An introduction to abstract Fraïssé theory

Adam Bartoš bartos@math.cas.cz

Institute of Mathematics, Czech Academy of Sciences

Warsaw, December 6, 2023

Theorem (Cantor)

$\langle \mathbb{Q}, \leq \rangle$ is the unique countable dense linear order without endpoints.

Proof: back and forth construction.

Moreover:

- Every isomorphism between finite A, B ⊆ Q extends to an automorphism (ultrahomogeneity).
- Every countable linear order embeds into Q (universality).

Theorem (Erdős–Rényi)

For $i \neq j \in \omega$ let us put an edge between the vertices *i* and *j* with probability $\frac{1}{2}$. Then almost surely we obtain an isomorphic copy of a particular graph *R*.

R is characterized by the following property: For every disjoint finite *A*, *B* ⊆ *R* there is a vertex *x* ∈ *R* \ (*A* ∪ *B*) such that *E*(*a*, *x*) for every *a* ∈ *A* and ¬*E*(*b*, *x*) for every *b* ∈ *B* (one-point extension property).

Random/Rado graph

The extension property for finite graphs (i.e. for every finite graphs G ⊆ H and an embedding f: G → R there is an embedding g: H → R such that g↾_G = f) and universality for countable graphs follow.

• Ultrahomogeneity and uniqueness follow as well.

Theorem (Urysohn)

There is a unique separable metric space $\ensuremath{\mathbb{U}}$ such that

- for every isometry f: A → B between finite A, B ⊆ U there is an isometry F: U → U with F |_A = f (ultrahomogeneity),
- U contains every finite metric space (small universality).
- $\mathbb U$ contains even every separable metric space.
- There is a unique countable ultrahomogeneous rational metric space U_Q that contains every finite rational metric space.
- \mathbb{U} is the metric completion of $\mathbb{U}_{\mathbb{Q}}$.

The language of category theory

A category (denoted by $\mathcal{K}, \mathcal{L}, \mathcal{C}, ...)$ consists of

- objects (denoted by x, y, z, X, Y, Z, ...) and
- morphisms that can be composed and include the identities (denoted by $f: x \to y$, $g: y \to z$, $g \circ f: x \to z$, $id_x, ...$).

Examples include the categories

- Set of sets and functions,
- Grp of groups and group homomorphisms,
- **Top** of topological spaces and continuous maps.

We will mostly consider the category \mathbf{Emb}_L of all *L*-structures and embeddings for a first-order language *L*.

We shall often consider a pair $\langle \mathcal{K}, \mathcal{L} \rangle$ of "small" and "large" objects, where $\mathcal{K} \subseteq \mathcal{L}$ is a subcategory, e.g. finite and countable linear orders, respectively, with embeddings.

(Ultra)homogeneity

Recall that a countable relational structure U is ultrahomogeneous if every isomorphism $f: A \to B$ between finite substructures $A, B \subseteq U$ can be extended to an automorphism $h: U \to U$.

$$U \xrightarrow{h} U$$

Definition

For a pair of categories $\mathcal{K} \subseteq \mathcal{L}$ we say that an \mathcal{L} -object U is homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object x and every \mathcal{L} -maps $f, g: x \to U$ there is an \mathcal{L} -automorphism $h: U \to U$ such that $h \circ g = f$.

So a structure U is ultrahomogeneous if and only if it is homogeneous in $\langle Age(U), \mathcal{L} \rangle$.

Extension property / injectivity

Recall that a countable relational structure U is injective or has the extension property if for every structures $A \subseteq B \in Age(U)$ every embedding $f: A \rightarrow U$ can be extended to an embedding $g: B \rightarrow U$.

Definition

For a pair of categories $\mathcal{K} \subseteq \mathcal{L}$ we say that an \mathcal{L} -object U is injective / has the extension property in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -map $f : x \to U$ and \mathcal{K} -map $g : x \to y$ there is an \mathcal{L} -map $h : y \to U$ such that $h \circ g = f$.

Recall that a structure U is universal for a class of structures \mathcal{F} if every $X \in \mathcal{F}$ can be embedded to U.

Definition

For a pair of categories $\mathcal{K} \subseteq \mathcal{L}$ we say that an \mathcal{L} -object U is cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object x there is an \mathcal{L} -map $f: x \to U$. Let $\mathcal{K} \subseteq \mathcal{L}$ be categories, let U be an \mathcal{L} -object. We consider the properties:

- **1** *U* is homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$,
- **2** U is injective / has the extension property in $\langle \mathcal{K}, \mathcal{L} \rangle$,
- **3** *U* is cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- Always, if U is cofinal and homogeneous, then U is injective.
- Sometimes U is cofinal homogeneous iff U is cofinal injective.
- Sometimes such *U* is unique.
- Sometimes such U is cofinal for the whole \mathcal{L} .

If it is the case, then it makes sense to call U the Fraïssé limit.

Sequences and colimits

• A sequence \vec{x} in a category \mathcal{K} consists of a sequence \mathcal{K} -objects $\langle x_n \rangle_{n \in \omega}$ and a coherent sequence of \mathcal{K} -maps $\langle x_n^m \colon x_n \to x_m \rangle_{n \leq m \in \omega}$.

$$X_{\mathfrak{o}} \longrightarrow X_{\mathfrak{i}} \longrightarrow X_{\mathfrak{i}} \longrightarrow X_{\mathfrak{i}} \longrightarrow \dots$$

A colimit of the sequence x
 is an object x_∞ together with an initial cone x
 [∞] = ⟨x_n[∞]: x_n → x_∞⟩.

A sequence in Emb_L is without loss of generality an ω-chain

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$$

and its colimit is the union $A_{\infty} = \bigcup_{n \in \omega} A_n$.

A pair $\langle \mathcal{K}, \mathcal{L} \rangle$ is called a free sequential cocompletion or just a "free completion" if \mathcal{L} arises from \mathcal{K} by freely adding colimits of \mathcal{K} -sequences.

- We will give a precise definition later.
- Free completion establishes a correspondence

 \mathcal{K} -sequences \leftrightarrow \mathcal{L} -objects.

 This is the case in the classical setup when K is a class of finite structures and L is the class of their countable unions.

Definition

A \mathcal{K} -sequence \vec{u} is Fraïssé if it is

- cofinal, i.e. for every *K*-object x there is a *K*-map *f* : x → u_n for some n ∈ ω,
- injective, i.e. for every \mathcal{K} -maps $f: x \to u_n$ and $g: x \to y$ there is a \mathcal{K} -map $h: y \to u_m$ for some $m \ge n$ such that $h \circ g = u_n^m \circ f$.

Note that the definition is analogous to the definition of cofinal and injective object in $\langle \mathcal{K}, \mathcal{L} \rangle$.

Abstract back and forth

- Let \vec{u}, \vec{v} be Fraïssé sequences in a category \mathcal{K} and let $f: x \to u_{m_0}, g: y \to v_n$ be \mathcal{K} -maps.
- Then there are *K*-maps φ_k: u_{mk} → v_{nk} and ψ_k: v_{mk} → u_{nk+1} such that the following diagram commutes.

- Hence, there are mutually inverse isomorphisms $\varphi_{\infty} \colon U_{\infty} \to V_{\infty}$ and $\psi_{\infty} \colon V_{\infty} \to U_{\infty}$ in a free completion \mathcal{L} such that $\varphi_{\infty} \circ u_{m_0}^{\infty} \circ f = v_n^{\infty} \circ g$.
- This gives uniqueness and homogeneity of the Fraïssé limit.

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion and let U be an \mathcal{L} -object. Then the following are equivalent.

1 *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$,

2 *U* is cofinal and injective in $\langle \mathcal{K}, \mathcal{L} \rangle$,

3 U is the \mathcal{L} -colimit of a Fraïssé sequence in \mathcal{K} .

Moreover, such U is unique and cofinal in \mathcal{L} , and every \mathcal{K} -sequence with \mathcal{L} -colimit U is Fraïssé in \mathcal{K} .

It follows that such U exists if and only if a Fraïssé sequence exists in \mathcal{K} .

Existence

The Fraïssé limit U exists iff a Fraïssé sequence exists in \mathcal{K} .

Theorem

Let $\mathcal{K} \neq \emptyset$ be a category. There is a Fraïssé sequence in \mathcal{K} if and only if \mathcal{K} is a Fraïssé category, i.e.

- **1** \mathcal{K} is directed (JEP), i.e. for every \mathcal{K} -objects x, y there is a \mathcal{K} -object z and \mathcal{K} -maps $f: x \to z, g: y \to z,$
- 2 K has the amalgamation property (AP), i.e. for every K-maps f: x → y, g: x → z there are K-maps f': y → w, g': z → w such that f' ∘ f = g' ∘ g,

3 \mathcal{K} has a countable dominating subcategory.

Often \mathcal{K} is locally countable (or even locally finite) and has countably many isomorphism types, which gives **3**.

Free completion

Definition

- $\langle \mathcal{K}, \mathcal{L} \rangle$ is a free completion if
- (L1) every \mathcal{K} -sequence has an \mathcal{L} -colimit,

(L2) every \mathcal{L} -object is an \mathcal{L} -colimit of a \mathcal{K} -sequence,

for every $\mathcal K$ -sequence ec x and its $\mathcal L$ -colimit $\langle X_\infty, ec x^\infty
angle$ we have that

(F1) for every \mathcal{L} -map from a \mathcal{K} -object $f: z \to X_{\infty}$ there is a \mathcal{K} -map $g: z \to x_n$ for some n such that $f = x_n^{\infty} \circ g$,

(F2) for every \mathcal{K} -maps $f, g: z \to x_n$ such that $x_n^{\infty} \circ f = x_n^{\infty} \circ g$ there is $m \ge n$ such that $x_n^m \circ f = x_n^m \circ g$.

- (F2) is trivial if \mathcal{L} consists of monomorphisms.
- Given \mathcal{K} , \mathcal{L} always exists and is essentially unique.
- Such L has all colimits of sequences and has K as a full subcategory consisting of a rich family of small objects.

- Let *L* be a first-order language.
- Let \mathcal{F} be a class of finitely generated *L*-structures with all embeddings.
- Let σF be the class of all colimits of F-sequences (which are necessarily countably generated) with all embeddings.
- Then $\langle \mathcal{F},\sigma\mathcal{F}\rangle$ is a free completion, i.e. in the classical case the conditions are always satisfied.

Projective Fraïssé theory

- Let \mathcal{K}^{op} consist of nonempty finite sets and surjections.
- Then \mathcal{K}^{op} is essentially countable, directed, and has AP.
- A *K*-sequence is Fraïssé if and only if every point eventually splits.

Where to take the limit?

- For L^{op} being all profinite sets and surjections, (K, L) is not a free completion and there is no cofinal object with the extension property.
- For \mathcal{L}^{op} being all profinite spaces (i.e. metrizable compact zero-dimensional) and continuous surjections, $\langle \mathcal{K}, \mathcal{L} \rangle$ is a free completion, and 2^{ω} is the Fraïssé limit.

Projective Fraïssé theory (Irwin, Solecki)

 For L a relational first-order language, let L^{op} be the category of all topological L-structures (profinite spaces with a closed interpretation of every relation) and quotient maps, and let K^{op} be the full subcategory of finite L-structures. Then ⟨K, L⟩ is a free completion.

Examples

	${\cal K}$	${\cal L}$	U
embeddings	finite linear orders	countable linear orders	the rationals
	finite graphs	countable graphs	Rado/random graph
	finite groups	locally finite countable groups	Hall's universal group
	finite rational metric spaces	countable rational metric spaces	rational Urysohn space
quotients	finite discrete spaces	zero-dimensional metrizable compacta	Cantor space
	finite discrete linear graphs	zero-dimensional metrizable compacta with a special closed symmetric relation	pseudo-arc prespace

Knaster-Reichbach theorem Fraïssé theoretically

- Let K be a fixed zero-dimentional metrizable compactum.
- Let $\mathcal{K}_{\mathcal{K}}$ be the following comma category.
 - A K_K-object is a continuous map f : K → X_f to (not necessarily onto) a finite discrete space.
 - A \mathcal{K}_K -map $\varphi \colon f \to g$ is a continuous surjection $\varphi \colon X_f \leftarrow X_g$ such that $f = \varphi \circ g$.

- $\mathcal{K}_{\mathcal{K}}$ is a Fraïssé category.
- Every embedding $f: K \to 2^{\omega}$ onto a nowhere dense subset is a Fraïssé limit.
- Hence, by the uniqueness of the Fraïssé limit, every homeomorphism of two closed nowhere dense subsets of 2^{ω} can be extended to a homeomorphism $2^{\omega} \rightarrow 2^{\omega}$.

1 There are these interesting properties

- (ultra)homogeneity, extension property, universality
- seen in the wild: rationals, random graph, Urysohn space, ...
- 2 There is this abstract theory about them
 - characterization of the Fraïssé limit
 - existence of a Fraïssé sequence
- 3 Using categories makes the theory flexible
 - projective Fraïssé theory, embedding-projection pairs, comma categories, categories of partial automorphisms, ...

Thank you!