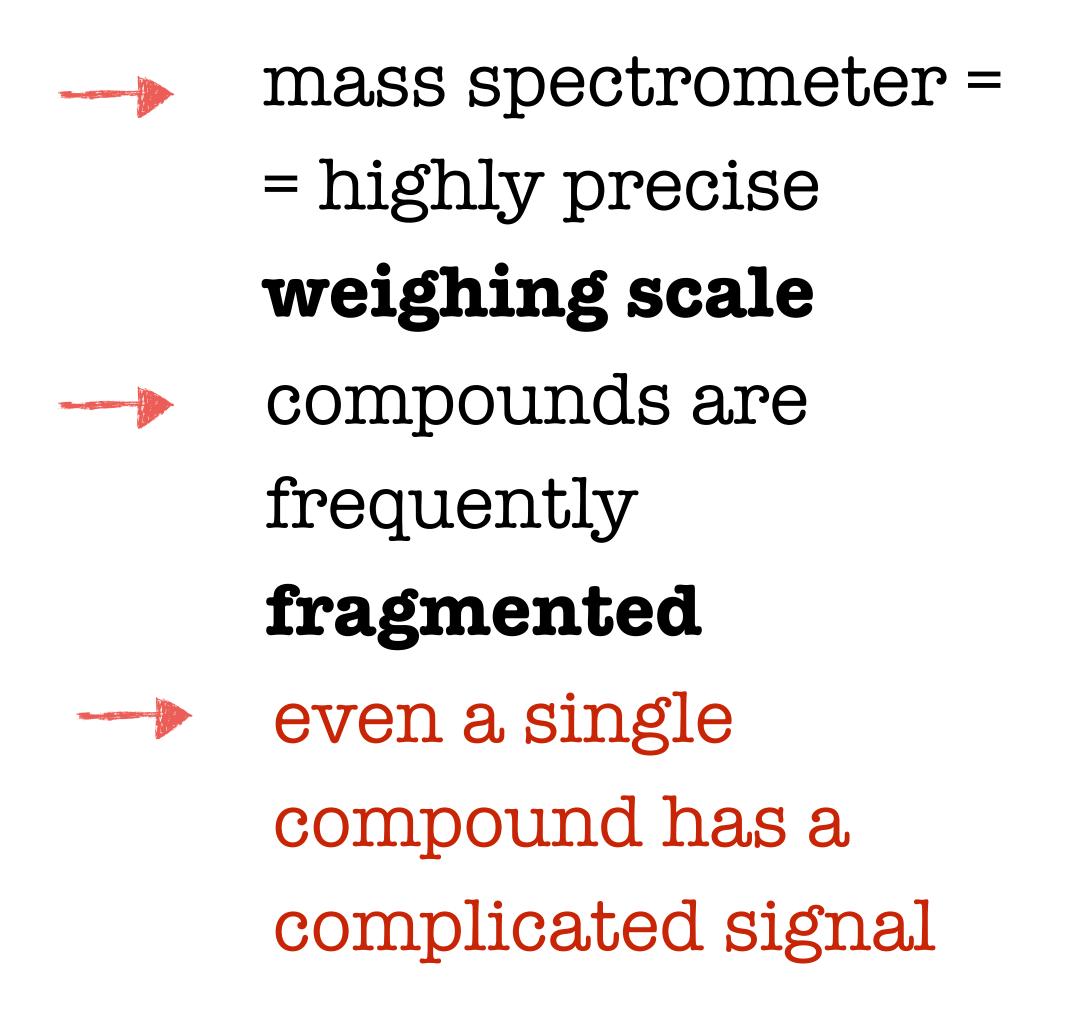
Algorithmic challenges in mass spectrometry

Anna Gambin

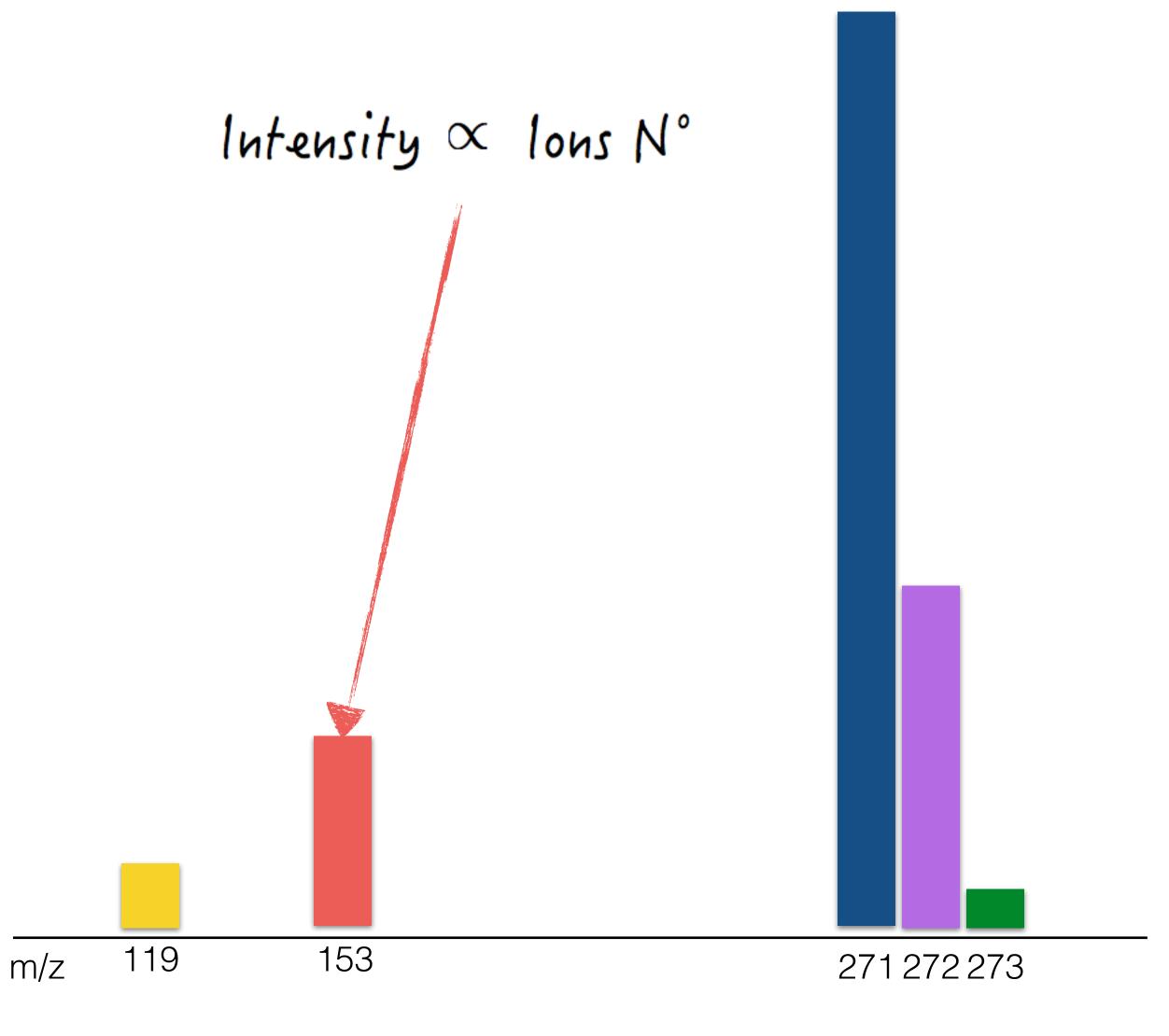
Institute of Informatics, **University of Warsaw**

outline I. modelling isotopic distribution aggregated structure: BRAIN algorithm fine structure: ISOSPEC algorithm

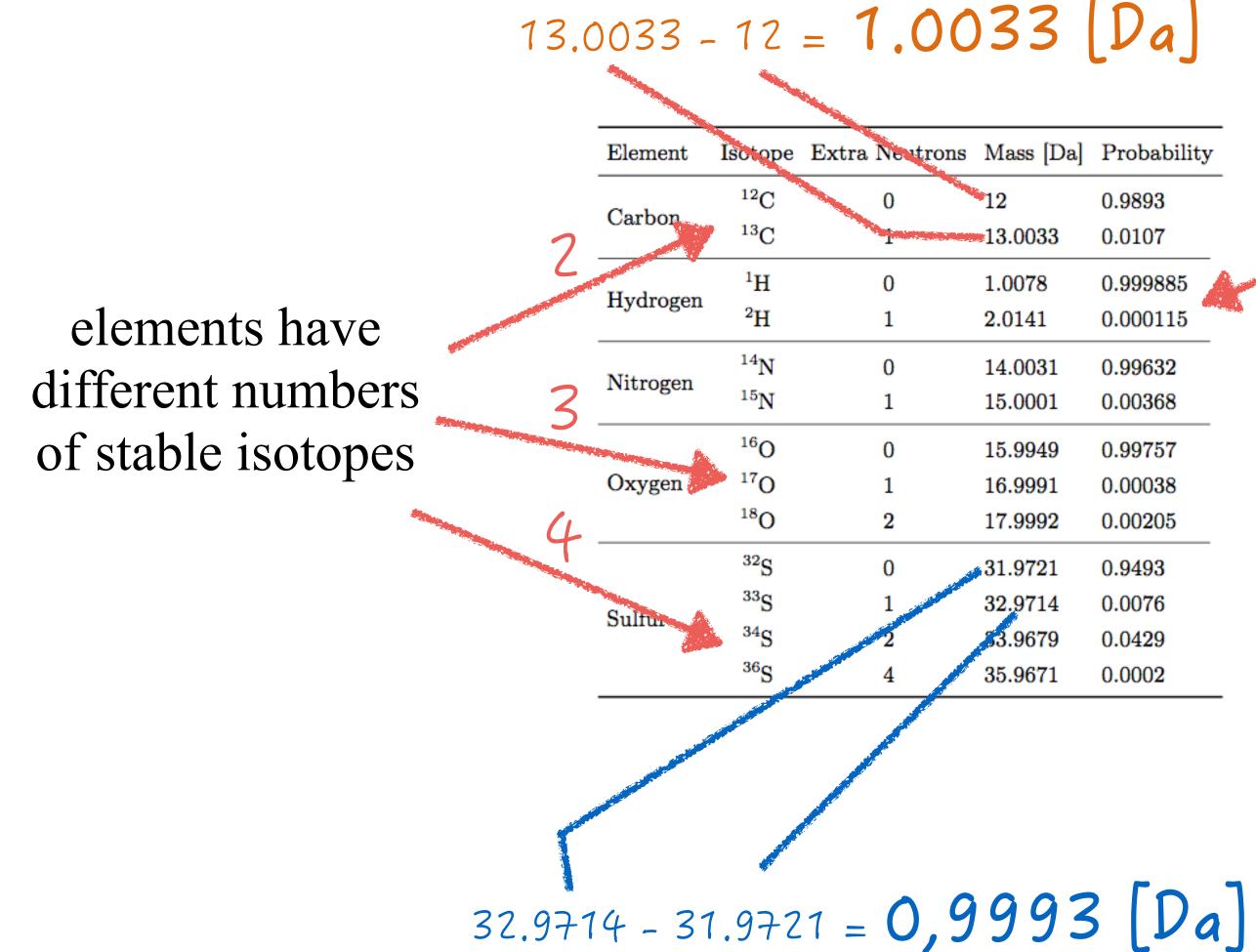
- **II. Markov processes:** modelling fragmentation
- **III.optimal transport in spectroscopy**



Mass/charge [Th]



Chemical compounds are made of different isotopes



13.0033 - 12 = 1.0033 [Da]

xtra Neutro	ons Mass [Da] Probability
0	12	0.9893
Terretories	13.0033	0.0107
0	1.0078	0.999885
1	2.0141	0.000115
0	14.0031	0.99632
1	15.0001	0.00368
0	15.9949	0.99757
1	16.9991	0.00038
2	17.9992	0.00205
0	31.9721	0.9493
1	32.9714	0.0076
2	53.9679	0.0429
4	35.9671	0.0002

differences in frequencies of observation

isotopes of different elements differ in mass differences

mathematical model of mass spectra product of multinomial distributions

2) elements vary in abundances of isotopes

Assume

 $P\left({}^{12}C_{c_0}{}^{13}C_{c_1}{}^{1}H_{h_0}{}^{2}H_{h_1}{}^{14}N_{n_0}{}^{15}N_{n_1}\right)$

$$\binom{c}{c_0, c_1} \mathcal{P}(^{12}C)^{c_0} \mathcal{P}(^{13}C)^{c_1} \binom{h}{h_0, h_1} \mathcal{P}(^{1}H)^{h_0} \mathcal{P}(^{2}H)^{h_1} \binom{n}{n_0, n_1} \mathcal{P}(^{14}N)^{n_0} \mathcal{P}(^{15}N)^{n_1} \times \binom{n_0}{n_0, n_1} \mathcal{P}(^{15}N)^{n_1} \mathcal{P}(^$$

 $\binom{n}{O_0, O_1, O_2} \mathcal{P}(^{16}\text{O})^{o_0} \mathcal{P}(^{17}\text{O})^{o_1} \mathcal{P}(^{18}\text{O})^{o_2} \binom{s}{S_0, S_1, S_2, S_4} \mathcal{P}(^{32}\text{S})^{s_0} \mathcal{P}(^{33}\text{S})^{s_1} \mathcal{P}(^{34}\text{S})^{s_2} \mathcal{P}(^{36}\text{S})^{s_4}$

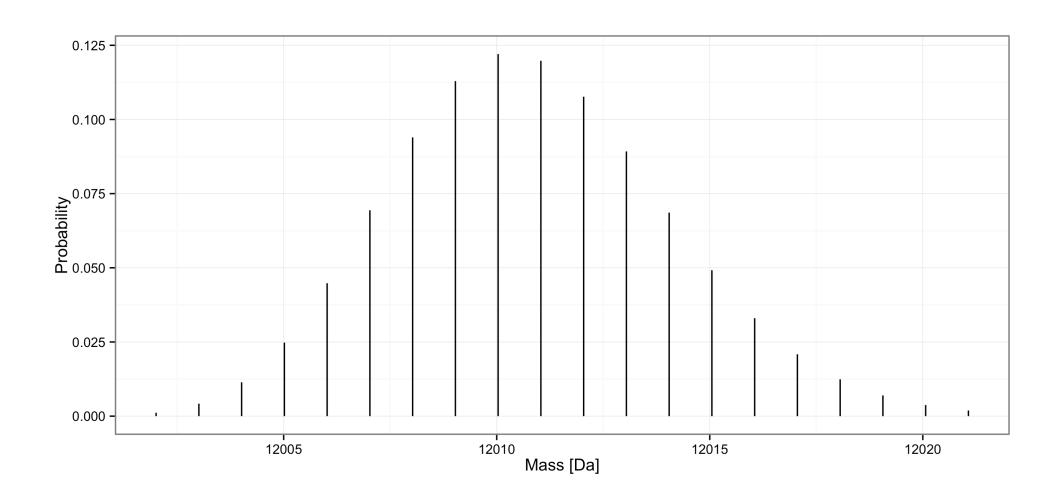
1) variants of isotopes of atoms are **independent**

$$_{1}^{16}O_{o_{0}}^{17}O_{o_{1}}^{18}O_{o_{2}}^{32}S_{s_{0}}^{33}S_{s_{1}}^{34}S_{s_{2}}^{36}S_{s_{4}}) =$$

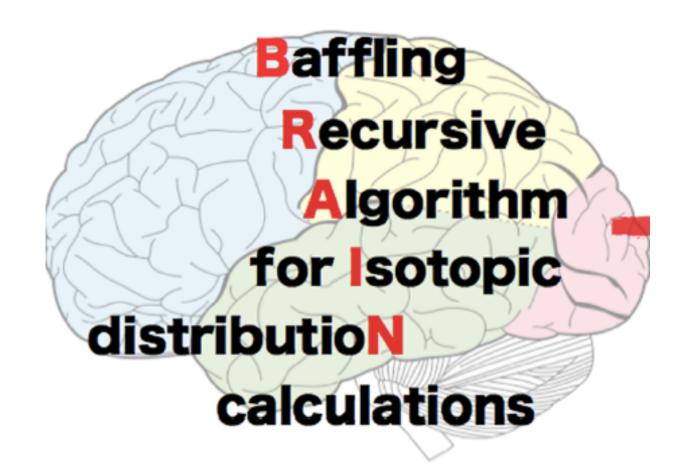
equencies isotopes

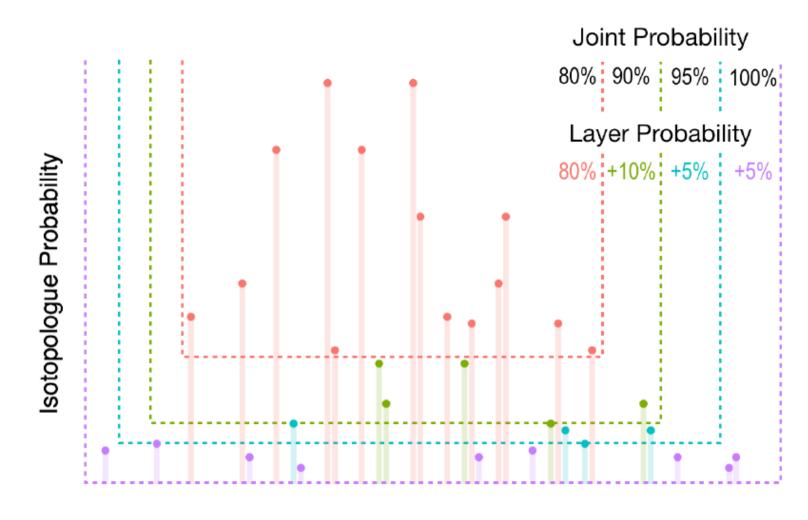
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

mathematical model of mass spectra



low resolution problem: aggregated isotopic structure





Mass [Da]

high resolution problem: fine isotopic structure

The Fine Isotopic Structure Calculator

aggregated isotopic distribution

we group together variants with the same number of additional neutrons for molecular formula $C_v H_w N_x O_y S_z$ consider polynomial:

 $Q(I; v, w, x, y, z) = (P_{C_{12}}I^0 + P_{C_{13}}I^1)^{\nu} \times (P_{H_1}I^0 + P_{H_2}I^1)^{\omega}$ $\times (P_{N_{14}}I^0 + P_{N_{15}}I^1)^{\nu} \times (P_{O_{16}}I^0 + P_{O_{17}}I^1 + P_{O_{17}}I^2)^{\nu}$ $\times (P_{S_{22}}I^0 + P_{S_{22}}I^1 + P_{S_{24}}I^2 + P_{S_{24}}I^4)^z$ n = v + w + x + 2y + 4z

frequencies

of isotopes, e.g.

 $P_{C_{12}} = 98.93\%$ and $P_{C_{13}} = 1.07\%$

$$Q(I;v,w,x,y,z)\equiv\sum_{j=0}^n q_j I^j$$

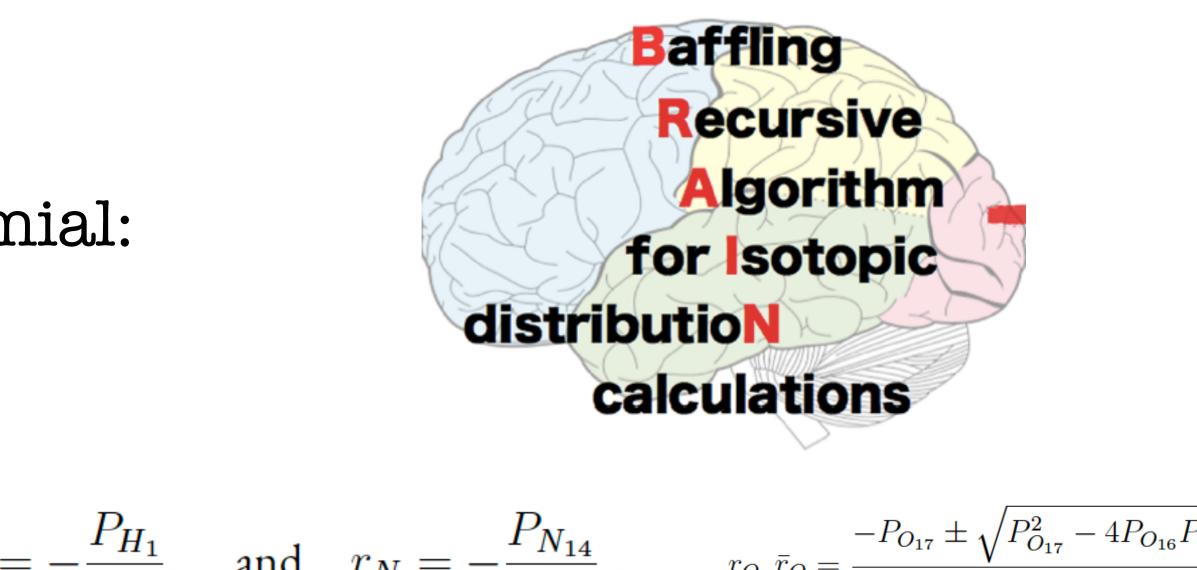
probability of peak
with j additional
neutrons

algorithm

to compute coefficients of polynomial: $Q(I; v, w, x, y, z) \equiv \sum q_j I^j$ j=0

determine its roots: $r_C = -\frac{P_{C_{12}}}{P_{C_{12}}}, \quad r_H = -\frac{P_{H_1}}{P_{H_2}}, \quad \text{and} \quad r_N = -\frac{P_{N_{14}}}{P_{N_{14}}}. \quad r_O, \bar{r}_O = \frac{-P_{O_{17}} \pm \sqrt{P_{O_{17}}^2 - 4P_{O_{16}}P_{O_{18}}}}{2P_{O_{18}}}$

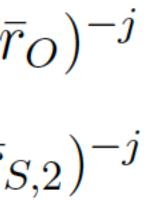
apply the recurrent formula (follows from Newton-Girard theorem and Viete's formulae)



vhere

$$= v(r_C)^{-l} + w(r_H)^{-l} + x(r_N)^{-l} + (r_O)^{-j} + (\bar{r}_S)^{-j} + (\bar{$$

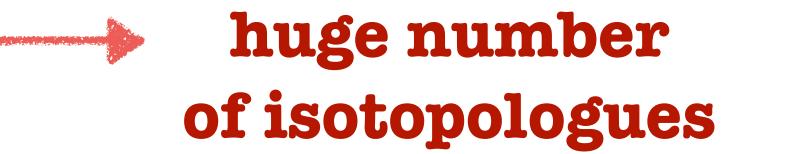
complexity: quadratic; exact values calculated

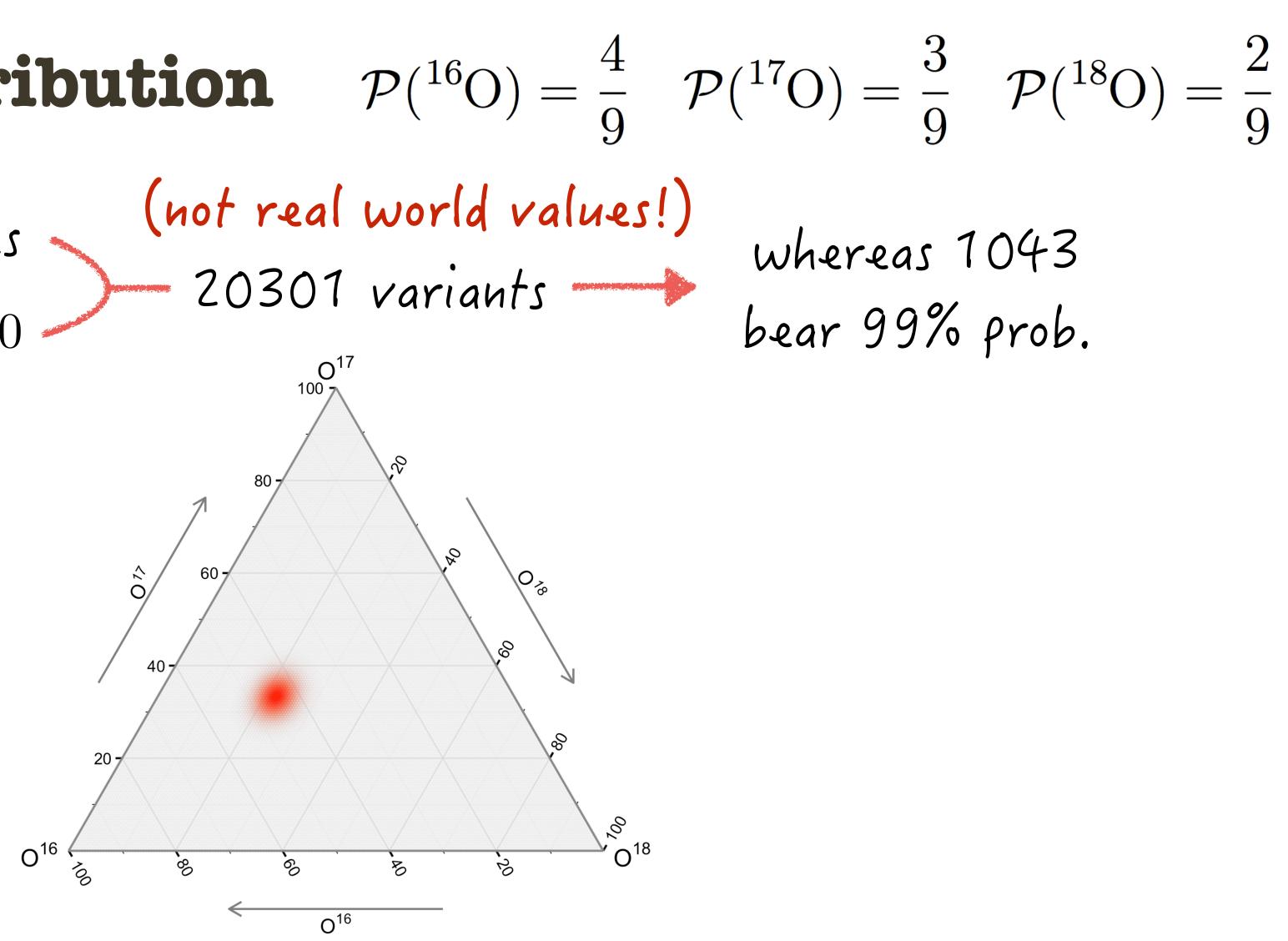


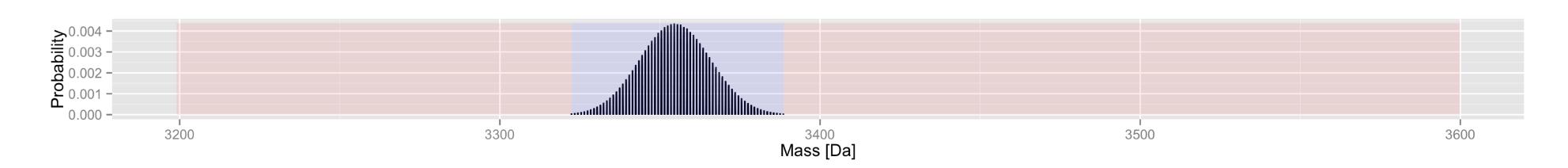
fine isotopic distribution

100 oxygen atoms .

 $o_0 + o_1 + o_2 = 200$



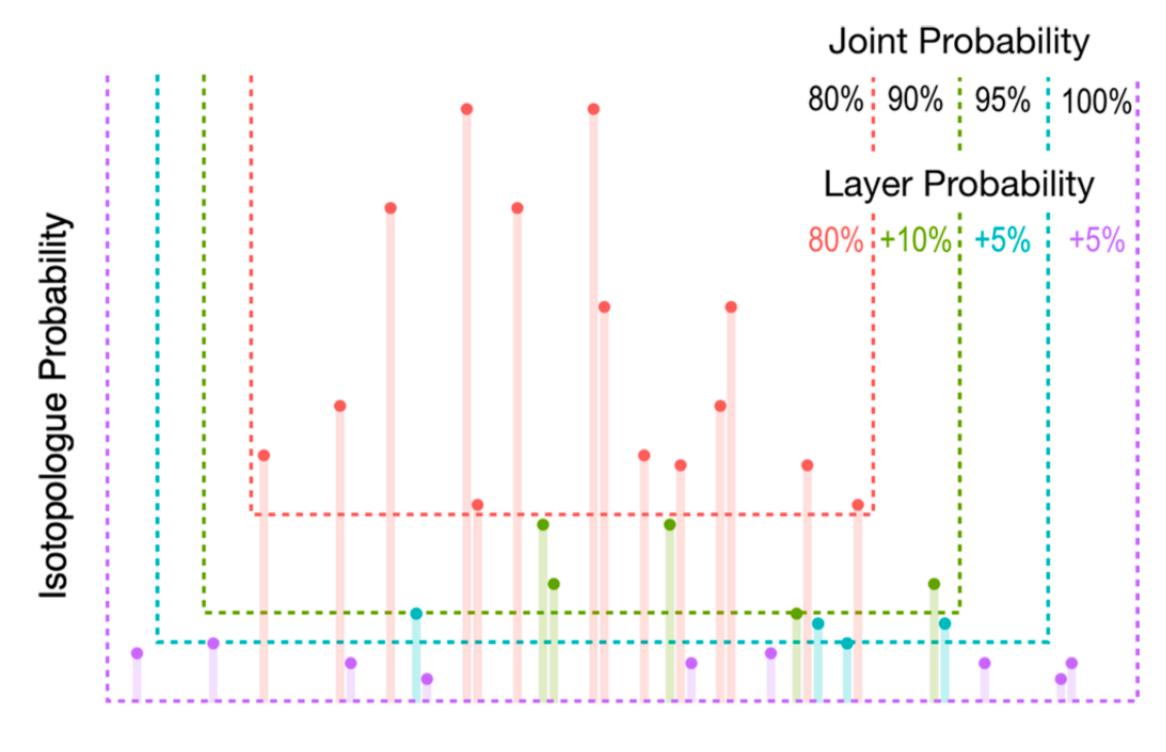




fine isotopic distribution

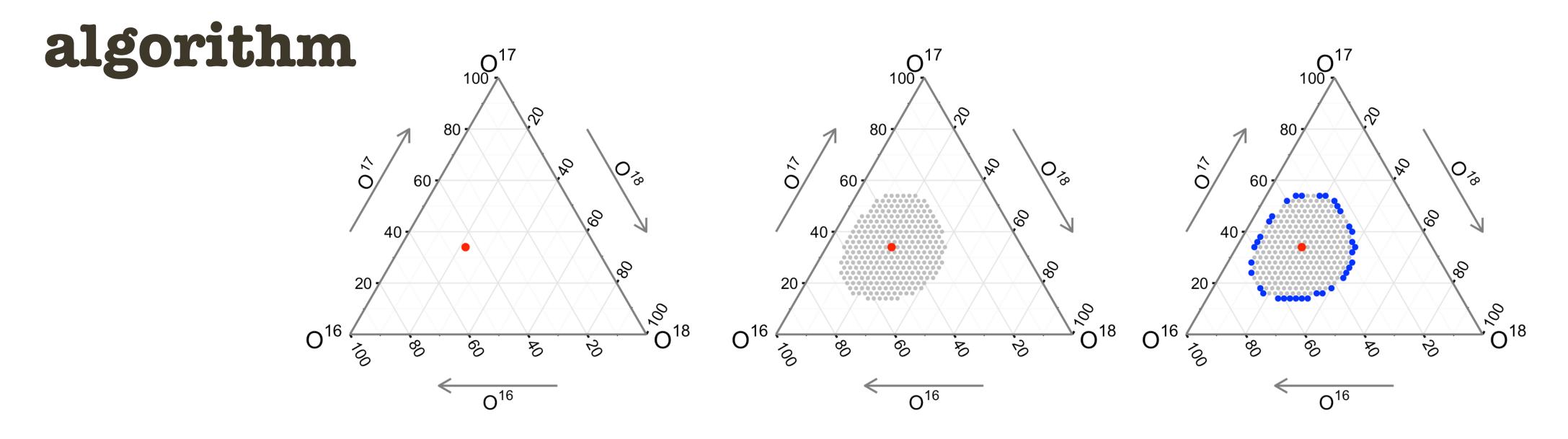
optimal p-set

smallest set of isotopologues that jointly surpass probability p



Mass [Da]

division of isotopic distribution into optimal p-sets: 80%, 90%, 95%, 100%



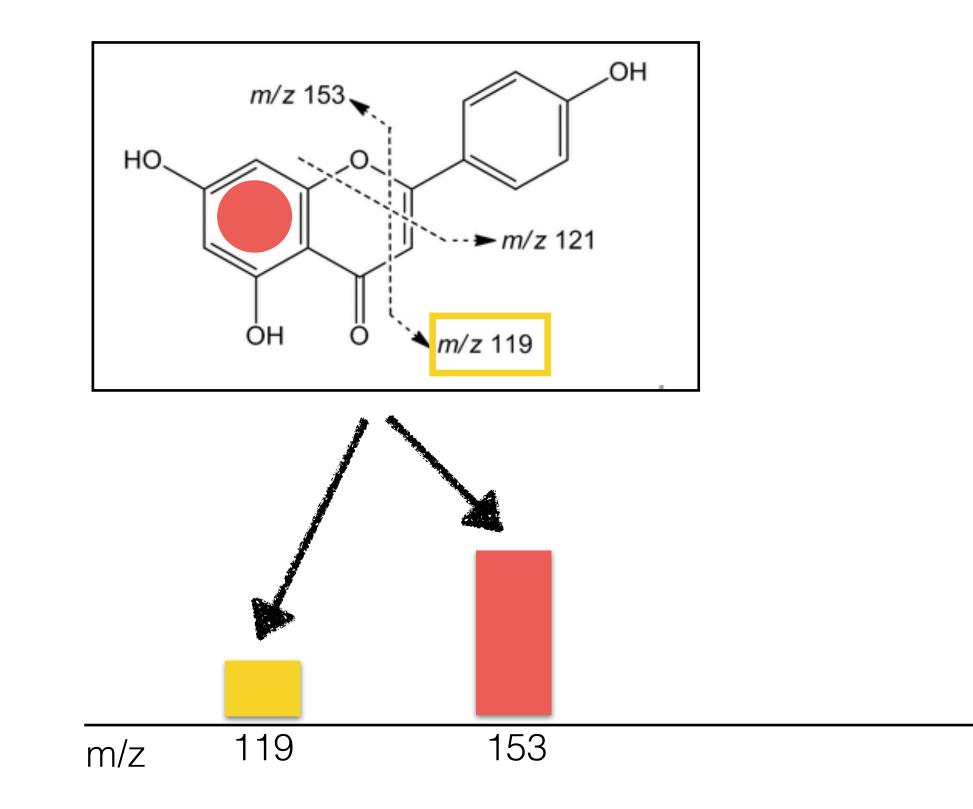
To get the **optimal P-set**: Find the most probable variant while **Total Probability** < **P**: Get layer of v so that p > P(v) > 0,5 p where $p = P(v_{min \ previous \ layer})$

Trim the least probable variants from the last layer so that **Total Probability = P**

complexity: O(n) in the total number of configurations

The Fine Isotopic Structure Calculator

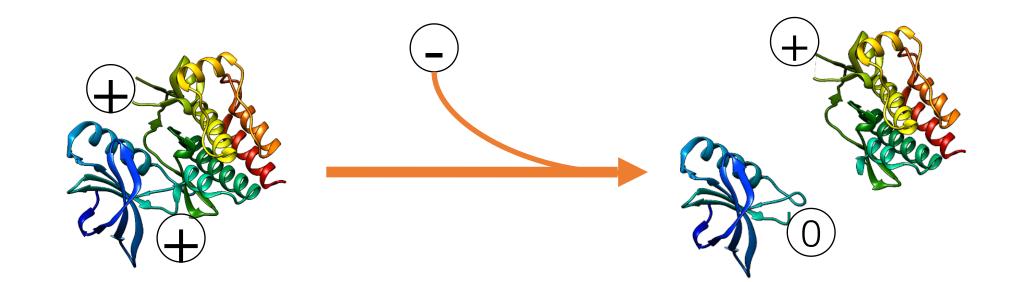
II. Markov processes: modelling fragmentation



electron is transferred to the positively-charged protein or peptide, causing fragmentation along the peptide backbone

some **bonds** get easily broken

modelling fragmentation: problem



Cleavage of protein backbone by a

ETD — main reaction, others = side reactions

- **PTR** $[M + nH]^{n+} + A^{\bullet^-}$
- **ETnoD** $[M + nH]^{n+} + A^{\bullet -}$
- **ETD** $[M + nH]^{n+} + A^{\bullet^-}$

problem: for the set of biochemical reactions determine their intensitie having observed the substrates

inside MassSpec

$$\rightarrow [M + (n-1)H]^{(n-1)+} + AH$$

$$\rightarrow [M + nH]^{(n-1)+\bullet} + A$$

$$\rightarrow \quad [c + xH]^{x+} + [z + (n - x)H]^{(n-x-1)+\bullet} + A$$

modelling fragmentation: solution

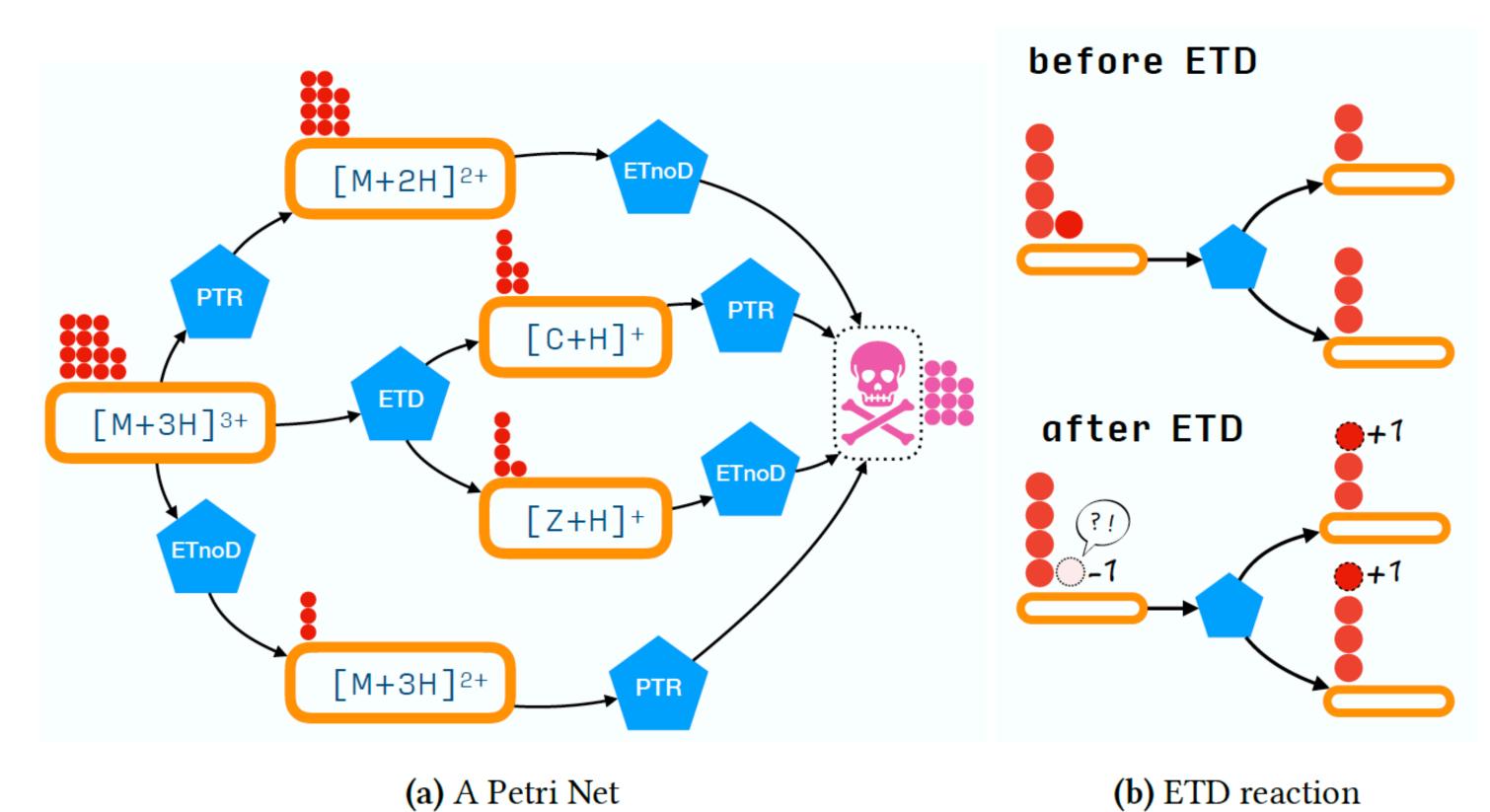
model the phenomena as

Markov process describing the flow of particles through the fragmentation graph

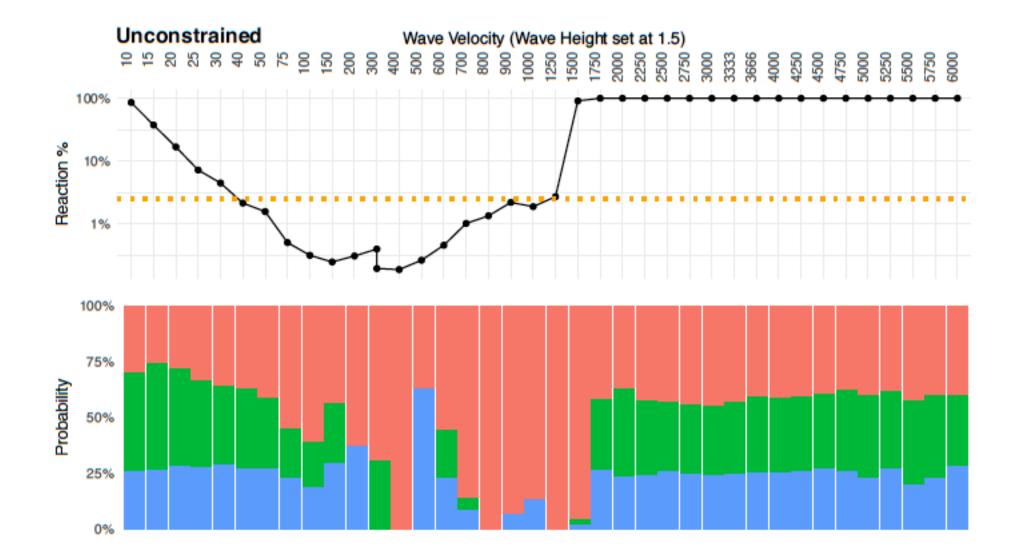
calculate expectance in the model: use ODE description for big population of particles

compare to observed data:

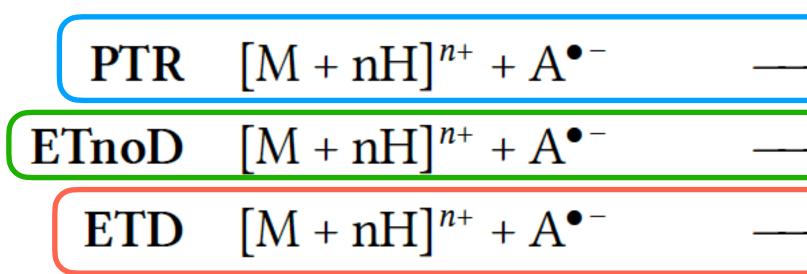
find intensities that best predict the observed data by minimising the discrepancy (nonlinear optimisation)

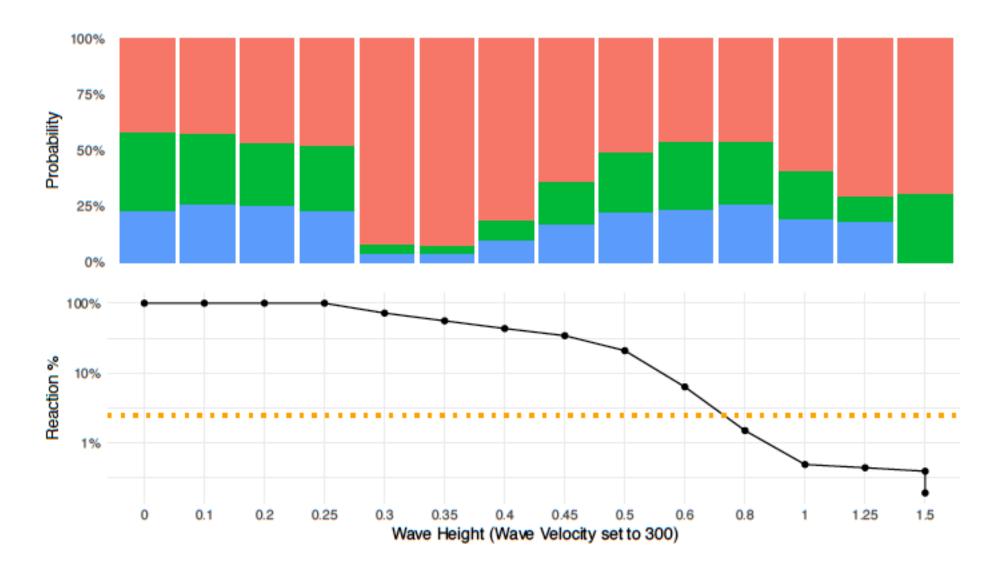


modelling fragmentation: results



proportions of PTR, ETD, ETnoD for different MS setup





$$\rightarrow [M + (n-1)H]^{(n-1)+} + AH$$

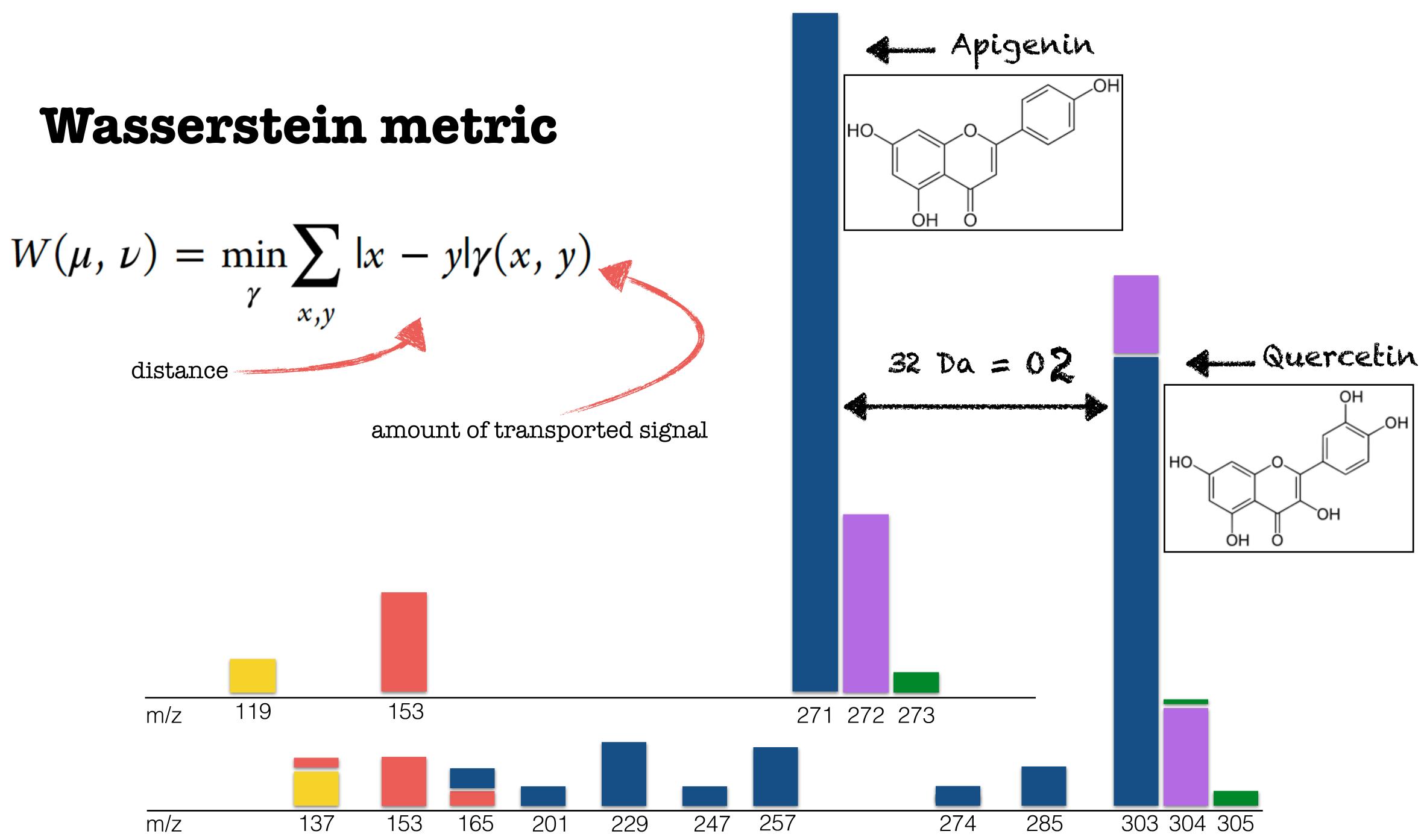
$$\rightarrow [M + nH]^{(n-1)+\bullet} + A$$

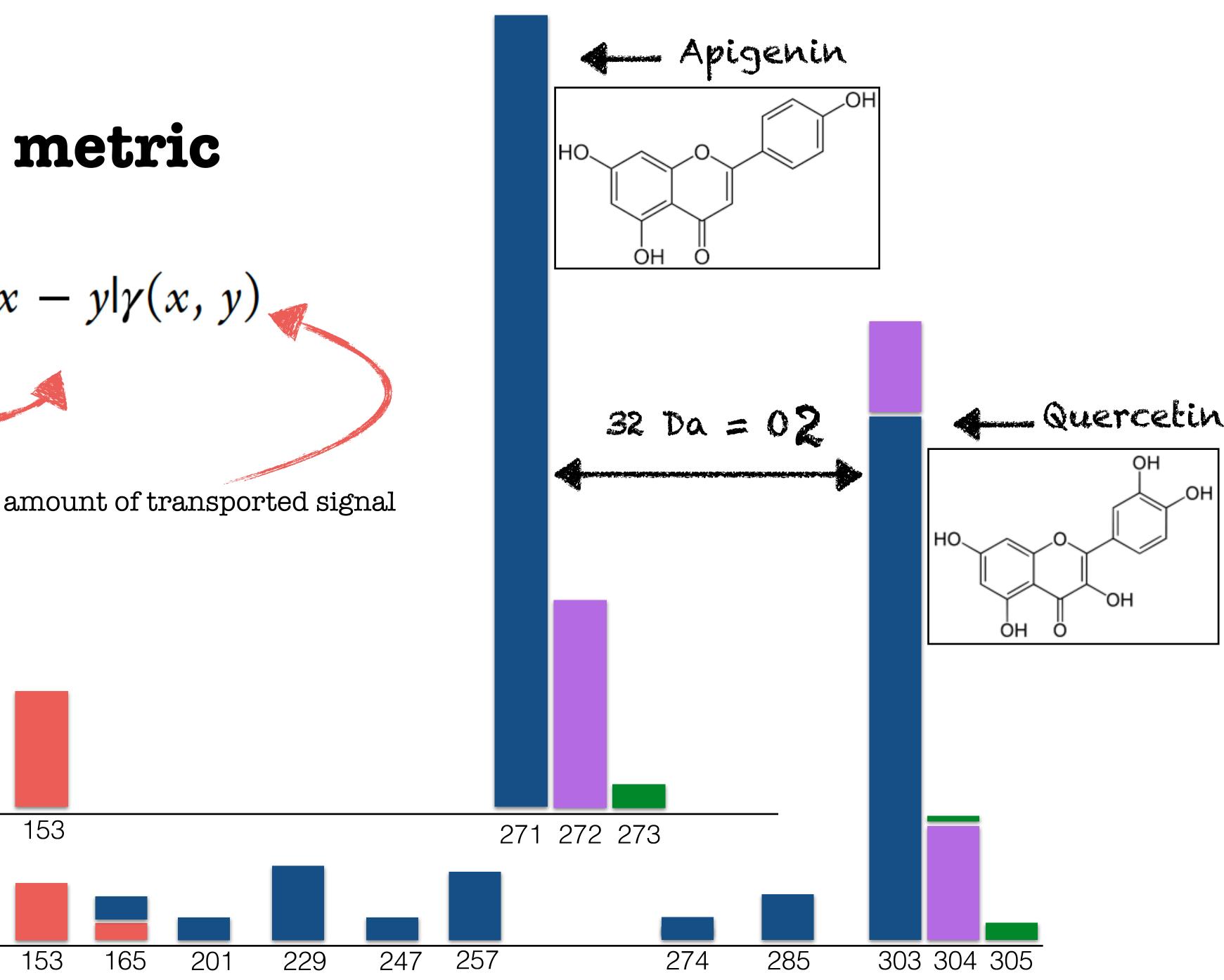
$$\rightarrow [c + xH]^{x+} + [z + (n - x)H]^{(n-x-1)+\bullet} + A$$

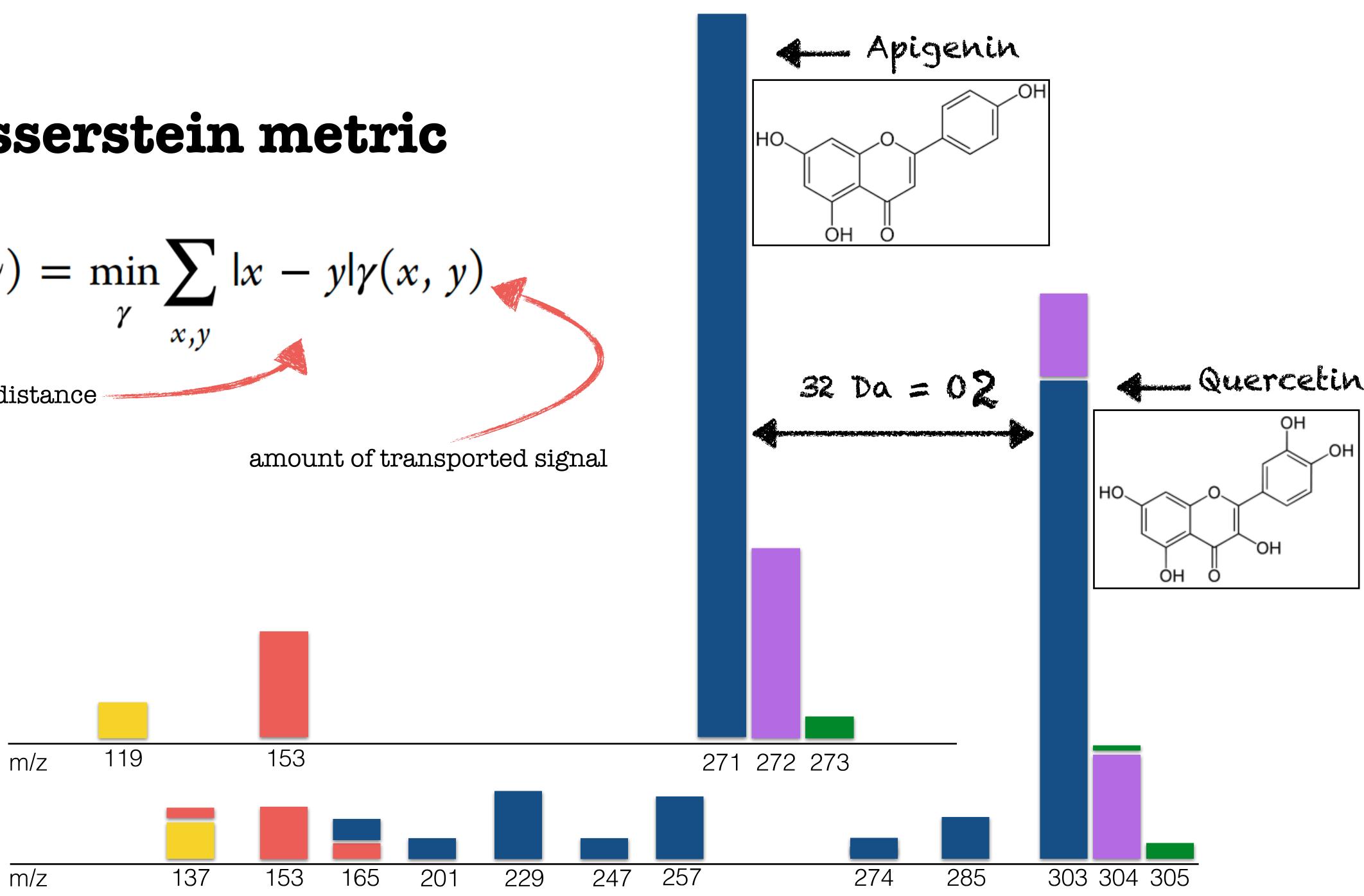
III. optimal transport in spectroscopy

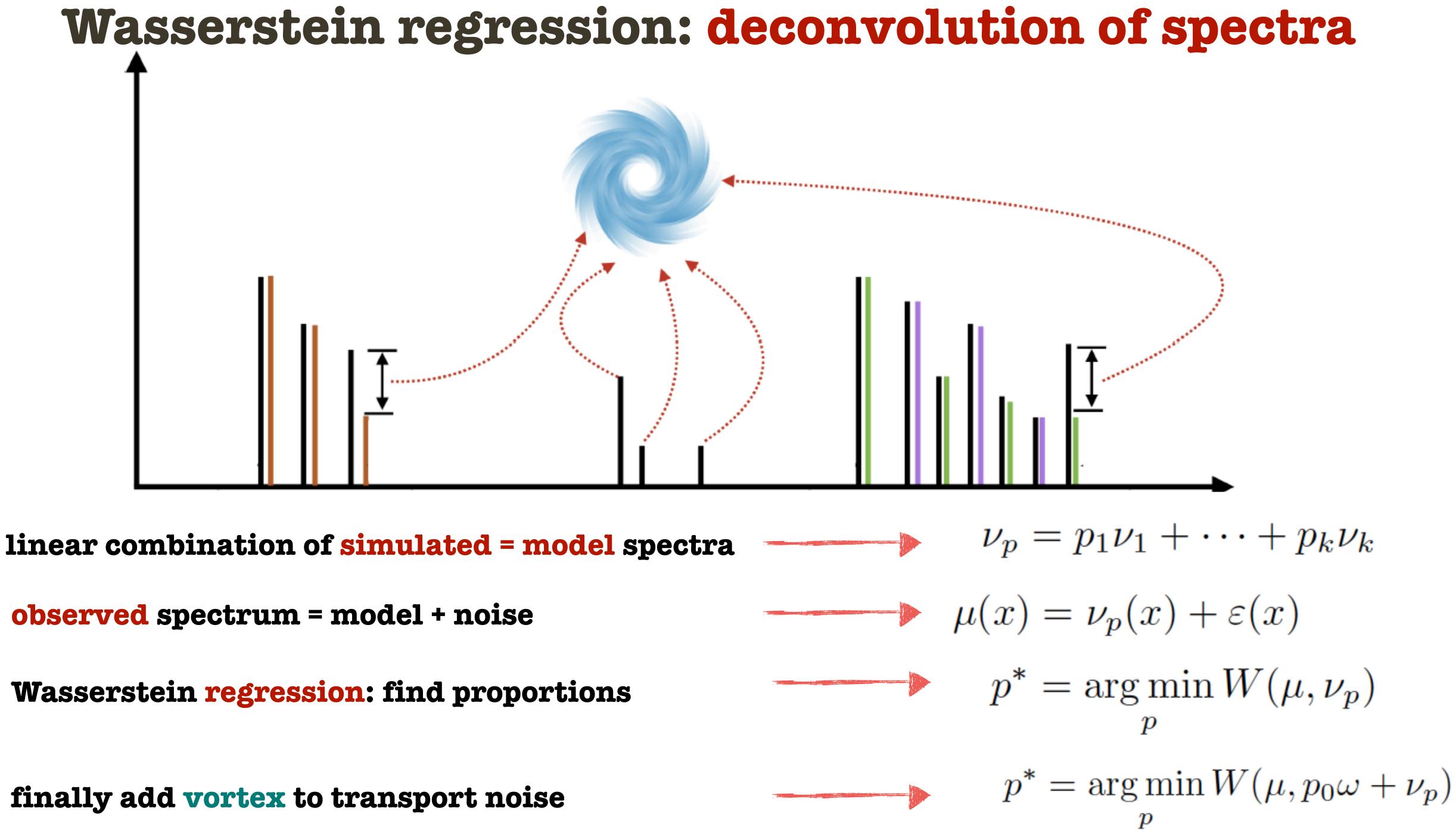
Eight tons of hope: world's strongest persistent magnet for NMR at ETH

08.06.2020 by Julia Ecker









observed spectrum = **model** + **noise**

Wasserstein regression: find proportions

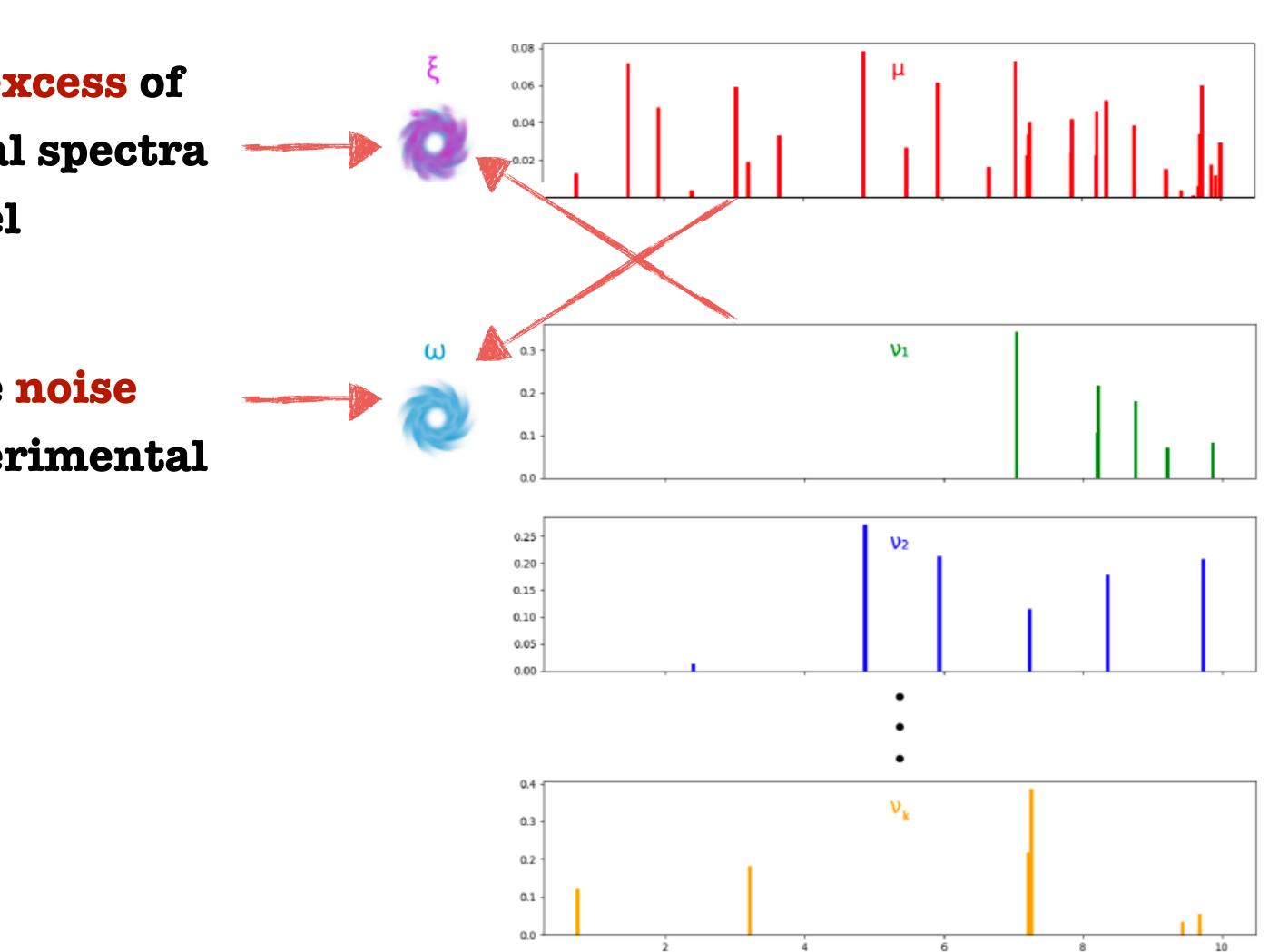
finally add vortex to transport noise

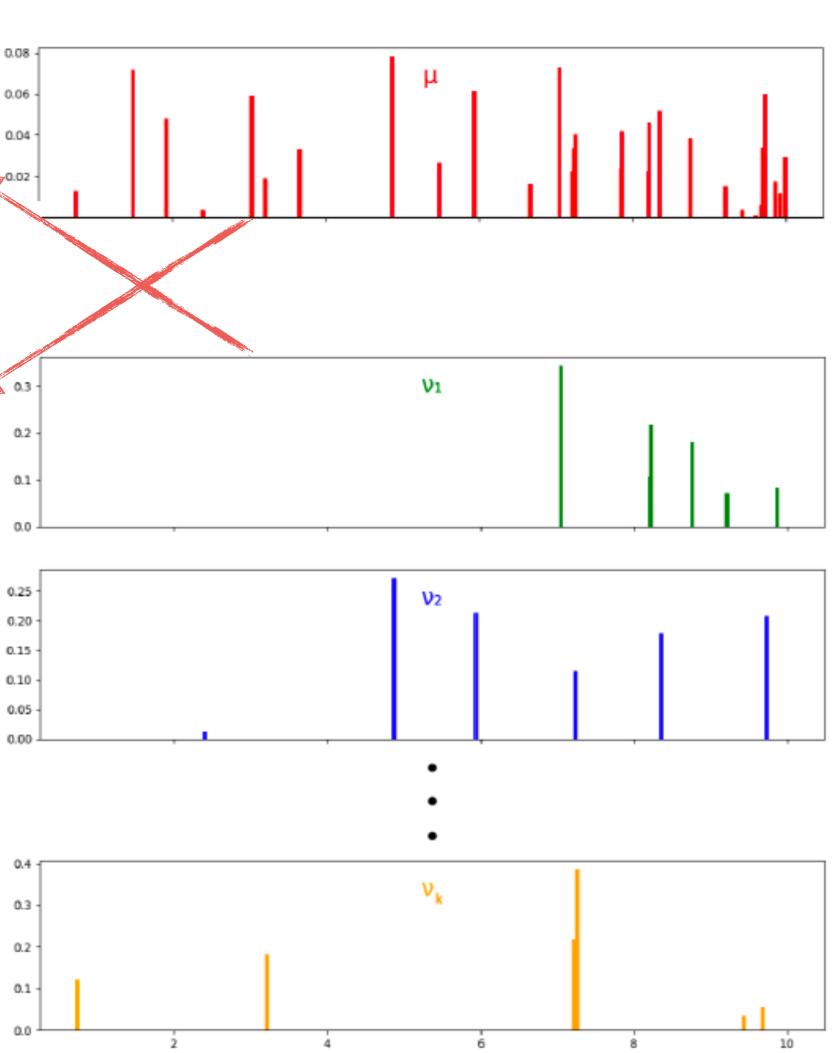
working with two vortexes

 $p^* = \min_{p=(p_1,p_2,...,p_k)} W(p_0 \omega + p_1 \nu_1 + p_2 \nu_2 + ... + p_k \nu_k, (1 - p'_0) \mu + p'_0 \xi),$

to remove excess of hypothetical spectra in the model

to remove noise from experimental data





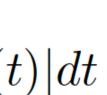
1 dimensional case is easy to calculate:

$$W(\mu,\nu) = \int_{\mathbb{R}} |M(t) - N(t)|^2 dt$$

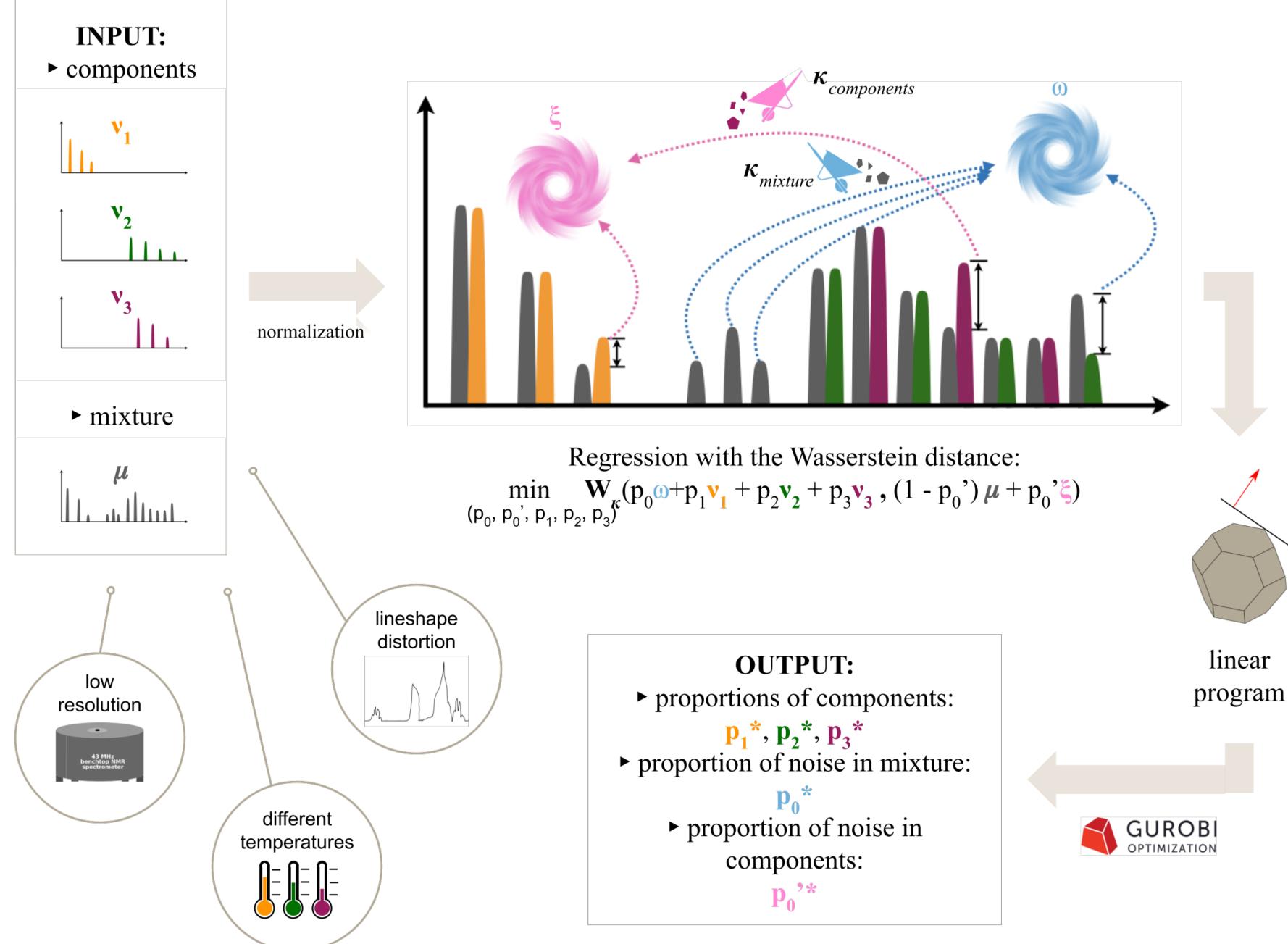
using

$$N(t) = \sum_{j=1}^{k} p_j N_j(t)$$
$$M(t)$$

cumulative distribution functions



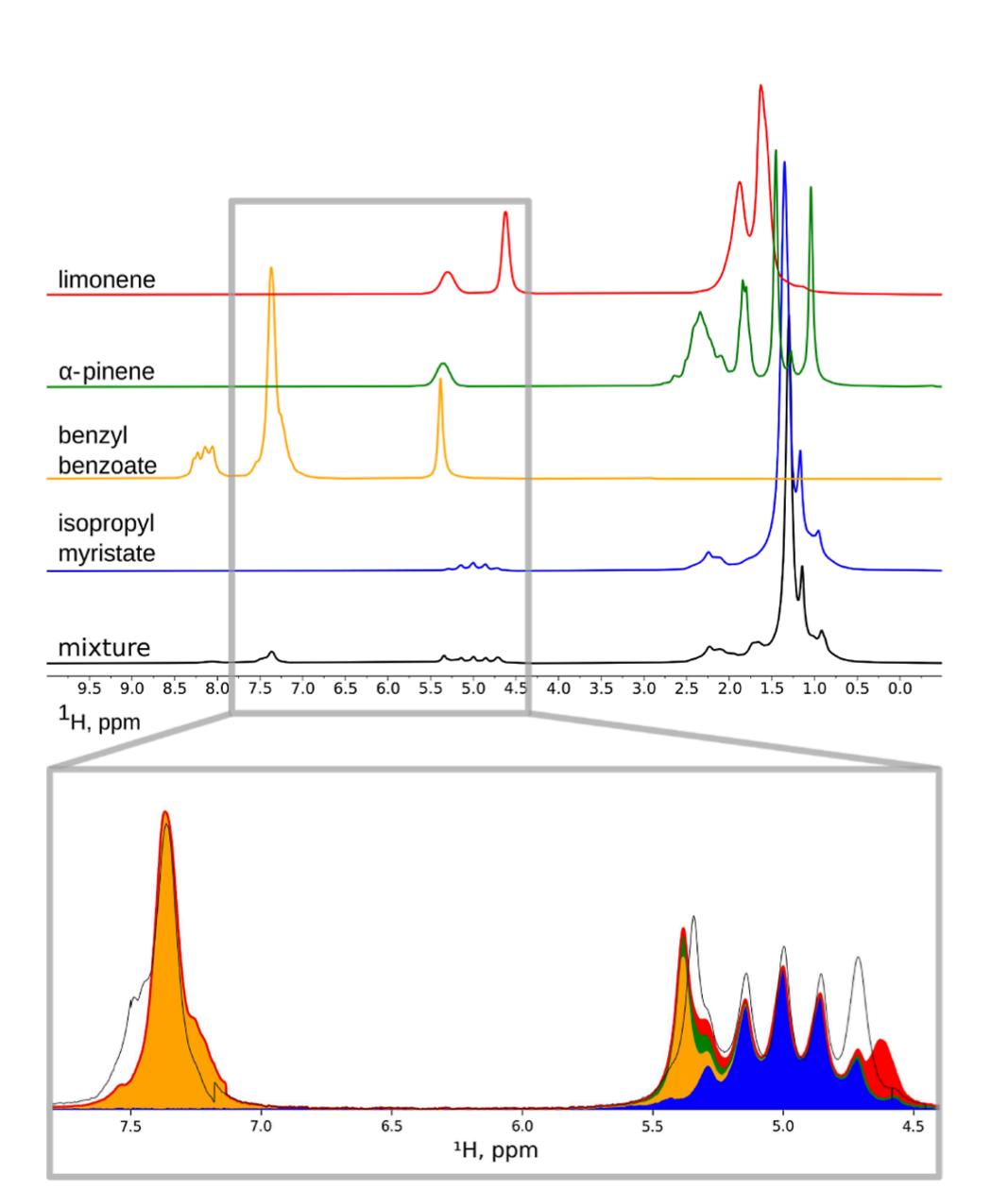
Magnetstein for NMR analysis



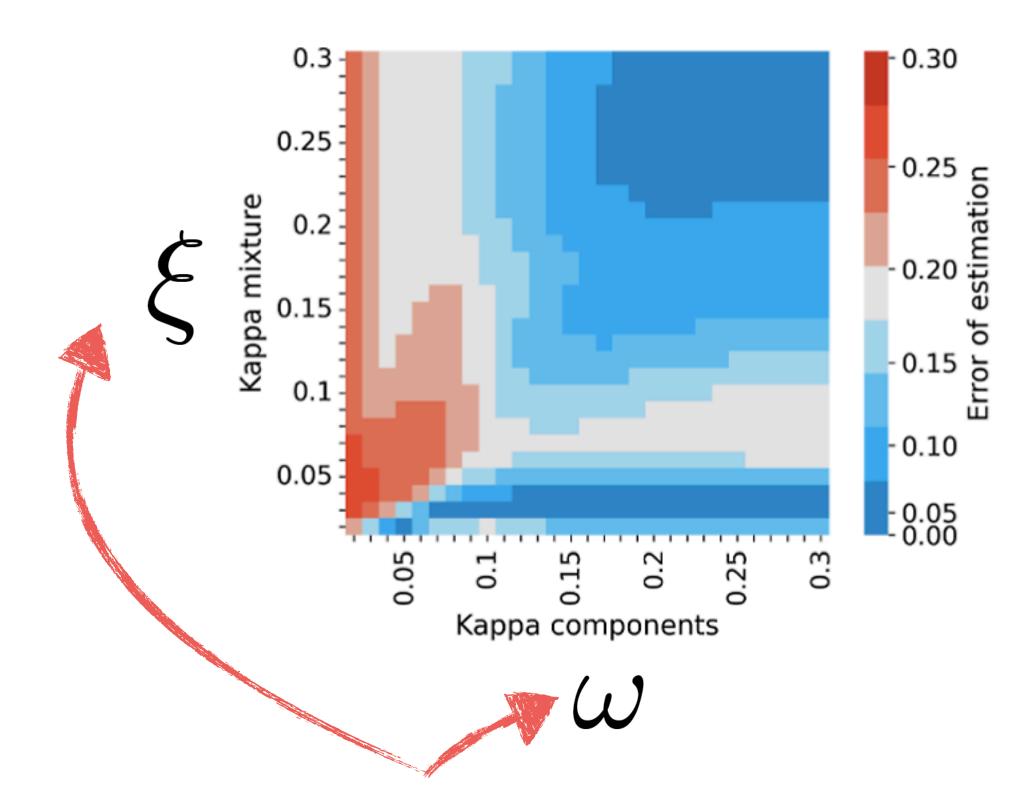
regression with Wasserstein distance can be formulated as linear program

and solved efficiently

Magnetstein in action

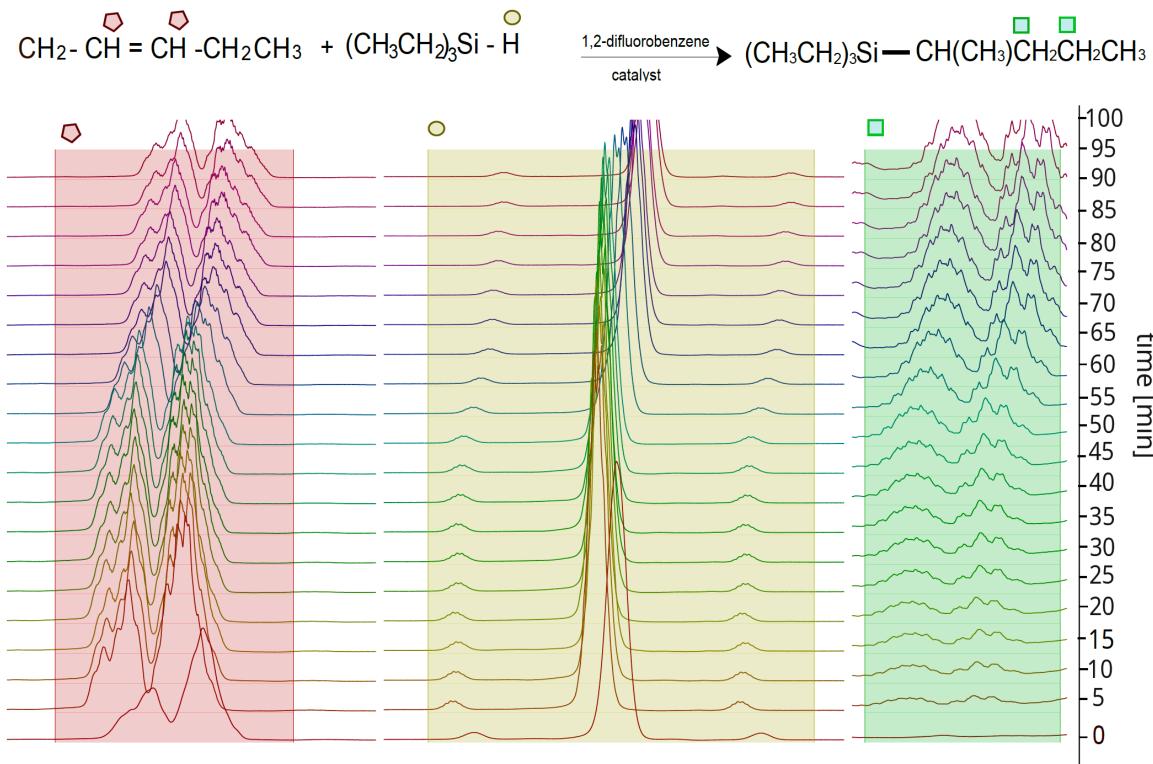


Magnetstein can quantitatively analyze difficult spectra with the estimation trueness an order of magnitude **higher** than that of commercial tools...



... having only two parameters with default values applicable to a broad range of experiments...

chemical reactions revisited



50 5.55 5.50 5.45 5.40 5.35 5.30 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 1.35 1.30 1.25 1.20 f1 (ppm)

we can effectively quantify the components of a reacting mixture without a need for peak-picking

·100

90

85

80

75

70

65

55

50

45

40

-35

-30

25

20

15

-10

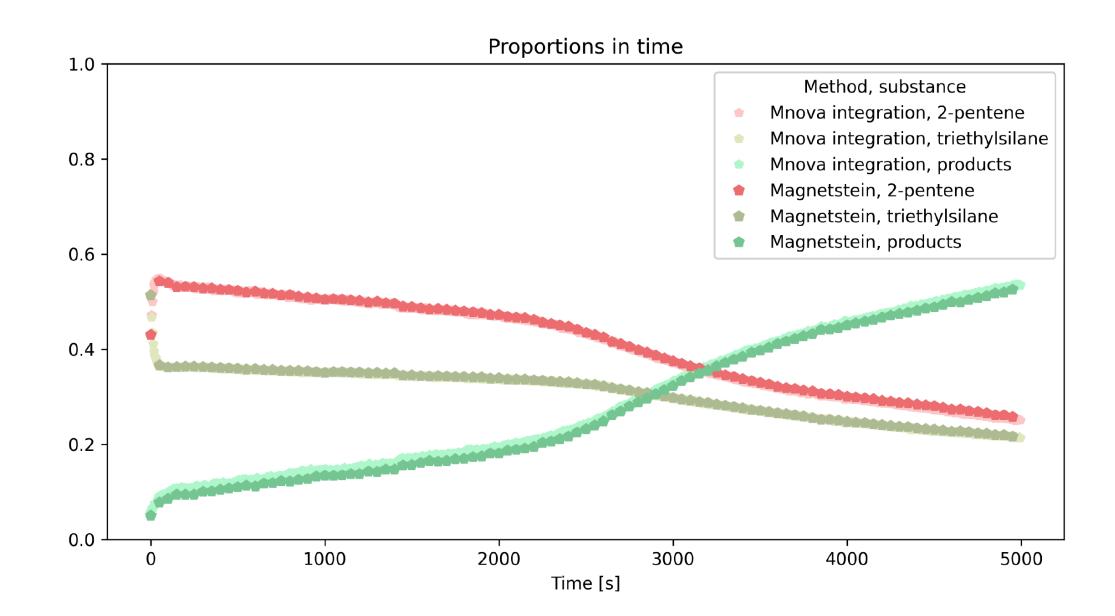
5

time [min]

1. solve Wasserstein regression

2. get a sequence of proportions in consecutive timepoints

3. infer about kinetics of the monitored reaction



Many thanks to collaborators

Michał Startek

Dirk Valkenborg

Frederik Lermyte

Mateusz Łącki

OIO

Michał Ciach

Grzegorz Skoraczyński

Krzysztof Kazimierczuk

Piotr Dittwald

Barbara Domżał

Alan Rockwood

