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1. Fraïssé theory



Fraïssé theory – rough idea

Fraïssé theory links properties of families of small structures with
properties of limit structures.

K – our family of small objects,

L – ambient family of large objects, K ⊆ L,

σK – limit objects, approximated by K,
“countable unions of chains in K”.

Structures are organized through extensions:

• A simpler structure is embedded in a more complex structure:
“A ⊆ B”.

• We may use the language of category theory: “A → B”.



Fraïssé theory – rough idea

Examples of �K, σK�

(L is not that important):

• finite linear orders, countable linear orders;

• finite graphs, countable graphs;

• finite groups, locally finite countable groups;

• finite T1 topological spaces, countable discrete spaces;

• finite topological spaces, countable Alexandrov-discrete
spaces.

We may change the morphisms:

• finite T1 topological spaces with continuous surjections,
metrizable zero-dimensional compact spaces with continuous
surjections.



Fraïssé theory – properties

Definition
K has the amalgamation property (AP) if for every K-maps
f : A → B and g : A → C there are K-maps f � : B → D and
g � : C → D such that f � ◦ f = g � ◦ g .

“Every two extensions A ⊆ B and A ⊆ C can be encompassed in a
common extension A ⊆ D.”



Fraïssé theory – properties

Definition
An L-object U is homogeneous in �K,L� if for every L-maps
f , g : A → U from a K-object there is an automorphism h : U → U
such that h ◦ f = g .

“Every isomorphism of small substructures can be extended to an
automorphism of the whole structure.”



Fraïssé theory – properties

Definition
An L-object U is injective or extensive or has the extension
property in �K,L� if for every L-map f : A → U and every K-map
g : A → B there is an L-map h : B → U such that h ◦ g = f .

“Every small extension of a small substructure can be
accommodated in the whole structure.”



Fraïssé theory – three pillars

Theorem (existence of the Fraïssé sequence)

K has a Fraïssé sequence if and only if the following are true:

1. K has a countable dominating subcategory
(∼ “countably many isomorphism-types”),

2. K is directed
(“joint embedding property”),

3. K has the amalgamation property.

We call K a Fraïssé category.



Fraïssé theory – sequences

Recall

• A (direct) sequence �X∗, f∗� in a category is a diagram

X0
f0−→ X1

f1−→ X2
f2−→ X3

f3−→ · · ·

• f m
n denotes the composition Xn → Xm for n ≤ m.

• A (co)cone for �X∗, f∗� is a pair �Y , g∗� consisting of maps
gn : Xn → Y such that gm ◦ f m

n = gn for n ≤ m.

• A (co)limit or direct limit of �X∗, f∗� is a cone �X∞, f ∞
∗ � such

that for every cone �Y , g∗� for �X∗, f∗� there is a unique map
g∞ : X∞ → Y such that g∞ ◦ f ∞

n = gn for every n.



Fraïssé theory – properties

Definition
A subcategory or a sequence S in K is

universal/cofinal if for every K-object K there
is a K-map f : K → S to an S-object;

absorbing if for every S-object S and a
K-map f : S → K there is a K-map
g : K → S � such that g ◦ f is an S-map;

injective/extensive if for every K-map
f : K → S to an S-object and every
K-map g : K → K � there is an S-map
f � : S → S � and K-map g � : K � → S �

such that f � ◦ f = g � ◦ g ;

dominating if it is cofinal and absorbing;

extensively dominating if it is cofinal and extensive.

Fraïssé sequence is a dominating sequence in a category with (AP)
or equivalently an extensively dominating sequence.



Fraïssé theory – three pillars

Theorem (uniqueness of the Fraïssé sequence)

The Fraïssé sequence in K is unique up to an isomorphisms of
sequences via a back and forth construction.

X0
f0−→ X1

f1−→ X2
f2−→ X3

f3−→ X4
f4−→ · · ·

Y0 −→
g0

Y1 −→
g1

Y2 −→
g2

Y3 −→
g3

Y4 −→
g4

· · ·



Fraïssé theory – three pillars

Theorem (characterization of the Fraïssé limit)

Let σK be a free completion of K. For an σK-object U
the following conditions are equivalent:

1. X is the limit in σK of a Fraïssé sequence in K.

2. X is cofinal and homogeneous in �K, σK�.

3. X is cofinal and extensive in �K, σK�.

Such object U is unique, cofinal in σK, and every sequence in K
with limit U is Fraïssé. U is called the Fraïssé limit of K.



Fraïssé theory

Examples of K, σK, and U

Fraïssé category K, free completion σK, Fraïssé limit U,
translation of the extension property:

• finite linear orders, countable linear orders, the rationals
�Q,≤�, dense linear order: ∀x < y ∃z0 < x < z1 < y < z2;

• finite graphs, countable graphs, the Rado graph, ∀A,B ⊆ U
disjoint finite ∃x ∈ U \ (A ∪ B) with an edge to every point of
A and with no edge to a point of B;

• finite discrete space with surjections, metrizable
zero-dimensional compact spaces with continuous surjections,
the Cantor space 2ω, no isolated points.



Fraïssé theory – flavors

Classical/model-theoretic × abstract/category-theoretic

Classical:

• finite or finitely generated first-order structures with
embeddings;

• age, hereditary property, joint embedding property, countably
many isomorphism-types.

Abstract:

• abstract objects and morphisms,

• language of category theory,

• a toy example – �N+, ·� (monoid as a category with one object),
Fraïssé sequence: a sequence of numbers such that each
prime divides infinitely many of them (note that the numbers in

the sequence are morphisms, not objects).



Fraïssé theory – flavors

Injective × projective

Conceptually, there are two directions of arrows:

• domain → codomain (the morphism direction),

• simpler → more complex (the extension direction).

Fraïsse-theoretic notions should follow the extension direction.

Injective:

• The directions are the same, as with embeddings.

• Includes the classical Fraïssé theory.

Projective:

• The directions are opposite, as with quotients.

• Includes the projective Fraïssé theory introduced by Irvin and
Solecki (2006) – deals with topological first-order structures
and continuous epimorphisms.

• Finite connected linear graphs yield a pre-space of the
pseudo-arc as Fraïssé limit.



Fraïssé theory – flavors

Discrete/strict × approximate/continuous

• So far everything was discrete – the diagrams were
commuting strictly.

• Irwin and Solecki characterized the pseudo-arc as the unique
arc-like continuum P such that for every arc-like continuum
X , every ε > 0, and every two continuous surjections
f , g : P → X there is a homeomorphism h : P → P such that
f ≈ε g ◦ h.

• The characterization looks like approximate version of
homogeneity. This can be formalized, and the whole Fraïssé
theory can be done in approximate setting. Done by Kubiś
(2012) in metric-enriched setting; now we generalize to
MU-categories.

• Other examples include the Urysohn space (over finite metric
spaces and isometric embeddings) and the Gurarij space (over
finite-dimensional Banach spaces and isometric embeddings).



Fraïssé theory – flavors

Strong/ordinary × weak

There are weaker forms of the amalgamation property, extension
property and homogeneity.

• K has the cofinal amalgamation property (CAP) if for every
K-object A there is a K-map A → A� to an amalgamable
object.

• K has the weak amalgamation property (WAP) if for every
K-object A there is an amalgamable K-map A → A�.

Allows to consider weak Fraïssé limits to accommodate more
examples; is connected to the abstract Banach–Mazur game.
There are also projective and/or approximate variants.



Fraïssé theory – flavors

Countable × uncountable

• So far, everything was countable – sequences, dominating
subcategories.

• It is possible to consider uncountable sequences or directed
diagrams.

• For example, under (CH), P(ω)/fin is the Fraïssé limit of
countable boolean algebras and embeddings.

• In the approximate setting we have used ε ∈ (0,∞); it might
be appropriate to generalize to uniformities in the uncountable
case.



Fraïssé theory – flavors

Our setting today:

classical × abstract
injective × projective

strict × approximate
ordinary × weak

countable × uncountable

• In the abstract setting “injective × projective” is just a matter
of convention. We choose projective because it fits our
application.

• Since we want to build approximate Fraïssé theory in the
abstract setting, we need a framework to deal with “f ≈ε g”
abstractly. This leads to MU-categories.



2. MU-categories



MU-categories

Definition
An MU-category is a category K such that

1. every hom-set K(X ,Y ) is an ∞-metric space,

2. for every K-map f we have d(g ◦ f , h ◦ f ) ≤ d(g , h) for every
compatible K-maps,

3. for every K-map f and every ε > 0 there is δ > 0 such that
f is �ε, δ�-continuous: d(g , h) < δ implies d(f ◦ g , f ◦ h) < ε.

The letters “M” and “U” refer to “metric” and “uniformity”.

Example

Metu, the category of all metric spaces and all uniformly
continuous maps endowed with the supremum ∞-metric:
d(f , g) := sup{d(f (x), g(x)) : x ∈ X}, is an MU-category.



MU-categories

Example

Every category K may be endowed with the 0–1 discrete metric,
turning it into a discrete MU-category.

Example

Every metric space X can be turned into an MU-category KX with
one nontrivial hom-set corresponding to X .

In this sense, MU-categories generalize both categories and metric
spaces.

Example

MCpt, the category of all metrizable compact spaces and all
continuous maps, and its subcategories can be viewed as
MU-categories – formally, a compatible metric has to be fixed on
every metrizable compact space, so MCpt becomes an
MU-subcategory of Metu, but different choices lead to canonically
MU-isomorphic MU-categories.



MU-categories

We consider the following types of maps in a MU-category K.

• Every map is uniformly continuous.

• f is non-expansive if we have d(f ◦ g , f ◦ h) ≤ d(g , h) for
every compatible maps g , h. K is a metric-enriched if every
K-map is non-expansive. Corresponds to enrichment over the
symmetric monoidal category ∞-Met. Was considered by
Kubiś.

• f is a metric epimorphism if we have d(g ◦ f , h ◦ f ) = d(g , h)
for every compatible maps g , h. In Metu corresponds to
epimprphisms, i.e. maps with dense image. In discrete
MU-categories also corresponds to epimorphisms.



MU-categories
We consider the following types of functors F : K → L between
MU-categories.

• F is MU-continuous or just an MU-functor if for every
K-object X and every ε > 0 there is δ > 0 such that
d(f , g) < δ implies d(F (f ),F (g)) < ε for every K-maps to X .

• F is an MU-isomorphism if it is an MU-functor and there is an
MU-functor G : L → K such that G ◦ F = idK and
F ◦ G = idL.

• F is non-expansive if d(F (f ),F (g)) ≤ d(f , g) for every
compatible K-maps.

• F is a local isometric embedding if d(F (f ),F (g)) = d(f , g)
for every compatible K-maps.

• F is an isometric embedding if it is a local isometric
embedding and it is one-to-one on objects.

• F is locally dense if F [K(X ,Y )] is dense in L(F (X ),F (Y ))
for every K-objects X ,Y .



MU-categories – transformations

Definition
Let �X∗, f∗� and �Y∗, g∗� be sequences in an MU-category K.
A pre-transformation ϕ∗ : f∗ → g∗ in K is any family of K-maps
ϕn : Yn ← Xϕ(n), n ∈ ω.

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

. . .

. . .

f0 f1 f2 f3 f4

g0 g1 g2 g3 g4

ϕ0 ϕ1 ϕ2 ϕ3

We put ϕn,n�
m := gn,n� ◦ ϕn ◦ fϕ(n),m for n ≤ n� and ϕ(n�) ≤ m.

ϕ∗ is a transformation if ϕ : ω → ω is increasing and cofinal, and

(∀n)(∀ε > 0)(∃n0 ≥ n)(∀n�� ≥ n� ≥ n) ϕn,n�
ϕ(n��) ≈ε ϕn,n��

ϕ(n��)

Transformations are stable under composition.



MU-categories – transformations

Definition (σ0K)

We consider the category of all sequences in K and all
transformations, and we endow the category with the following
distance:

d(ϕ∗, ψ∗) =
�

n dn(ϕ∗, ψ∗) ∧ 1/n,

dn(ϕ∗, ψ∗) =
�

n0≥n

�
n�,n��≥n

�
m≥ϕ(n�),ψ(n��) d(ϕn,n�

m, ψn,n��
m).

With the distance we have the axioms of MU-category with the
catch that hom-sets are only ∞-pseudometric. The quotient by
the corresponding equivalence is an MU-category denoted by σ0K.
The construction σ0 is functorial.

Let J : K → σ0K be the functor assigning to every K-object and
K-map the corresponding constant sequence and transformation,
respectively. J is a locally dense isometric embedding.

σ0K has twofold purpose – it is a place for sequences to live, and it
serves as a completion construction.



MU-categories – completeness

Definition
Let �X∗, f∗� and �Y∗, g∗� be sequences in K having limits.
Let us fix their limits �X∞, f∗,∞� and �Y∞, g∗,∞�.

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

. . .

. . .

X∞

Y∞

f0 f1 f2 f3 f4

g0 g1 g2 g3 g4

ϕ0 ϕ1 ϕ2 ϕ3

A K-map ϕ∞ : X∞ → Y∞ is the limit of ϕ∗ if

(∀n)(∀ε > 0)(∃n0 ≥ n)(∀n� ≥ n0) ϕn,n�
∞ ≈ε ϕn,∞

∞.

Note that the maps ϕn,∞
∞ are limits of the sequence of maps

�ϕn,n�
∞�n�≥n, �X∞, ϕ∗,∞

∞� is a cone for g∗, and ϕ∞ is the
factorizing map.



MU-categories – completeness

Definition
We say that a pair K ⊆ L of MU-categories is

• complete if every transformation in K has a limit in L;

• sequentially complete if every sequence in K has a limit in L;

• locally complete if every Cauchy sequence in K(X ,Y ) has a
limit in L(X ,Y ).

L is (sequentially/locally) complete if �L,L� is.

Proposition

�K,L� is complete if and only if it is both sequentially complete
and locally complete.

Example

The MU-categories CMetu, MCpt, and MCpts are complete;
CMetus is neither sequentially complete nor locally complete.

Theorem
σ0K is a complete MU-category for every MU-category K.



MU-categories – completeness

Given a complete MU-pair �K,L� and fixing an L-limit �X∞, f∗,∞�
for every K-sequence f∗ (taking the canonical limit for J(X )) there
is a unique functor L : σ0K → L assigning to every transformation
its limit – called limit functor. Hence, �K, σ0K� can be viewed as a
free completion.

Definition
An MU-functor F : K → L is an MU-equivalence if there exists an
MU-functor G : L → K such that G ◦ F ∼= idK and F ◦ G ∼= idL.
Equivalently, F is essentially surjective, full, and MU-faithful:

(∀X )(∀ε > 0)(∃δ > 0)(∀f , g : → X ) F (f ) ≈δ F (g) =⇒ f ≈ε g .

Definition
�K,L� is a free completion if the limit functor L : σ0K → L is an
MU-equivalence.



MU-categories – completeness

Characterization of the free completion �K,L�

L exists ⇐⇒ �K,L� is complete

L is essentially surjective ⇐⇒ (O) every L-object is a limit of a K-sequence

L is full =⇒ (F1) factorization existence condition

but modulo (F2) equivalent

L is MU-faithful ⇐⇒ (F2) factorization uniqueness condition

L is MU-continuous ⇐= (S) separation condition

but modulo other conditions equivalent

Definition (σK)

Given a complete MU-pair �K,L� we consider the MU-category
σK ⊆ L consisting of all limits of K-transformations and all
limit-witnessing maps. This assures (O) for �K, σK� while
increasing the chance for the other conditions.



MU-categories – completeness

The conditions

(F1) ∀�X∗, f∗� ∀Y ∀ε > 0 ∀h : X∞ → Y
∃g : Xn → Y g ◦ fn,∞ ≈ε h.

Holds for �K, σK� if K ⊆ MCpts

is a full subcategory of polyhedra.

(F2) ∀Y ∀ε > 0 ∃δ > 0 ∀�X∗, f∗�
∀g , g � : Xn → Y g ◦ fn,∞ ≈δ g � ◦ fn,∞

=⇒ ∃n� ≥ n g ◦ fn,n� ≈ε g � ◦ fn,n� .

Holds if L consists of metric epimorphisms.

(S) ∀�X∗, f∗� ∀ε > 0 ∃n ∃δ > 0 ∀h, h� : Y → X∞

fn,∞ ◦ h ≈δ fn,∞ ◦ h� =⇒ h ≈ε h�.

Holds for �K, σK� if K ⊆ MCpt.



MU-categories – Fraïssé theory
The three pillars of Fraïssé theory hold for MU-categories when the
approximate definitions of amalgamation property, domination,
homogeneity, and the extension property are used.

Theorem (characterization of the Fraïssé limit)

Let σK be a free completion of K. For an σK-object U
the following conditions are equivalent:

1. X is the limit in σK of a Fraïssé sequence in K.

2. X is cofinal and homogeneous in �K, σK� or equivalently in σK.

3. X is cofinal and extensive in �K, σK� or equivalently in σK.

Such object U is unique, and every sequence in K with limit U is
Fraïssé. U is called the Fraïssé limit of K.

Example

Let K ⊆ MCpts be the full subcategory of finite spaces. Then
σK ⊆ MCpts is the full subcategory of zero-dimensional spaces, K
is Fraissé, σK is its free completion, and the Cantor space is the
Fraïssé limit.



3. Application:
Hereditarily indecomposable continua



Application – hereditarily indecomposable continua

Recall

• A continuum is a metrizable compact connected space.

• A continuum X is hereditarily indecomposable if for every
subcontinua C ,D ⊆ X we have C ⊆ D or C ⊇ D or
C ∩ D = ∅.

• I := [0, 1] denotes the unit interval.

• A continuum X is arc-like if it is the limit of the sequence
copies of I and continuous surjective bonding maps.

Theorem (Bing, 1951)

There is a unique hereditarily indecomposable arc-like continuum –
the pseudo-arc.



Application – hereditarily indecomposable continua

Crookedness
A map f : I → I is ε-crooked if for every x ≤ y ∈ I there are
x ≤ y � ≤ x � ≤ y such that f (x) ≈ε f (x �) and f (y) ≈ε f (y �).

Let I denote the MU-category of all continuous surjections on I.

A sequence f∗ is I is crooked if for every n and ε > 0 there is
n� ≥ n such that fn,n� is ε-crooked.

Fact
For every ε > 0 there exists and
ε-crooked I-map.

Theorem
Let f∗ be a sequence in I and let �X , f∗,∞� be its limit. The
arc-like continuum X is hereditarily indecomposable if and only if
f∗ is a crooked sequence.
(Holds much more generally – Brown, Krasinkiewicz, Minc, Maćkowiak.)



Application – hereditarily indecomposable continua

• We consider the MU-category I ⊆ MCpts.

• Then σI is the full subcategory of MCpts of all arc-like
continua, and it is a free completion of I.

• Hence, we have the characterization of the Fraïssé limit (if it
exists).

• Since I is clearly directed and has a countable dominating
subcategory, the Fraïssé limit exists if and only if I has the
amalgamation property.

• I has even strict (AP) for piecewise-linear maps
(mountain-climbing theorem).

• Since arbitrarily crooked maps exist, the Fraïssé sequence is
crooked (as it is absorbs everything).

• Hence, the Fraïssé limit is a hereditarily indecomposable
arc-like continuum and so the pseudo-arc by the Bing’s
characterization.



Application – hereditarily indecomposable continua

Besides the Fraïssé theory and the facts about crookedness (which
holds much more generally than presented) we used only two
specific facts: the amalgamation property of I and the Bing’s
characterization of the pseudo-arc. Both facts follows from the
following result, which can be proved directly.

Crookedness factorization theorem
For every I-map g and every ε > 0 there is δ > 0 such that for
every δ-crooked I-map f there is an I-map h such that f ≈ε g ◦ h.



Application – hereditarily indecomposable continua

Pseudo-solenoids

• Let S denote the unit circle, and let S ⊆ MCpts denote the
MU-category of all continuous surjections on S.

• Recall that a continuum is circle-like if it is a limit of an
S-sequence.

• So σS is the full subcategory of MCpts of all circle-like
continua.

• As with the unit interval, σS is a free completion of S.

• However, S does not have the amaglamation property.

• Every S-map has a degree k ∈ Z (the winding number).

• For every P set of primes let SP denote the subcategory of S
consisting of maps of degrees with prime divisors in P.

• By the result of Rogers, SP has the amalgamation property.

• Moreover, σSP ⊆ σS is a free completion of SP , and hence
every SP has a Fraïssé limit called the P-adic pseudo-solenoid.



Dziękuje!
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