? dx < oo}
Q

H(Q) = ()"

because inf  Flu] = inf Flu].
ucup+H u€up+W
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No gap in the power case

Consider a functional
u— Flu] = / F(x,u,Du)dx, QCR"
Q

with the growth of F governed by a power function for 1 < p < oc:
v[ElP < F(x5,8) < L(IEP +1) .
Then the Meyes—Serrin theorem '64 (H = W) yields that

inf  Flu] = inf Flu].
u€ug+H cup+W

This property may fail if £ is governed by not regular enough
inhomogeneous function, e.g. [£]P() or [£]P + a(x)|€]9.
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1. Calculus of variations

Is there a Lavrentiev's phenomenon?

= Can we approximate functions minimizing variational functionals?
For how wild functionals? Is it sharp?

One of the aims: prove that a minimizer shares the regularity with
an approximate sequence.

Other questions: how to relax dependence of the integrand for the
theory to make sense? This | will NOT discuss.

2. Functional analysis
Can any function from an unconventional space be approximated?

3. PDEs
What existence results one can provide thanks to the density
properties?
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Calculus of variations motivation

minimization of u— [, F(x,u,Du)dx for u: Q - R

Gap or no gap for minimizers

Lavrentiev '26, Mania '34
Gossez '82, Zhikov 80'-10’
Buttazzo & Mizel '95, Belloni & Buttazzo '92

Fonseca, Maly, Mingione '04, Esposito, Leonetti, Mingione '04,
Balci, Diening, Surnachev '20

Esposito, Leonetti, Petricca '19, Leonetti, De Filippis '22, Koch 22
Bousquet '23

2018+ via density:

Ahmida, Alberico, Borowski, Buli¢ek, Chlebicka (Skrzypczak), Cianchi,
Gwiazda, Skrzeczkowski, éwierczewska—GWiazda, Wrdblewska-Kaminska,
Youssfi, Zatorska-Golstein
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Real-world motivation

cheese issue

Energy density: [, [DulP + a(x)|Du|? dx with nasty weight a

- <

‘\ "a ¢

Figure: Inhomogeneous medium

® not enough approximation properties of the function space

.ﬂ Eﬂ regularity of minimizers or solutions



Examples of spaces with functions that cannot be approximated 1/2

Variable exponent spaces

W= {f e Wl |DFIPX) € L1}
when the exponent p is not log-Hdlder continuous [Zhikov1986]



Examples of spaces with functions that cannot be approximated 1/2

Variable exponent spaces

W= {f e Wl |DFIPX) € L1}
when the exponent p is not log-Hdlder continuous [Zhikov1986]

e Checkerboard on a 2d-plane 1T
ug — nice trace .y
® Nasty exponent: p > 2in V 1
and p < 2 outside V A
v

e Bad u, € W has Du, =0in V e
(but it jumps) ’ ’

Then

inf
uEug+

e o e ——————————————————————————————————————
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Examples of spaces with functions that cannot be approximated 2/2

Double phase spaces

W= {f € WE': |Df|P + a(x)|Df|9 € L'}
with a: Q — [0,00), a € C%°,
when powers do not satisfy p<n<n+a<gq

see [Zhikov1995], [Esposito, Leonetti, & Mingione, JDE2004]

® Checkerboard on a 2d-plane, j
extended to n-d; up — nice trace
e Nasty weight a € C%“ with 7 i
suppa C V. e I
v

e Bad u, € W with Du, =0 in P
B\ V (but it jumps). . [

Use of fractals to get rid of the dimensional threshold
[Balci, Diening, & Surnachev, CalcVar2020]

e o



Consequences for minimizers

Double phase spaces

[Fonseca, Maly, & Mingione, ARMA2004]

For a functional / |DulP + a(x)|Du|? dx with a € C%,
Q

fp<n<nt+a<gqg
(= the closeness condition on the weights is not satisfied),

then minimizers are almost as bad as any Sobolev functions.



Consequences for minimizers

Double phase spaces

[Fonseca, Maly, & Mingione, ARMA2004]

For a functional / |DulP + a(x)|Du|? dx with a € C%,
Q

fp<n<nt+a<gqg
(= the closeness condition on the weights is not satisfied),

then minimizers are almost as bad as any Sobolev functions.

It is the fault of a.
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Real-world motivation

thick soup case

Energy density: / |Du|P + a(x)|Du|? dx with nice weight a
Q

Figure: Inhomogeneous medium

® good approximation properties of the function space

e possible for study regularity of minimizers or solutions
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Regularity of minimizers

thick soup case

For a minimizer to the problem

U / |DulP 4 a(x)|Du|9 dx  with nice weight a € C%?,
Q

if any of those holds true

e 11+,
® apriori u € L* and g < p+ «,

[ ]
[o5)

priori u € C%7 and g < p + ),
(=decay of a says how close have to be powers)

then Du € C%? for some f.

series of works by Baroni, Colombo, Mingione 2015-18
continued by Harjulehto, Hasto, Byun, and their collaborators
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PDE motivation
heating up a thick soup

Goal
General theory for nonlinear diffusion equations in inhomogeneous media.
Well-posedness of problems like

Oru — divA(t, x, Du) = f(t, x)
with A(t, x, &) of growth given by M : [0, T| x Q x R" — [0, 00).

In nonreflexive space needed density result ~ no gap
If M is regular enough, then for any u € W there exists {ux} C C5°:

Duk — DU)

ue — uin LY and  Fyso /M(t,x7 y dxdt —— 0.
Qr

k— 00

In the classical case of WP we have M(t,x, &) = [¢]P.
Then the above density is in norm. It can be obtained by mollification.
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PDE motivation
heating up a thick soup

Existence result
Well-posedness of problems like

Oru — divA(t, x, Du) = f(t,x)

with A(t, x, ) of growth given by M(t, x, &).

Special cases of div.A are:
Au = divDu
and A,u = div(|DulP~2Du), 1 < p < oo,

but also their counterparts that are inhomogeneous A,
general growth (Orlicz) Ay, anisotropic Ag and more...
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Sufficient conditions on M for H = W

thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018],
[Hasto, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda,
Swierczewska-Gwiazda, Wréblewska-Kamiriska, Springer Monographs in
Mathematics 2021], [Borowski & C, JFA 2022], [Bulitek, Gwiazda,
Skrzeczkowski, ARMA 2022] we know that

Balance condition (B)
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thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018],
[Hasto, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda,
Swierczewska-Gwiazda, Wréblewska-Kamiriska, Springer Monographs in
Mathematics 2021], [Borowski & C, JFA 2022], [Bulitek, Gwiazda,
Skrzeczkowski, ARMA 2022] we know that

Balance condition (B)
For M : Q x R" — [0, 00) there exists a constant Cpy > 1 such that

there holds sup M(y,&) < M(x, Cumé)
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Sufficient conditions on M for H = W

thick soup case

By the many efforts including [Ahmida, C, Gwiazda, Youssfi, JFA 2018],
[Hasto, Harjulehto, Springer Lecture Notes 2019], [C, Gwiazda,
Swierczewska-Gwiazda, Wréblewska-Kamiriska, Springer Monographs in
Mathematics 2021], [Borowski & C, JFA 2022], [Bulitek, Gwiazda,
Skrzeczkowski, ARMA 2022] we know that

Balance condition (B)
For M : Q x R" — [0, 00) there exists a constant Cpy > 1 such that

there holds sup M(y,&) < M(x, Cumé)
yE€B(x)

for prescribed ranges of x and & + we fight for these ranges

implies needed modular density of H in W.
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Basic ideas

thick soup case

1) Approximation is based on convolution

2) Q is decomposed to star-shaped sub-domains Q;

3) For Q; star-shaped with respect to B;(0,r), & € L£(€;) with
supp& C Q and kg < 1, we define

51600 = [ polx = ey /s) dy.

i

4) we need a kind of Jensen inequality to take convolution S;
with respect to x from inside of \/ to get

M <x, M) < SsM ( D%“) (x) + 1

but // depends on x (our space is defined via [, M(x,£) dx)
this step essentially requires a balance condition (B).
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Fight for the range of exponents

Functional
/ DulP + a(x)| Du| dx
Q

is typically considered with a € C%*(Q) and 1 < p < gq.
There are various regimes treated as natural
e q/p <1+ «/nis the scope when the maximal function is

continuous,
e g < p+ « is the scope for the absence of Lavrentiev's gap.

Is it possible to introduce a scale for a ensuring good properties of a
Sobolev-type space for g and p further apart?

Answer YES is coming soon

Borowski, C, Miasojedow, De Filippis, Absence and presence of
Lavrentiev's phenomenon in double phase functionals for every choice

of exponents.
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Summary 1/2

Inhomogeneous media

If M is nice enough, then we have the modular density of smooth
functions in the inhomogeneous and anisotropic space of Sobolev
type. Otherwise we are not equipped with the density.
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Summary 2/2

Having the modular density result of smooth functions we can study

® regularity and other properties of minimizers to

/ F(x, u, Du) — f(x)u dx,
Q

for broad class of F(x,z, &) with growth controlled by M(x,¢),
e well-posedness of
Oru — divA(t, x, Du) = f(t,x),

where A(t, x,&) has growth given by M(t,x,&); then theory of PDEs
(local and global qualitative properties of solutions like uniqueness,
multiplicity, symmetry, local regularity, optimal transfer regularity from
data to solutions, asymptotic behaviour...)
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Thank you for your attention!



