Algorithmic challenges in mass spectrometry

Anna Gambin

Institute of Informatics, University of Warsaw

outline I. modelling isotopic distribution aggregated structure: BRAIN algorithm **ne structure:** ISOSPEC algorithm

-
- **II. Markov processes:** modelling **fragmentation**
- **III.optimal transport in spectroscopy**

Mass/charge [Th]

Chemical compounds are made of different isotopes

differences in frequencies of observation

different elements differ in mass differences

13.0033 - 12 ⁼ 1.0033 [Da]

Assume 1) variants of isotopes of atoms are **independent**

$$
\left. {}^{16}\mathrm{O}_{\mathrm{o}_0}~^{17}\mathrm{O}_{\mathrm{o}_1}~^{18}\mathrm{O}_{\mathrm{o}_2}~^{32}\mathrm{S}_{\mathrm{s}_0}~^{33}\mathrm{S}_{\mathrm{s}_1}~^{34}\mathrm{S}_{\mathrm{s}_2}~^{36}\mathrm{S}_{\mathrm{s}_4}\right)\,=\,
$$

2) elements **vary in abundances** of isotopes

 $P({}^{12}C_{c_0} {}^{13}C_{c_1} {}^{1}H_{h_0} {}^{2}H_{h_1} {}^{14}N_{n_0} {}^{15}N_{n_1}$

$$
{c \choose c_0,c_1} \mathcal{P}({}^{12}C)^{c_0}\mathcal{P}({}^{13}C)^{c_1} {h \choose h_0,h_1} \mathcal{P}({}^{1}H)^{h_0}\mathcal{P}({}^{2}H)^{h_1} {n \choose n_0,n_1} \mathcal{P}({}^{14}N)^{n_0}\mathcal{P}({}^{15}N)^{n_1} \times
$$

 $\binom{n}{000000} \mathcal{P}^{(16)}$ (160)⁰0 $\mathcal{P}^{(17)}$ (170)⁰1 $\mathcal{P}^{(18)}$ (160)⁰² $\binom{s}{000000000} \mathcal{P}^{(32)}$ (369)⁸⁰ $\mathcal{P}^{(33)}$ (369)⁸¹ $\mathcal{P}^{(34)}$ (369)⁸⁴

$$
-frac{freq}{of i}
$$

frequencies of isotopes

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

mathematical model of mass spectra product of multinomial distributions

mathematical model of mass spectra

low resolution problem: **aggregated** isotopic structure
aggregated isotopic structure

Mass [Da]

fine isotopic structure

The Fine Isotopic Structure Calculator

frequencies

of isotopes, e.g.

 $P_{C_{12}}$ = 98.93% and $P_{C_{13}}$ = 1.07%

$$
(P_{C_{12}}I^0 + P_{C_{13}}I^1)^{\nu} \times (P_{H_1}I^0 + P_{H_2}I^1)^{\nu}
$$

\n
$$
\times (P_{O_{16}}I^0 + P_{O_{17}}I^1 + P_{O_{18}}I^2)^{\nu}
$$

\n
$$
- P_{S_{34}}I^2 + P_{S_{36}}I^4)^{z}
$$

\n
$$
n = \nu + \nu + x + 2y + \nu
$$

we **group** together variants with **the same number of additional neutrons** for molecular formula $C_vH_wN_xO_uS_z$ consider polynomial:

 $Q(I; v, w, x, y, z) =$

 $\times (P_{N_{14}}I^0 + P_{N_{15}}I^1)^{\nu}$ $\times (P_{S_{32}}I^0 + P_{S_{33}}I^1 +$

aggregated isotopic distribution

$$
Q(I; v, w, x, y, z) \equiv \sum_{j=0}^{n} q_j I^j
$$
\n
\nprobability of peak
\nwith j additional
\nneutrons

algorithm

to compute coefficients of polynomial: $Q(I; v, w, x, y, z) \equiv \sum q_j I^j$

determine its roots: $r_C = -\frac{P_{C_{12}}}{P_{C_{12}}}, r_H = -\frac{P_{H_1}}{P_{H_2}},$ and $r_N = -\frac{P_{N_{14}}}{P_{N}}$. $r_O, \bar{r}_O = \frac{-P_{O_{17}} \pm \sqrt{P_{O_{17}}^2 - 4P_{O_{16}}P_{O_{18}}}}{2P_{O_{18}}}$

apply the recurrent formula (follows from Newton-Girard theorem and Viete's formulae)

$$
q_j = -\frac{1}{j} \sum_{l=1}^j q_{j-l} \psi_l \longrightarrow \psi_l
$$

where

$$
= v(r_C)^{-l} + w(r_H)^{-l} + x(r_N)^{-l} + (r_O)^{-j} + (\bar{r}_O)^{-l}
$$

$$
(r_{S,1})^{-j} + (\bar{r}_{S,1})^{-j} + (r_{S,2})^{-j} + (\bar{r}_S)^{-j}
$$

complexity: quadratic; **exact** values calculated

fine isotopic distribution

 $o_0 + o_1 + o_2 = 200$

fine isotopic distribution

division of isotopic distribution into optimal *p*-sets: 80%, 90%, 95%, 100%

optimal *p***-set**

smallest set of isotopologues that jointly surpass probability *p*

Mass [Da]

Trim the **least probable variants** from the last layer so that **Total Probability** = **P**

complexity: O(n) in the total number of configurations

The Fine Isotopic Structure Calculator

To get the **optimal P-set:** Find the **most probable variant** while **Total Probability** < **P** : Get layer of *v* so that $p > P(v) > 0.5 p$ where $p = P(\nu_{min \, previous \, layer})$

II. **Markov processes:** modelling **fragmentation**

some **bonds** get easily broken

electron is transferred to the positively-charged protein or peptide, causing fragmentation along the peptide backbone

modelling fragmentation: problem

Cleavage of protein backbone by a

inside MassSpec

$$
\rightarrow \quad [M + (n-1)H]^{(n-1)+} + AH
$$

$$
\rightarrow \quad [M + nH]^{(n-1)+\bullet} + A
$$

$$
\rightarrow \quad [c + xH]^{x+} + [z + (n - x)H]^{(n-x-1)+\bullet} + A
$$

problem: for the set of biochemical reactions determine their intensitie having observed the substrates

ETD — main reaction, others = side reactions

- PTR $[M + nH]^{n+} + A^{\bullet -}$
- ETnoD $[M + nH]^{n+} + A^{\bullet -}$
- ETD $[M + nH]^{n+} + A^{\bullet -}$

modelling fragmentation: solution

model the phenomena as Markov process describing the flow of particles through the

fragmentation graph

calculate expectance in the model: use ODE description for big population of particles

compare to observed data:

find intensities that best predict the observed data by minimising the discrepancy (nonlinear optimisation)

modelling fragmentation: results

proportions of PTR, ETD, ETnoD for different MS setup

$$
\rightarrow [M + (n-1)H]^{(n-1)+} + AH
$$
\n
$$
\rightarrow [M + nH]^{(n-1)+} + A
$$
\n
$$
\rightarrow [c + xH]^{x+} + [z + (n - x)H]^{(n-x-1)+} + A
$$

III. optimal transport in spectroscopy

Eight tons of hope: world's strongest persistent magnet for NMR at ETH

08.06.2020 by Julia Ecker

observed spectrum = model + noise

Wasserstein regression: find proportions

finally add vortex to transport noise

working with two vortexes

 $p^* = \min_{p=(p_1,p_2,...,p_k)} \mathbf{W}(p_0 \omega + p_1 \nu_1 + p_2 \nu_2 + ... + p_k \nu_k, (1-p'_0)\mu + p'_0 \xi),$

to remove noise from experimental data

to remove excess of hypothetical spectra in the model

1 dimensional case is easy to calculate:

$$
W(\mu,\nu)=\int_{\mathbb{R}}|M(t)-N(t)|
$$

using

$$
N(t) = \sum_{j=1}^{k} p_j N_j(t)
$$

$$
M(t)
$$

cumulative distribution functions

Magnetstein for NMR analysis

regression with Wasserstein distance can be formulated as linear program

and solved efficiently

Magnetstein in action

Magnetstein can quantitatively analyze difficult spectra with the estimation trueness an order of magnitude higher than that of commercial tools…

… having only two parameters with default values applicable to a broad range of experiments…

chemical reactions revisited

3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 1.35 1.30 1.25 1.20 50 5.55 5.50 5.45 5.40 5.35 5.30 $f1$ (ppm)

we can effectively quantify the components of a reacting mixture without a need for peak-picking

100

90

85

 -80

75

70

65

 -55

50 45

40

 -35

 -30

25

 -20

15

 -10

 $\sqrt{2}$

ſ

time [min]

2. get a sequence of proportions in consecutive timepoints

1. solve Wasserstein regression

3. infer about kinetics of the monitored reaction

Piotr Dittwald

Frederik Lermyte

 \mathbf{U}_ℓ

Dirk Valkenborg

Frank Sobott

OIO

Michał Startek

Many thanks to collaborators

Mateusz Łącki

Michał Ciach

Grzegorz Skoraczyński

Barbara Domżał Alan Rockwood

Krzysztof Kazimierczuk

