Uncountable homogeneous structures

Wiesław Kubiś

Institute of Mathematics, CAS, Prague, Czechia

Topology and Set Theory Seminar, University of Warsaw 6 December 2023

Joint work with Adam Bartoš and Mirna Džamonja

Definition

- We fix a Fraïssé class *F* of finitely generated structures in a countable language.
- We denote by $\sigma \mathcal{F}$ the class of all unions of countable chains in \mathcal{F} , in other words, the class of all countable structures whose age is in \mathcal{F} .
- We denote by $\overline{\mathcal{F}}$ the class of all structures whose age is in \mathcal{F} .
- We denote by \mathbb{U} the Fraïssé limit of \mathcal{F} .

Definition

A structure M is homogeneous if every isomorphism between its finitely generated substructures extends to an automorphism of M.

Main questions

What can we say about uncountable homogeneous structures in $\overline{\mathcal{F}}$? Do they always exist?

Example

Let \mathcal{F} be the class of all torsion-free cyclic groups. Then $\sigma \mathcal{F} = \overline{\mathcal{F}}$.

Note that, up to isomorphism, $\mathcal{F} = \{1, \langle \mathbb{Z}, + \rangle\}.$

Note that $\sigma \mathcal{F}$ consists of all locally cyclic torsion-free groups. All of them are isomorphic to subgroups of the Fraïssé limit $\mathbb{U} = \langle \mathbb{Q}, + \rangle$.

Theorem

Assume CH. If $\sigma \mathcal{F}$ has the amalgamation property then there exists a unique structure $\mathbb{U}_{\omega_1} \in \overline{\mathcal{F}}$ of cardinality \aleph_1 that is $\sigma \mathcal{F}$ -homogeneous and universal.

Furthermore, every structure in $\overline{\mathcal{F}}$ of cardinality $\leq 2^{\aleph_0}$ embeds into \mathbb{U}_{ω_1} .

Remark

This may fail without CH.

Theorem (cf. Keisler 1964)

Assume the language of \mathcal{F} is finite and relational and fix a non-principle ultrafilter p over ω . Then the ultrapower \mathbb{U}^{ω}/p is homogeneous and is a member of $\overline{\mathcal{F}}$.

Theorem (cf. Kubiś & Mašulović 2017)

Assume there exists a functor $K : \sigma \mathcal{F} \to \sigma \mathcal{F}$ together with a natural transformation η from the identity to K such that $K(\mathbb{U}) \approx \mathbb{U}$ and $\eta_{\mathbb{U}} : \mathbb{U} \to K(\mathbb{U})$ is a nontrivial embedding. Then $K^{\omega_1}(\mathbb{U})$ is homogeneous.

Definition

Let \mathcal{E} denote the monoid of all self-embeddings of \mathbb{U} . We say that \mathcal{E} is nontrivial if $\mathcal{E} \neq Aut(\mathbb{U})$.

Claim

 $\overline{\mathcal{F}} \neq \sigma \mathcal{F} \iff \mathcal{E}$ is nontrivial.

Claim

If the language of $\mathcal F$ is finite and relational then $\mathcal E$ is nontrivial.

Example

Let \mathcal{F} consist of all pairs of the form $\langle F, f \rangle$, where $f : F \to \omega$ is a one-to-one function. Then $\mathbb{U} \approx \langle \omega, \mathrm{id}_{\omega} \rangle$ and $\mathcal{E} = \{ \mathrm{id}_{\mathbb{U}} \}$.

Theorem

Assume \mathcal{M} is a sub-monoid of \mathcal{E} containing $\operatorname{Aut}(\mathbb{U})$ as well as at least one nontrivial embedding. Furthermore, assume that \mathcal{M} has the amalgamation property. Then there exists an uncountable homogeneous structure \mathbb{W} with age \mathcal{F} .

Remark

The assumptions above are fulfilled if the language of ${\mathcal F}$ is finite and relational.

Question

Does there exist a relational Fraı̈ssé class \mathcal{F} such that no uncountable structure with age \mathcal{F} is homogeneous?

Claim

There exists a relational Fraïssé classes \mathcal{F} such that no $X \in \sigma \mathcal{F}$ is an amalgamation base.

Proof.

One of the examples is the class of all finite anti-metric spaces with natural values.

THE END