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1. Fraissé theory



Fraissé theory — rough idea

Fraissé theory links properties of families of small structures with %
properties of limit structures.

IC — our family of small objects,
L — ambient family of large objects, K C L,

oIC — limit objects, approximated by /C, . C¥X
“countable unions of chains in ",

Structures are organized through extensions:

e A simpler structure is embedded in a more complex structure:
HA g BH-
e We may use the language of category theory: “A — B



Fraissé theory — rough idea

Examples of (K, o)
(£ is not that important):

e finite linear orders, countable linear orders;

finite graphs, countable graphs;

finite groups, locally finite countable groups;
finite T1 topological spaces, countable discrete spaces;

finite topological spaces, countable Alexandrov-discrete
spaces.
We may change the morphisms:

e finite T7 topological spaces with continuous surjections,

metrizable zero-dimensional compact spaces with continuous
surjections.



Fraissé theory — properties

Definition

K has the amalgamation property (AP) if for every K-maps
f:A— Band g: A— C there are K-maps f': B— D and

g':C— Dsuchthat ffof =g'og.

“Every two extensions A C B and A C C can be encompassed in a
common extension A C D/

0 /f\
A C ﬁ/



Fraissé theory — properties

Definition

An L-object U is homogeneous in QE;_E) if for every £-maps

f,g: A— U from a K-object there is an automorphism h: U — U
such that hof = g.

“Every isomorphism of small substructures can be extended to an
automorphism of the whole structure.”
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Fraissé theory — properties

Definition

An L-object U is injective or extensive or has the extension
property in (K, L) if for every L-map f: A — U and every K-map
g: A— Bthereis an L-map h: B — U such that hog = f.
“Every small extension of a small substructure can be
accommodated in the whole structure.”

)



Fraissé theory — three pillars

Theorem (existence of the Fraissé sequence)
KC has a &M@/Qﬁ if and only if the following are true:

1. K has a countable dominating subcategory
—~— N
(~ “countably many isomorphism-types"),
2. K is directed _5
(“joint embedding property”), / \
3. K has the amalgamation property. /A

We call IC a Fraissé category.



Fraissé theory — sequences

Recall

e A (direct) sequence (X, f.) in a category is a diagram
Xo 2 Xp o xo By xg By
\b>3
X/j
e {7 denotes the composition X, — X, for n < m.
o A (\c’o\)hcgrle for (X, fi) is a pair (Y, g.) consisting of maps

gn: Xn — Y such that g o f,7 = g, for n < m.

e A (co)limit or direct limit of (X, f) is a cone (X5, £>°) such
that for every cone (Y, gi) for (X,, f,) there is a unique map
8x: Xoo — Y such that g o f;° = g, for every n.



Fraissé theory — properties

Definition
A subcategory or a sequence S in K is

universal/cofinal if for every K-object K there

isa K-map f: K — S to an S-object; ‘
absorbing if for every S-object S and a

K-map f: S — K there is a K-map

g: K — S’ such that g o f is an S-map; —

injective/extensive if for every K-map
f: K — S to an S-object and every
K-map g: K — K’ there is an S-map
f':S— S and K-map g’: K/ — &'

such that f' o f = g’ o g; —

dominating if it is cofinal and absorbing; ~—

extensively dominating if it is cofinal and extensive.

Fraissé sequence is a dominating sequence in a category with (AP)
or equivalently an extensively dominating sequence.



Fraissé theory — three pillars

Theorem (uniqueness of the Fraissé sequence)

The Fraissé sequence in K is unique up to an isomorphisms of
sequences via a back and forth construction.

X0—>X1—>X2—>X3 7

NPAWA

Yo—>Y1—>Y2—>Y3—>Y4—>
80 81 82



Fraissé theory — three pillars

Theorem (characterization of the Fraissé limit)
Let oK be a free completion of K. For an oKC-object U :)(

the following conditions are equivalent:
1. X is the limit in o/C of a Fraissé sequence in K.
2. X is cofinal and homogeneous in (K, o).
3. X is cofinal and extensive in (K,0K).

Such object U is unique, cofinal in g/, and every sequence in K
with limit U is Fraissé. U is called the Fraissé limit of K.



Fraissé theory

Examples of K, oK, and U @

Fraissé category IC, free completion o, Fraissé limit U,
translation of the extension property:
e finite linear orders, countable linear orders, the rationals
(Q, <), dense linear order: Vx <y dzp < x < z1 < y < zp;
e finite graphs, countable graphs, the Rado graph, VA, B C U
disjoint finite 3x € U\ (AU B) with an edge to every point of
A and with no edge to a point of B;
o finite discrete spacefwith surjections, metrizable
zero-dimensional compact spaces with continuous surjections,
the Cantor space 2%, no isolated points.



Fraissé theory — flavors

Classical /model-theoretic x abstract/category-theoretic

Classical:
e finite or finitely generated first-order structures with
embeddings;
e age, hereditary property, joint embedding property, countably
many isomorphism-types.
Abstract:
e abstract objects and morphisms,
e language of category theory,

e a toy example — (N -) (monoid as a category with one object),
Fraissé sequence: a sequence of numbers such that each
prime divides infinitely many of them (note that the numbers in
the sequence are morphisms, not objects).



Fraissé theory — flavors
Injective X projective /'\ k_‘/\\

Conceptually, there are two directions of arrows: ’\/’\ \ /

e domain — codomain (the morphism direction),

e simpler — more complex (the extension direction).
Fraisse-theoretic notions should follow the extension direction.
Injective:

e The directions are the same, as with embeddings.

e Includes the classical Fraissé theory.

Projective:
e The directions are opposite, as with quotients.

e Includes the projective Fraissé theory introduced by Irvin and
Solecki (2006) — deals with topological first-order structures
and continuous epimorphisms.

e Finite connected linear graphs yield a pre-space of the
\,_,—w—/

pseudo-arc as Fraissé limit.
—_—



Fraissé theory — flavors

P P

Discrete/strict x approximate/continuous »,
e So far everything was discrete — the diagrams were u/
commuting strictly. X, ¢

e lrwin and Solecki characterized the pseudo-arc as the unique
arc-like continuum P such that for every arc-like continuum
X, every € > 0, and every two continuous surjections
f,g: P — X there is a homeomorphism h: P — P such that
f~cgoh.

e The characterization looks like approximate version of
homogeneity. This can be formalized, and the whole Fraissé
theory can be done in approximate setting. Done by Kubis$
(2012) in metric-enriched setting; now we generalize to
MU-categories.

e Other examples include the Urysohn space (over finite metric
spaces and isometric embeddings) and the Gurarij space (over
finite-dimensional Banach spaces and isometric embeddings).



Fraissé theory — flavors

Strong/ordinary x weak

There are weaker forms of the amalgamation property, extension
property and homogeneity.

e K has the cofinal amalgamation property (CAP) if for every
K-object A there is a -map A — A’ to an amalgamable
object.

e K has the weak amalgamation property (WAP) if for every
K-object A there is an amalgamable K-map A — A'.

Allows to consider weak Fraissé limits to accommodate more
examples; is connected to the abstract Banach—Mazur game.
There are also projective and/or approximate variants.



Fraissé theory — flavors

Countable x uncountable

e So far, everything was countable — sequences, dominating
subcategories.

e It is possible to consider uncountable sequences or directed
diagrams.

e For example, under (CH), P(w)/fin is the Fraissé limit of
countable boolean algebras and embeddings.
e In the approximate setting we have used ¢ € (0, 00); it might

be appropriate to generalize to uniformities in the uncountable
case.



Fraissé theory — flavors

Our setting today:

classical x abstract
injective X  projective
strict X approximate
ordinary x  weak
countable X uncountable

e In the abstract setting “injective X projective” is just a matter
of convention. We choose projective because it fits our
application.

e Since we want to build approximate Fraissé theory in the
abstract setting, we need a framework to deal with “f ~_ g"
abstractly. This leads to MU-categories. '



2. MU-categories



MU-categories (/
e~ o

. §e—r—
Definition ¢/
An MU-category is a category K such that é/
1. every hom-set K(X, Y) is an co-metric space,

2. for every KC-map f we have d(gof,hof) < d(g,h) for every
compatible K-maps,

3. for every K-map f and every € > 0 there is § > 0 such that
f is (e, d)-continuous: d(g,h) < J implies d(f o g,foh) <e.

The letters “M" and “U" refer to “metric” and “uniformity”.

Example

Met,, the category of all metric spaces and all uniformly
continuous maps endowed with the supremum oo-metric:
d(f,g) :=sup{d(f(x),g(x)) : x € X}, is an MU-category.



MU-categories

Example

Every category K may be endowed with the 0-1 discrete metric,
turning it into a discrete MU-category.

Example

Every metric space X can be turned into an MU-category Kx with
one nontrivial hom-set corresponding to X.

In this sense, MU-categories generalize both categories and metric
spaces.

Example

MCpt, the category of all metrizable compact spaces and all
continuous maps, and its subcategories can be viewed as
MU-categories — formally, a compatible metric has to be fixed on
every metrizable compact space, so MCpt becomes an
MU-subcategory of Met,, but different choices lead to canonically
MU-isomorphic MU-categories.



MU-categories

We consider the following types of maps in a MU-category K.
e Every map is uniformly continuous.

e f is non-expansive if we have d(f og,f o h) < d(g,h) for
every compatible maps g, h. K is a metric-enriched if every
K-map is non-expansive. Corresponds to enrichment over the
symmetric monoidal category co-Met. Was considered by
Kubis.

e f is a metric epimorphism if we have d(go f,ho f) = d(g,h)
for every compatible maps g, h. In Met, corresponds to
epimprphisms, i.e. maps with dense image. In discrete
MU-categories also corresponds to epimorphisms.



MU-categories
We consider the following types of functors F: K — L between
MU-categories.
e [ is MU-continuous or just an MU-functor if for every
KC-object X and every € > 0 there is 6 > 0 such that
d(f,g) < ¢ implies d(F(f), F(g)) < ¢ for every K-maps to X.
e fis an MU-isomorphism if it is an MU-functor and there is an
MU-functor G: L — K such that Go F = idx and
FoG=id,.
e F is non-expansive if d(F(f), F(g)) < d(f,g) for every
compatible KC-maps.
e Fis a local isometric embedding if d(F(f), F(g)) = d(f,g)
for every compatible K-maps.
e F is an isometric embedding if it is a local isometric
embedding and it is one-to-one on objects.
e F is locally dense if F[IC(X,Y)] is dense in L(F(X), F(Y))
for every K-objects X, Y.



MU-categories — transformations

Definition
Let (X, f.) and (Yi, g«) be sequences in an MU-category K.
A pre-transformation @, : f, — g, in K is any family of C-maps

©nt Yn < Xp(n), N E w.
W

We put @n.n™ = gn.n' © Pn © fo(n),m for n < n” and p(n') < m.

4 is a transformation if ¢: w — w is increasing and cofinal, and
(Vn)(Ve > 0)(3ng > n)(Vn" > n' > n) (pn’n/@(””) A spmn//(p(n//)

Transformations are stable under composition.



MU-categories — transformations

Definition (oK)

We consider the category of all sequences in K and all
transformations, and we endow the category with the following
distance: Bl

d(ps, i) =V, da(ps, i) A1/ n, o
dn(QD*v w*) = /\nOZn \/n’,n”zn /\mng(n’),w(n”) (90" n wn n’” )

With the distance we have the axioms of MU-category with the
catch that hom-sets are only co-pseudometric. The quotient by
the corresponding equivalence is an MU-category denoted by opK.
The construction g is functorial.

Let J: K — 0oK be the functor assigning to every K-object and
- —— . .
KC-map the corresponding constant sequence and transformation,

respectively. J is a locally dense isometric embedding.

00/C has twofold purpose — it is a place for sequences to live, and it
serves as a completion construction.



MU-categories — completeness

Definition
Let (X., f.) and (Y, g«) be sequences in K having limits.
Let us fix their limits (Xoo, fx,00) and (Yoo, 8k 00)-

fc f f2
Xo ¢ 2 > Xy € : 0o
2
l / / Kf <
Yo € 2 Y] ¢ P Yz £ Yoo

g

A KC-map oo Xoo — Yoo is the limit of ¢, if
(Vn)(Ve > 0)(3ng > n)(Vn' > no)  ©nw™ ~e Onoo™

Note that the maps ¢, o> are limits of the sequence of maps

(Onn ) n>n <Xoo,mis a cone for g, and @ is the
factorizing map.



MU-categories — completeness
Definition
We say that a pair K C £ of MU-categories is
e complete if every transformation in XC has a limit in £;
e sequentially complete if every sequence in K has a limit in £,
e locally complete if every Cauchy sequence in (X, Y) has a
limit in £(X,Y).
L is (sequentially/locally) complete if (L, L) is.
Proposition
(KC, L) is complete if and only if it is both sequentially complete
and locally complete.
Example
The MU-categories CMet,,, MCpt, and MCptg are complete;
CMet,;s is neither sequentially complete nor locally complete.

Theorem
ook is a complete MU-category for every MU-category .



MU-categories — completeness

Given a complete MU-pair (/C, L) and fixing an L-limit (X, fx 00)
for every K-sequence f, (taking the canonical limit for J(X)) there
is a unique functor L: 0ok — L assigning to every transformation
its limit — called limit functor. Hence, (KC,00K) can be viewed as a
free completion. c

Definition JQK 7
An MU-functor F: K — L is an MU-equivalence if there exists an
MU-functor G: £ — K such that Go F & idg and Fo G = id,.
Equivalently, F is essentially surjective, full, and MU-faithful.

(VX)(Ve > 0)(36 > 0)(Vf,g: — X) F(f) ~s F(g) = f~. g.
Definition

(K, L) is a free completion if the limit functor L: 0o — L is an
MU-equivalence.
—_— =



MU-categories — completeness

Characterization of the free completion (I, £)

L exists <— (K,L) is complete
L is essentially surjective <= (O) every L-object is a limit of a K-sequence
L is full = @factorization existence condition
but modulo (F2) equivalent
L is MU-faithful <= (F2) factorization uniqueness condition
L is MU-continuous — @separation condition

but modulo other conditions equivalent

Definition (oK)

Given a complete MU-pair (KC, L) we consider the MU-category
o C L consisting of all limits of K-transformations and all
limit-witnessing maps. This assures (O) for (K, oC) while
increasing the chance for the other conditions.



MU-categories — completeness

The conditions

bt C—
(F1) Y(X,, ) VY Ve > 0Vh: Xoo = Y ¢ —
e,
dg: Xa =Y gofhe = h
Holds for (K, oK) if K C MCpts -
is a full subcategory of polyhedra. [

(F2) VY Ve > 036 > 0V(X,, £ )
vgag/:)<n_>)/ gofn,oo %5g/oﬁ1,oo
= 3n’ >n go fn,n’ e g/ o fn,n’-

Holds if £ consists of metric epimorphisms.
(S) V{Xi, f) Ve >03n30 >0Vh,H: Y = X

fpoo 0 hm5 fh oo = hr B

Holds for (KC, oK) if £ C MCpt.



MU-categories — Fraissé theory
The three pillars of Fraissé theory hold for MU-categories when the
approximate definitions of amalgamation property, domination,
homogeneity, and the extension property are used.
Theorem (characterization of the Fraissé limit)

Let oC be a free completion of K. For an o/C-object U
the following conditions are equivalent:

1. X is the limit in o/C of a Fraissé sequence in K.
2. X is cofinal and homogeneous in (K, cKC) orw
3. X is cofinal and extensive in (K, o) or&ival(ﬁ,tlm@.
Such object U is unique, and every sequence in K with limit U is
Fraissé. U is called the Fraissé limit of K.
Example

Let L C MCptg be the full subcategory of finite spaces. Then

olC C MCpts is the full subcategory of zero-dimensional spaces, K
is Fraissé, oK is its free completion, and the Cantor space is the
Fraissé limit.



3. Application:

Hereditarily indecomposable continua



Application — hereditarily indecomposable continua

Recall

e A continuum is a metrizable compact connected space.

e A continuum X is hereditarily indecomposable if for every
subcontinua C,D C X we have CC Dor C D D or
CnD=0.

e [:=[0,1] denotes the unit interval.

e A continuum X is arc-like if it is the limit of the sequence
copies of I and continuous surjective bonding maps.

Theorem (Bing, 1951)

There is a unique hereditarily indecomposable arc-like continuum —
the pseudo-arc.



Application — hereditarily indecomposable continua

Crookedness

A map f: I — Tis e-crooked if for every x <y € I there are

x <y < x' <y such that f(x) =~ f(x') and f(y) =~ f(y').

Let Z denote the MU-category of all continuous surjections on I.

A sequence f, is Z is crooked if for every n and € > 0 there is
n’ > n such that f, v is e-crooked.

Fact
For every € > 0 there exists and A /\//\\/\ /\//\VN
NV V

e-crooked Z-map.

Theorem

Let £, be a sequence in Z and let (X, f; o) be its limit. The
arc-like continuum X is hereditarily indecomposable if and only if
f. is a crooked sequence.

(Holds much more generally — Brown, Krasinkiewicz, Minc, Mackowiak.)



Application — hereditarily indecomposable continua

e We consider the MU-category Z C MCpts.

e Then o7 is the full subcategory of MCpts of all arc-like
continua, and it is a free completion of Z.

e Hence, we have the characterization of the Fraissé limit (if it
exists).

e Since T is clearly directed and has a countable dominating
subcategory, the Fraissé limit exists if and only if Z has the
amalgamation property.

e 7 has even strict (AP) for piecewise-linear maps
(mountain-climbing theorem).

e Since arbitrarily crooked maps exist, the Fraissé sequence is
crooked (as it is absorbs everything).

e Hence, the Fraissé limit is a hereditarily indecomposable
arc-like continuum and so the pseudo-arc by the Bing's
characterization.



Application — hereditarily indecomposable continua

Besides the Fraissé theory and the facts about crookedness (which
holds much more generally than presented) we used only two
specific facts: the amalgamation property of Z and the Bing's
characterization of the pseudo-arc. Both facts follows from the
following result, which can be proved directly.

Crookedness factorization theorem
For every Z-map g and every € > 0 there is § > 0 such that for
every 0-crooked Z-map f there is an Z-map h such that f ~. go h.



Application — hereditarily indecomposable continua

Pseudo-solenoids

Let S denote the unit circle, and let S C MCpts denote the
MU-category of all continuous surjections on S.

Recall that a continuum is circle-like if it is a limit of an
S-sequence.

So o8 is the full subcategory of MCpts of all circle-like
continua.

As with the unit interval, o8 is a free completion of S.
However, S does not have the amaglamation property.
Every S-map has a degree k € Z (the winding number).

For every P set of primes let Sp denote the subcategory of S
consisting of maps of degrees with prime divisors in P.

By the result of Rogers, Sp has the amalgamation property.

Moreover, cSp C ¢S is a free completion of Sp, and hence
every Sp has a Fraissé limit called the P-adic pseudo-solenoid.



Dziekuje!
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