Algebra and Geometry in Liners

Taras Banakh

Lviv-Warsaw 30 October 2024

Taras Banakh [Algebra and Geometry in Liners](#page-106-0)

 200

- Liners
- ² Desarguesian liners
- Vectors and Scalars
- non-Desarguesian planes
- Selected Open Problems

Part I: Liners

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

すロト (御) すきト (重)

 299

重

Basic geometric structure: liner

A liner is a mathematical structure (X, \mathcal{L}) that consists of a set X whose elements are called points and a family $\mathcal L$ of subsets of X whose elements are called lines, such that the following axioms are satisfied:

- any two distinct points belongs to a unique line;
- **e** every line contains at least two points.

For two distinct points x, y of a liner (X, \mathcal{L}) let \overline{xy} denote the unique line $L \in \mathcal{L}$ containing these two points. If $x = v$, then put $\overline{xy} := \{x\} = \{v\}$. For subsets $A, B \subseteq X$ let

$$
\overline{AB} := \bigcup_{a \in A} \bigcup_{b \in B} \overline{ab}
$$

be the union of all lines connecting the points of the sets A, B.

A liner is a mathematical structure (X, \mathcal{L}) that consists of a set X whose elements are called points and a family $\mathcal L$ of subsets of X whose elements are called lines, such that the following axioms are satisfied:

- any two distinct points belongs to a unique line;
- **e** every line contains at least two points.

For two distinct points x, y of a liner (X, \mathcal{L}) let \overline{xy} denote the unique line $L \in \mathcal{L}$ containing these two points. If $x = y$, then put $\overline{xy} := \{x\} = \{y\}.$ For subsets $A, B \subset X$ let

$$
\overline{AB} := \bigcup_{a \in A} \bigcup_{b \in B} \overline{ab}
$$

be the union of all lines connecting the points of the sets A, B .

A subset A of a liner X is called a flat if $\forall x, y \in A$ $(\overline{xy} \subseteq A)$.

The flat hull \overline{A} of a subset $A \subseteq X$ of a liner (X, \mathcal{L}) is the smallest flat that contains the set A .

This flat is equal to the intersection of all flats that contain the set A.

It is also equal to the union of the increasing sequence of sets $(A_n)_{n\in\omega}$, defined by the recursive formula:

$$
A_0 = A \text{ and } A_{n+1} = \overline{A_n A_n} \text{ for } n \ge 0.
$$

A subset A of a liner X is called a flat if $\forall x, y \in A$ $(\overline{xy} \subseteq A)$.

Definition

The flat hull \overline{A} of a subset $A \subseteq X$ of a liner (X, \mathcal{L}) is the smallest flat that contains the set A . This flat is equal to the intersection of all flats that contain

the set A.

It is also equal to the union of the increasing sequence of sets $(A_n)_{n\in\omega}$, defined by the recursive formula:

$$
A_0 = A \text{ and } A_{n+1} = \overline{A_n A_n} \text{ for } n \ge 0.
$$

A subset A of a liner X is called a flat if $\forall x, y \in A$ $(\overline{xy} \subseteq A)$.

Definition

The flat hull \overline{A} of a subset $A \subseteq X$ of a liner (X, \mathcal{L}) is the smallest flat that contains the set A .

This flat is equal to the intersection of all flats that contain the set A.

It is also equal to the union of the increasing sequence of sets $(A_n)_{n\in\omega}$, defined by the recursive formula:

$$
A_0 = A \text{ and } A_{n+1} = \overline{A_n A_n} \text{ for } n \ge 0.
$$

Rank and Dimension

Definition

For a subset $A \subseteq X$ of a liner X, the cardinal $||A|| := min{ |B| : B \subset X, A \subset \overline{B} }$ is called the rank of the set A, and the cardinal $dim(A) := ||A|| - 1$

is called the dimension of the set A in the liner X .

Example

Lines are flats of rank 2 and dimension 1 .

Flats of dimension 2 are called planes.

Rank and Dimension

Definition

For a subset $A \subseteq X$ of a liner X, the cardinal $||A|| := min{ |B| : B \subset X, A \subset \overline{B} }$ is called the rank of the set A, and the cardinal $dim(A) := ||A|| - 1$

is called the dimension of the set A in the liner X .

Example

Lines are flats of rank 2 and dimension 1 .

Definition

Flats of dimension 2 are called planes.

Parallel Postulates: affine liners

Definition

A liner (X, \mathcal{L}) is called affine if $\forall o, x, y \in X \ \forall p \in \overline{xy} \setminus \overline{o x} \ \exists! u \in \overline{oy} \ \ (\overline{up} \cap \overline{o x} = \varnothing).$

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

Projective and proaffine liners

Definition: A liner (X, \mathcal{L}) is called projective if $\forall o, x, y \in X \ \forall p \in \overline{xy} \ \forall u \in \overline{oy} \setminus \{p\} \ \overline{(up \cap \overline{o} x \neq \emptyset)}.$

Definition: A liner (X, \mathcal{L}) is called proaffine if $\forall o, x, y \in X \ \forall p \in \overline{xy} \ \exists v \in \overline{oy} \ \forall u \in \overline{oy} \setminus \{v\} \ (\overline{up} \cap \overline{ox} \neq \emptyset).$

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

Projective and proaffine liners

Definition: A liner (X, \mathcal{L}) is called projective if $\forall o, x, y \in X \ \forall p \in \overline{xy} \ \forall u \in \overline{oy} \setminus \{p\} \ \overline{(up \cap \overline{o} x \neq \emptyset)}.$

Definition: A liner (X, \mathcal{L}) is called proaffine if $\forall o, x, y \in X \ \forall p \in \overline{xy} \ \exists v \in \overline{oy} \ \forall u \in \overline{oy} \setminus \{v\} \ (\overline{up} \cap \overline{ox} \neq \emptyset).$

Observation

Any two lines in an affine liner contain the same number of points. This number is called the order of an affine liner.

A liner (X, \mathcal{L}) is *n*-long if every line $L \in \mathcal{L}$ has cardinality $|L| > n$.

Any two lines in a 3-long projective liner contain the same number of points.

Observation

Any two lines in an affine liner contain the same number of points. This number is called the order of an affine liner.

Definition

A liner (X, \mathcal{L}) is *n*-long if every line $L \in \mathcal{L}$ has cardinality $|L| > n$.

Any two lines in a 3-long projective liner contain the same number of points.

Observation

Any two lines in an affine liner contain the same number of points. This number is called the order of an affine liner.

Definition

A liner (X, \mathcal{L}) is *n*-long if every line $L \in \mathcal{L}$ has cardinality $|L| > n$.

Theorem (simple)

Any two lines in a 3-long projective liner contain the same number of points.

Observation

Any two lines in an affine liner contain the same number of points. This number is called the order of an affine liner.

Definition

A liner (X, \mathcal{L}) is *n*-long if every line $L \in \mathcal{L}$ has cardinality $|L| > n$.

Theorem (simple)

Any two lines in a 3-long projective liner contain the same number of points.

Prime and prime-power liners

Definition

An affine or projective liner is called

- **•** prime if its order is a prime number;
- prime-power if its order is a power of a prime number.

All known finite affine or projective liners are prime-power. Moreover, every finite 3-long projective liner of rank $||X|| > 4$ is prime-power.

Is every finite 3-long projective plane prime-power?

Prime and prime-power liners

Definition

An affine or projective liner is called

- **•** prime if its order is a prime number;
- prime-power if its order is a power of a prime number.

Empirical Fact:

All known finite affine or projective liners are prime-power. Moreover, every finite 3-long projective liner of rank $||X|| > 4$ is prime-power.

Is every finite 3-long projective plane prime-power?

Prime and prime-power liners

Definition

An affine or projective liner is called

- **•** prime if its order is a prime number;
- prime-power if its order is a power of a prime number.

Empirical Fact:

All known finite affine or projective liners are prime-power. Moreover, every finite 3-long projective liner of rank $||X|| > 4$ is prime-power.

Problem

Is every finite 3-long projective plane prime-power?

Definition

A liner (X, \mathcal{L}) is strongly regular if $A \cup \{x\} = \overline{A} \overline{X}$ for every flat $A \subseteq X$ and point $x \in X \setminus A$, that have a common point.

A liner is strongly regular if and only if it is projective.

A liner (X, \mathcal{L}) is regular if $\overline{A \cup L} = \overline{A L}$ for ev ery flat $A \subset X$ and line $L \subset X$ with $L \cap A \neq \emptyset$.

Every 4-long affine liner is regular.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Definition

A liner (X, \mathcal{L}) is strongly regular if $A \cup \{x\} = \overline{A} \overline{X}$ for every flat $A \subseteq X$ and point $x \in X \setminus A$, that have a common point.

Theorem

A liner is strongly regular if and only if it is projective.

A liner (X, \mathcal{L}) is regular if $\overline{A \cup L} = \overline{A L}$ for ev ery flat $A \subset X$ and line $L \subset X$ with $L \cap A \neq \emptyset$.

Every 4-long affine liner is regular.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Definition

A liner (X, \mathcal{L}) is strongly regular if $A \cup \{x\} = \overline{A} \overline{X}$ for every flat $A \subseteq X$ and point $x \in X \setminus A$, that have a common point.

Theorem

A liner is strongly regular if and only if it is projective.

Definition

A liner (X, \mathcal{L}) is regular if $\overline{A \cup L} = \overline{A \cup L}$ for ev ery flat $A \subset X$ and line $L \subset X$ with $L \cap A \neq \varnothing$.

Every 4-long affine liner is regular.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Definition

A liner (X, \mathcal{L}) is strongly regular if $A \cup \{x\} = \overline{A} \overline{X}$ for every flat $A \subseteq X$ and point $x \in X \setminus A$, that have a common point.

Theorem

A liner is strongly regular if and only if it is projective.

Definition

A liner (X, \mathcal{L}) is regular if $\overline{A \cup L} = \overline{A \cup L}$ for ev ery flat $A \subset X$ and line $L \subset X$ with $L \cap A \neq \varnothing$.

Theorem (non-trivial)

Every 4-long affine liner is regular.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

A space is any 3-long regular liner of rank > 3 .

Example

Any 4-long affine liner of rank $||X|| \geq 3$ is an affine space.

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

4 17 18

同 → → 三

Definition

A liner (X, \mathcal{L}_X) is a subliner of a liner (Y, \mathcal{L}_Y) if $X \subseteq Y$ and $\mathcal{L}_X = \{ X \cap L : L \in \mathcal{L}_X \text{ and } |X \cap L| \geq 2 \}.$

A projective liner Y is a projective completion of a liner X if Y is 3-long, X is a subliner of Y and $Y \setminus X \neq Y$.

Every proaffine space X has a projective completion (which is unique up to an isomorphism). If $||X|| > 4$, then the remainder $Y \setminus X$ is flat in Y. If X is finite and $||X|| = 3$, then Y \ X is one of the following: the empty set, a singleton, a line, or a punctured line.

 2990

Definition

A linear
$$
(X, \mathcal{L}_X)
$$
 is a sublinear of a linear (Y, \mathcal{L}_Y) if $X \subseteq Y$ and $\mathcal{L}_X = \{X \cap L : L \in \mathcal{L}_X \text{ and } |X \cap L| \ge 2\}.$

Definition

A projective liner Y is a projective completion of a liner X if Y is 3-long, X is a subliner of Y and $\overline{Y \setminus X} \neq Y$.

Every proaffine space X has a projective completion (which is unique up to an isomorphism). If $||X|| > 4$, then the remainder $Y \setminus X$ is flat in Y. If X is finite and $||X|| = 3$, then Y \ X is one of the following: the empty set, a singleton, a line, or a punctured line.

 2990

Definition

A linear
$$
(X, \mathcal{L}_X)
$$
 is a sublinear of a linear (Y, \mathcal{L}_Y) if $X \subseteq Y$ and $\mathcal{L}_X = \{X \cap L : L \in \mathcal{L}_X \text{ and } |X \cap L| \ge 2\}.$

Definition

A projective liner Y is a projective completion of a liner X if Y is 3-long, X is a subliner of Y and $\overline{Y \setminus X} \neq Y$.

Theorem (Kuiper-Dembowski)

Every proaffine space X has a projective completion (which is unique up to an isomorphism).

If $||X|| > 4$, then the remainder $Y \setminus X$ is flat in Y. If X is finite and $||X|| = 3$, then $Y \setminus X$ is one of the following: the empty set, a singleton, a line, or a punctured line.

Definition

A linear
$$
(X, \mathcal{L}_X)
$$
 is a sublinear of a linear (Y, \mathcal{L}_Y) if $X \subseteq Y$ and $\mathcal{L}_X = \{X \cap L : L \in \mathcal{L}_X \text{ and } |X \cap L| \ge 2\}.$

Definition

A projective liner Y is a projective completion of a liner X if Y is 3-long, X is a subliner of Y and $\overline{Y \setminus X} \neq Y$.

Theorem (Kuiper-Dembowski)

Every proaffine space X has a projective completion (which is unique up to an isomorphism). If $||X|| > 4$, then the remainder $Y \setminus X$ is flat in Y. If X is finite and $||X|| = 3$, then $Y \setminus X$ is one of the following: the empty set, a singleton, a line, or a punctured line.

Definition

A linear
$$
(X, \mathcal{L}_X)
$$
 is a sublinear of a linear (Y, \mathcal{L}_Y) if $X \subseteq Y$ and $\mathcal{L}_X = \{X \cap L : L \in \mathcal{L}_X \text{ and } |X \cap L| \ge 2\}.$

Definition

A projective liner Y is a projective completion of a liner X if Y is 3-long, X is a subliner of Y and $\overline{Y \setminus X} \neq Y$.

Theorem (Kuiper-Dembowski)

Every proaffine space X has a projective completion (which is unique up to an isomorphism). If $||X|| > 4$, then the remainder $Y \setminus X$ is flat in Y. If X is finite and $||X|| = 3$, then $Y \setminus X$ is one of the following: the empty set, a singleton, a line, or a punctured line.

Part II Desarguesian Liners

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

Subparallelity and parallelity of flats

Definition

Given two flats A, B in a liner (X, \mathcal{L}) , we write

- $\|A\|$ B and say that the flat A is subparallel to the flat B if $A \subseteq B \cup \{a\}$ for every point $a \in A$;
- A \parallel B and say that the flat A is parallel to the flat B if $A \parallel B$ and $B \parallel A$.

For every flat A and point x in an affine space X there exists a unique flat $B \subseteq X$ with $x \in B \parallel A$.

For every line L and point x in an affine space, there exists a unique line Λ Λ Λ that contains the point x a[nd](#page-30-0) [is](#page-32-0) [p](#page-30-0)[ar](#page-33-0)a[le](#page-0-0)[ll t](#page-106-0)[o](#page-0-0) L[.](#page-106-0)

 \circ \circ

Subparallelity and parallelity of flats

Definition

Given two flats A, B in a liner (X, \mathcal{L}) , we write

- $\|A\|$ B and say that the flat A is subparallel to the flat B if $A \subseteq B \cup \{a\}$ for every point $a \in A$;
- A \parallel B and say that the flat A is parallel to the flat B if $A \parallel B$ and $B \parallel A$.

Theorem (non-trivial)

For every flat A and point x in an affine space X there exists a unique flat $B \subseteq X$ with $x \in B \parallel A$.

For every line L and point x in an affine space, there exists a unique line Λ Λ Λ that contains the point x a[nd](#page-31-0) [is](#page-33-0) [p](#page-30-0)[ar](#page-33-0)a[le](#page-0-0)[ll t](#page-106-0)[o](#page-0-0) L[.](#page-106-0)

 \circ \circ

Subparallelity and parallelity of flats

Definition

Given two flats A, B in a liner (X, \mathcal{L}) , we write

- $\|A\|$ B and say that the flat A is subparallel to the flat B if $A \subseteq B \cup \{a\}$ for every point $a \in A$;
- A \parallel B and say that the flat A is parallel to the flat B if $A \parallel B$ and $B \parallel A$.

Theorem (non-trivial)

For every flat A and point x in an affine space X there exists a unique flat $B \subseteq X$ with $x \in B \parallel A$.

Corollary (Playfair Axiom)

For every line L and point x in an affine space, there exists a unique line Λ Λ Λ that contains the [p](#page-30-0)[o](#page-0-0)int x a[nd](#page-32-0) [is](#page-34-0) p[ar](#page-33-0)a[le](#page-0-0)[ll t](#page-106-0)o L [.](#page-106-0)

 \circ \circ

Desargues Theorem

Lines L_1, \ldots, L_n in a liner (X, \mathcal{L}) are called paraconcurrent if they are either pairwise parallel or have a common point.

Theorem (Desargues $(1591 - 1661)$)

Let (X, \mathcal{L}) be an affine space of dimension dim $(X) > 3$. For every paraconcurrent lines A, B, $C \in \mathcal{L}$ and points $a,a'\!\in\!A\,\backslash\,(B\cup C)$, $b,b'\!\in\!B\,\backslash\,(A\cup C)$, $c,c'\!\in\!C\,\backslash\,(A\cup B)$ with $a b \parallel a' b'$ and $b c \parallel b' c'$, we have $\overline{a c} \parallel \overline{a' c'}$.

Desargues Theorem is not necessarily true in affine spaces of dimension 2. A counterexample is the Moulton plane, discovered by an american astronomer Moulton in 1902. The Moulton plane is the liner $X := \mathbb{R} \times \mathbb{R}$ endowed with the family of lines

$$
\mathcal{L} := \{L_{a,b} : a, b \in \mathbb{R}\} \cup \{L_c : c \in \mathbb{R}\}, \text{ where}
$$

\n
$$
L_c := \{(c, y) : y \in \mathbb{R}\},
$$

\n
$$
L_{a,b} := \{(x, ax + b) : x \in \mathbb{R}\} \text{ if } a \ge 0,
$$

\n
$$
L_{a,b} := \{(x, \frac{1}{2}ax + b) : x \le 0\} \cup \{(x, ax + b) : x \ge 0\},
$$

\nif $a < 0$.

 Ω
The Moulton plane is non-Desarguesian

 4.171

э 4.重 \sim ∍

 \sim

つくへ

Desarguesian liners

Definition

An affine liner (X, \mathcal{L}) is called Desarguesian if for any concurrent lines $A, B, C \in \mathcal{L}$ and points $a, a' \in A \setminus (B \cup C)$, $b,b'\in B\setminus (A\cup C)$, $c,c'\in C\setminus (A\cup B)$ with $\overline{a\ b}\parallel\overline{a'\ b'}$ and $b c \parallel b' c'$ we have $\overline{a c} \parallel a' c'$.

By the Desargues Theorem, every affine space of dimension ≥ 3 is Desarguesian.The Moulton plane is not Desarguesian.

Desarguesian liners

Definition

An affine liner (X, \mathcal{L}) is called Desarguesian if for any concurrent lines $A, B, C \in \mathcal{L}$ and points $a, a' \in A \setminus (B \cup C)$, $b,b'\in B\setminus (A\cup C)$, $c,c'\in C\setminus (A\cup B)$ with $\overline{a\ b}\parallel\overline{a'\ b'}$ and $b c \parallel b' c'$ we have $\overline{a c} \parallel a' c'$.

By the Desargues Theorem, every affine space of dimension > 3 is Desarguesian. The Moulton plane is not Desarguesian.

Desarguesian liners

Definition

An affine liner (X, \mathcal{L}) is called Desarguesian if for any concurrent lines $A, B, C \in \mathcal{L}$ and points $a, a' \in A \setminus (B \cup C)$, $b,b'\in B\setminus (A\cup C)$, $c,c'\in C\setminus (A\cup B)$ with $\overline{a\ b}\parallel\overline{a'\ b'}$ and $b c \parallel b' c'$ we have $\overline{a c} \parallel a' c'$.

By the Desargues Theorem, every affine space of dimension ≥ 3 is Desarguesian.The Moulton plane is not Desarguesian.

Thalesian liners

Definition

An affine liner (X, \mathcal{L}) is called Thalesian if for any parallel lines A,B,C in X and any points $a,a'\in A\setminus (B\cup C)$, $b,b'\in B\setminus(A\cup C)$, $c,c'\in C\setminus(A\cup B)$ with $\overline{a\ b}\parallel\overline{a'\ b'}$ and $b c \parallel b' c'$, we have $\overline{a c} \parallel \overline{a' c'}$.

It can be shown that every Desarguesian affine space is Thalesian. The Moulton plane is not Thalesian.

Thalesian liners

Definition

An affine liner (X, \mathcal{L}) is called Thalesian if for any parallel lines A,B,C in X and any points $a,a'\in A\setminus (B\cup C)$, $b,b'\in B\setminus(A\cup C)$, $c,c'\in C\setminus(A\cup B)$ with $\overline{a\ b}\parallel\overline{a'\ b'}$ and $b c \parallel b' c'$, we have $\overline{a c} \parallel \overline{a' c'}$.

It can be shown that every Desarguesian affine space is Thalesian. The Moulton plane is not Thalesian.

Thalesian liners

Definition

An affine liner (X, \mathcal{L}) is called Thalesian if for any parallel lines A,B,C in X and any points $a,a'\in A\setminus (B\cup C)$, $b,b'\in B\setminus(A\cup C)$, $c,c'\in C\setminus(A\cup B)$ with $\overline{a\ b}\parallel\overline{a'\ b'}$ and $b c \parallel b' c'$, we have $\overline{a c} \parallel \overline{a' c'}$.

It can be shown that every Desarguesian affine space is Thalesian. The Moulton plane is not Thalesian.

Moufang liners

Definition

An affine liner X is Moufang if for any distinct parallel lines A,B,C,D and distinct points $a,a'\in A$, $b,b'\in B$, $c,c'\in C$ with $\varnothing\neq \overline{ab}\cap \overline{a'\,b'}\subseteq D$ and $\varnothing\neq \overline{b\,c}\cap \overline{b'\,c'}\subseteq D$ we have $\varnothing \neq \overline{ac} \cap \overline{a'c'} \subseteq D$.

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

Definition

An affine liner (X, \mathcal{L}) is Pappian if for any concurrent lines $L, L' \in \mathcal{L}$ and any distinct points $a, b, c \in L \setminus L'$ and $a',b',c' \in L' \setminus L$ with $\overline{a\ b'} \parallel \overline{a' \ b}$ and $\overline{b\ c'} \parallel \overline{b' \ c}$, we have \overline{a} c' \parallel $\overline{a'}$ c

Definition

An affine liner (X, \mathcal{L}) is para-Pappian if for any parallel lines $L, L' \in \mathcal{L}$ and any distinct points $a, b, c \in L \setminus L'$ and $a, b', c' \in L' \setminus L$ with $\overline{ab'}$ $\|\overline{a'b}$ and $\overline{bc'}\|\overline{b'c}$, we have $\overline{ac'}\|\overline{a'c}$.

Papp⇒Desargues⇒Moufang⇒Thales⇒para-Papp

For every (finite) affine space, the following implications hold:

```
Pappian
            ľ
Desarguesian

Moufang
                 +finite (by Wedderburn Theorem)
               X
   \frac{\mathbb{V}}{\mathsf{m}}Thalesian
          \int \int +\sin t \, dt (by Artin-Zorn Theorem)
               X
ب<sub>⊻</sub><br>para-Pappian
          \parallel \ \rangle + prime
               Y
                 + prime
              [
```
Example: There exists an affine plane of order 9 which is Thalesian but not Moufang. Ope[n](#page-45-0)Problem: Is every para-Pappian affin[e](#page-0-0) [s](#page-45-0)[p](#page-46-0)[a](#page-48-0)[c](#page-49-0)e [Th](#page-106-0)[al](#page-0-0)[esi](#page-106-0)[an](#page-0-0)[?](#page-106-0)

Papp⇒Desargues⇒Moufang⇒Thales⇒para-Papp

For every (finite) affine space, the following implications hold:

```
Pappian
           ľ
Desarguesian

Moufang
                +finite (by Wedderburn Theorem)
              X
   \frac{\mathbb{V}}{\mathsf{m}}Thalesian
         \int \int +\sin t e (by Artin-Zorn Theorem)
              X
ب<sub>⊻</sub><br>para-Pappian
         \bigcup + prime
              Y
                + prime
             [
```
Example: There exists an affine plane of order 9 which is Thalesian but not Moufang. Ope[n](#page-46-0)Problem: Is every para-Pappian affin[e](#page-0-0) [s](#page-45-0)[p](#page-46-0)[a](#page-48-0)[c](#page-49-0)e [Th](#page-106-0)[al](#page-0-0)[esi](#page-106-0)[an](#page-0-0)[?](#page-106-0)

Papp⇒Desargues⇒Moufang⇒Thales⇒para-Papp

For every (finite) affine space, the following implications hold:

```
Pappian
            ľ
Desarguesian
            \big\downarrow \big\} +finite (by Artin–Zorn Theorem)<br>C
                 +finite (by Wedderburn Theorem)
               X
   Moufang
   \frac{\mathbb{V}}{\mathsf{m}}Thalesian
               X
ب<sub>⊻</sub><br>para-Pappian
          \bigcup + prime
               Y
                 + prime
              [
```
Example: There exists an affine plane of order 9 which is Thalesian but not Moufang. Ope[n](#page-47-0)Problem: Is every para-Pappian affin[e](#page-0-0) [s](#page-45-0)[p](#page-46-0)[a](#page-48-0)[c](#page-49-0)e [Th](#page-106-0)[al](#page-0-0)[esi](#page-106-0)[an](#page-0-0)[?](#page-106-0)

Algebraization of Desarguesian affine spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian affine space (X, \mathcal{L}) determines a canonical vector space \vec{X} over certain corps \mathbb{R}_{X} that acts on X so that the lines in X can be writen as $\{x + s\vec{v} : s \in \mathbb{R}_X\}$, where $x \in X$ and $\vec{v} \in \vec{X} \setminus {\vec{0}}$. The corps \mathbb{R}_X is a field iff X is Pappian.

How does the structure of a Desarguesian liner determine the structure of a vector space? What is the nature of vectors and how to define scalars and operations over vectors and scalars? Why do they have the properties, well-known from the Linear Algebra?

Algebraization of Desarguesian affine spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian affine space (X, \mathcal{L}) determines a canonical vector space \vec{X} over certain corps \mathbb{R}_{X} that acts on X so that the lines in X can be writen as $\{x + s\vec{v} : s \in \mathbb{R}_X\}$, where $x \in X$ and $\vec{v} \in \vec{X} \setminus {\{\vec{0}\}}$. The corps \mathbb{R}_X is a field iff X is Pappian.

Question

How does the structure of a Desarguesian liner determine the structure of a vector space? What is the nature of vectors and how to define scalars and operations over vectors and scalars? Why do they have the properties, well-known from the Linear Algebra?

Part III Vectors and Scalars

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

 200

Algebraization of Desarguesian affine spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian affine space (X, \mathcal{L}) determines a canonical vector space \vec{X} over certain corps \mathbb{R}_{X} that acts on X so that the lines in X can be writen as $\{x + s\vec{v} : s \in \mathbb{R}_X\}$, where $x \in X$ and $\vec{v} \in \vec{X} \setminus {\{\vec{0}\}}$. The corps \mathbb{R}_X is a field iff X is Pappian.

Question

How does the structure of a Desarguesian liner determine the structure of a vector space? What is the nature of vectors and how to define scalars and operations over vectors and scalars? Why do they have the properties, well-known from the Linear Algebra?

Definition (of parallel projection)

A bijective map $F: A \rightarrow B$ between two lines in an affine space (X, \mathcal{L}) is called

- a parallel projection along a line Λ, if $F = \{ (a, b) \in A \times B : a \overline{b} \mid \Delta \};$
- \bullet parallel projection if F is a parallel projection along some line Λ;
- **•** parallel shift if $F : A \rightarrow B$ is a parallel projection between parallel lines A, B;
- **•** parallel translation if F is a composition of finitely many parallel shifts between lines;
- affine transformation if F is a composition of finitely many parallel projections between lines.

4 重 \sim 4.重 QQ

Parallel projections between lines

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

 \leftarrow

つくへ

Theorem (non-trivial)

Affine space (X, \mathcal{L}) is Thalesian if and only if for any points $x, y, z \in X$ with $x \neq y$ there exist unique line Λ and parallel translation $F: \overline{xy} \to \Lambda$ with $F(x) = z$.

This theorem allows to define a notion of a vector in a Thalesian affine space in the standard way as an equivalence class of ordered pairs pf points.

Vectors in Thalesian affine spaces

We say that two pairs of points $xy, uv \in X^2$ in an affine space (X, \mathcal{L}) are translation equivalent if Fx y = uv for some parallel translation F between lines in X . The relation of translation equivalence divides the set \mathcal{X}^{2} of pairs of points into disjoint equivalence classes, called vectors.

For a pair of point $x, y \in X$, the vector \overrightarrow{xy} is the class of all ordered pairs, which are translation equivalent to the pair xy.

The equivalence class $\{xx : x \in X\}$ is called the zero vector and is denoted by $\vec{0}$.

The set of all vectors in X is denoted by \overline{X} .

The preceding theorem implies that for every vector $\vec{v} \in \vec{X}$ and point $x \in X$ in a Thalesian affine space (X, \mathcal{L}) there exists a unique point $y \in X$ such that $\overrightarrow{xy} = \overrightarrow{v}$ (i.e., the vector \vec{v} can be constructed from any given point x).

Theorem

For a Thalesian affine space X there exists a unique binary operation $+:\vec{X}\times\vec{X}\rightarrow\vec{X}$, turning \vec{X} into a commutative group and has the proerty:

$$
\forall x, y, z \in X \ \ (\overrightarrow{xy} + \overrightarrow{yz} = \overrightarrow{xz}).
$$

Theorem

For any Thalesian affine space X there exists a unique action $+ \cdot \vec{X} \times X \rightarrow X$ such that:

$$
\bullet \forall \vec{v}, \vec{u} \in \vec{X} \forall x \in X \quad (\vec{v} + \vec{u}) + x = \vec{v} + (\vec{u} + x);
$$

$$
x \forall x, y \in X \quad \overrightarrow{xy} + x = y
$$

Theorem (non-trivial)

An affine space (X, \mathcal{L}) is Desarguesian if and only if for any pairs $xy, uv \in X^2$ with $x \neq y$ and $u \neq v$ there exists a unique affine transformations $F : \overline{xy} \to \overline{uv}$ with $Fxy = uv$.

This theorem allows to define a notion of a scalar in a Desarguesian affine space as an equivalence class of ordered linear triples,

by analogy with the notion of vector.

A linear triple in a liner X is an ordered triple $xyz \in X^3$ with $y \in \overline{x} \overline{z}$ and $x \neq z$.

Linear triples and their affine transformations

Two linear triples $xyz,$ $uvw \in X^3$ are called affinely equivalent if $Fxyz = uvw$ for some affine transformation F between lines. The relation of affine equivalence divides the set ... χ of linear triples into disjoint equivalence classes, called scalars. For a linear triple $xyzy \in$ where ensists, called sealars.
X, the scalar \overrightarrow{xyz} is the class of all linear triples, which are affinely equivalent to the triple xyz . The set of scalars in X is denoted by \mathbb{R}_{\times} . This set contains two distinguished elements: $0 := \{ xyz \in X^3 : x = y \neq z \}$ and $1 := \{ xyz \in X^3 : x \neq y = z \}.$ The preceding theorem implies that for any scalar α and pair $\mathsf{x} \mathsf{z} \in \mathsf{X}^2$ with $\mathsf{x} \neq \mathsf{z}$ in a Desarguesian affine space $(\mathsf{X}, \mathcal{L})$ there exists a unique point $y \in X$ such that $xyz \in \alpha$.

Operations of multiplication and addition of scalars

Theorem

For every Desarguesian affine space X there exist unique binary operations

 $\cdot : \mathbb{R}_x \times \mathbb{R}_x \to \mathbb{R}_x$ and $+ : \mathbb{R}_x \times \mathbb{R}_x \to \mathbb{R}_x$,

turning \mathbb{R}_X into a corps (= division ring) and have the following properties:

\n- \n
$$
\forall
$$
 oxy, oye $\in X$ $\overrightarrow{oxy} \cdot \overrightarrow{oye} = \overrightarrow{oxe}$;\n
\n- \n \forall oxe, oye, oze $\in X$ $(\overrightarrow{ox} + \overrightarrow{oy} = \overrightarrow{oz}) \Rightarrow (\overrightarrow{oxe} + \overrightarrow{oye} = \overrightarrow{oze})$.\n
\n

Theorem

For every Desarguesian affine space X there exists a unique operation of multiplication of scalars by vectors $\cdot : \mathbb{R}_x \times \vec{X} \to \vec{X}, \cdot : (s, \vec{v}) \mapsto s \cdot \vec{v}$, satisfying the axioms: **1** $\forall s, t \in \mathbb{R} \times \forall \vec{v} \in \vec{X}$ (st) · $\vec{v} = s \cdot (t \cdot \vec{v})$; \bullet $\forall s, t \in \mathbb{R}_{X} \ \forall \vec{v} \in \vec{X} \ (s+t) \cdot \vec{v} = s \cdot \vec{v} + t \cdot \vec{v};$ $\bullet \forall s \in \mathbb{R}_x \forall \vec{v}, \vec{u} \in \vec{X} \ s \cdot (\vec{v} + \vec{u}) = s \cdot \vec{v} + s \cdot \vec{u}.$

Pappus and commutativity of the scalar corps

Theorem (Pappus of Alexandria; 270-350)

For a Desarguesian affine space X, the corps \mathbb{R}_x is a field iff the Pappus Axiom holds: for any concurrent lines $L,L'\in\mathcal{L}$ and distinct points $x, y, z \in L \setminus L'$, $x', y', z' \in L' \setminus L$, if \overline{x} $\overline{y'}$ \parallel $\overline{x'}$ \overline{y} and \overline{y} $\overline{z'}$ \parallel $\overline{y'}$ \overline{z} , then \overline{x} $\overline{z'}$ \parallel $\overline{x'}$ \overline{z} .

Part III: non-Desarguesian Geometry

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

Affine spaces of dimension $>$ 3 are Desarguesian and hence admit a canonical structure of a vector space over some corps. For affine planes (i.e., affine spaces of dimension 2), the situation is more complicated. Nonetheless, any affine plane can be algebraized by a suitable ternary-ring, as was suggested by Marshall Hall in 1943.

Definition

An affine base in an affine plane Π is any ordered triple of non-collinear points $\textit{uow} \in \Pi^3$, called the unit, origin, and biunit of the affine base uow . An affine plane endowed with an affine base is called a based

affine plane.

By the Playfair Axiom (holding in affine planes), for every affine base *uow* in an affine plane Π, there exists a unique point $e \in \Pi$ completing the triangle *uow* to a parallelogram, i.e., $\overline{u e}$ \overline{v} \overline{o} \overline{w} and \overline{w} \overline{e} \overline{v} \overline{o} \overline{u} .

The point e is called the diunit of the affine base uow and the line \overline{o} e is the diagonal of the affine base *uow*.

Definition

An affine base in an affine plane Π is any ordered triple of non-collinear points $\textit{uow} \in \Pi^3$, called the unit, origin, and biunit of the affine base *uow*. An affine plane endowed with an affine base is called a based affine plane.

By the Playfair Axiom (holding in affine planes), for every affine base *uow* in an affine plane Π, there exists a unique point $e \in \Pi$ completing the triangle *uow* to a parallelogram, i.e., $\overline{u e}$ $\parallel \overline{ow}$ and $\overline{w e}$ $\parallel \overline{ou}$. The point e is called the diunit of the affine base uow and the

line \overline{o} e is the diagonal of the affine base *uow*.

o, the origin u , the unit w, the biunit e, the diunit \overline{o} u, the horizontal axis \overline{OW} , the vertical axis $\Delta := \overline{o} \, \overline{e}$, the diagonal

Let (Π, *uow*) be a based affine plane. Since Π is Playfair, for every point $p\in\Pi$ there exist unique points $p',p''\in\Delta$ (called the horizontal and vertical coordinates of p) such that $\overline{\rho p'}\|\overline{\overline{o} w}$ and $\overline{\overline{\rho} p''}\|\overline{\overline{o} u}$.

The coordinate chart of a based affine plane

The map $C:\Pi\to \Delta^2$, $C:\rho\mapsto \rho' \rho''$, is a bijective map from the affine plane Π onto the square Δ^2 of the diagonal Δ of the affine base *uow* . This bijective map $C:\Pi\to \Delta^2$ is called the coordinate chart of the based affine plane.

The set Δ^2 endowed with the family of lines $\{\mathcal{C}[L]: L\in \mathcal{L}\}$ is called the coordinate plane of the based affine plane (Π, uow) . The coordinate plane Δ^2 carries the canonical base (eo,oo,oe).

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

The coordinate chart of a based affine plane

The map $C:\Pi\to \Delta^2$, $C:\rho\mapsto \rho' \rho''$, is a bijective map from the affine plane Π onto the square Δ^2 of the diagonal Δ of the affine base *uow* . This bijective map $C:\Pi\to \Delta^2$ is called the coordinate chart of the based affine plane. The set Δ^2 endowed with the family of lines $\{\mathcal{C}[L]: L\in \mathcal{L}\}$ is

called the coordinate plane of the based affine plane (Π, uow) . The coordinate plane Δ^2 carries the canonical base (eo,oo,oe).

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

The equations of non-vertical lines in based affine planes can be written down using a special ternary operation $T_{\mathsf{uow}}: \Delta^3 \to \Delta$, which assigns to every triple $\mathsf{xab} \in \Delta^3$ the unique point $y \in \Delta$ denoted by $x_{\times}a_+b$ such that $\overline{obxy} \parallel \overline{oo}$ \overline{ea} . The point y is the unique common point of the vertical line $L_x := \{p : p' = x\}$ and the unique line $L_{a,b}$ which contains the point $ob \in \overline{ow}$ (with coordinates o, b) and is parallel to the line $L_{o,a} := \overline{oo}$ ea connnecting the points o (with coordinates o , o) and the point ea (with coordinates e , a).
The ternary operation

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

 299

The definition of the ternary operation T_{low} ensures that the line $L_{a,b}$ is determined by the equation $y = x_{\times}a_{+}b$, more precisely,

$$
L_{a,b} = \{p \in \Pi : p'' = p'_\times a_+ b\} = C^{-1} [\{xy \in \Delta^2 : y = x_\times a_+ b\}].
$$

 200

Properties of the ternary-operation $T_{\mu\alpha\nu}$

Theorem

For every based affine plane (Π, uow) , the ternary operation

$$
T_{\text{uow}}: \Delta^3 \to \Delta, \quad T_{\text{uow}}: \text{xdb} \mapsto x_{\times}a_+b,
$$

has the following four properties:

- \bullet $x_{\times}o_{+}b = b = o_{\times}x_{+}b$ and $x_{\times}e_{+}o = x = e_{\times}x_{+}o$ for every points $x, b \in \Delta$;
- **2** for every points $a, x, y \in \Delta$, there exists a unique point $b \in \Delta$ such that $x_{\times}a_+b = y$;
- **3** for every points a, b, c, $d \in \Delta$ with $a \neq c$, there exists a unique point $x \in \Delta$ such that $x_x a_+ b = x_x c_+ d$;
- \bullet for every points $\check{x}, \check{y}, \hat{x}, \hat{y} \in \Delta$ with $\check{x} \neq \hat{x}$, there exist unique points a, $b \in \Delta$ such that $\breve{x}_{\times} a_{+} b = \breve{y}$ and $\hat{x}_{\times}a_{+}b=\hat{y}$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Ternary-rings

Definition (Hall, 1943): A ternary-ring is a set R endowed with a ternary operation

 $T: \mathbb{R}^3 \to \mathbb{R}, \quad T: xab \mapsto x_x a_+ b,$

satisfying the following four axioms:

- (T1) there exist distinct elements 0, 1 \in R such that $\forall x, b \in R$ $x_{1}x_{2}0_{+}b = b = 0_{1}x_{+}b$ and $x_{1}x_{+}0 = x = 1_{1}x_{+}0$;
- (T2) for every elements a, b, c, $d \in R$ with $a \neq c$, there exists a unique element $x \in R$ such that $x_x a_+ b = x_x c_+ d$;
- (T3) for every elements $a, x, y \in R$, there exists a unique element $b \in R$ such that $x_{\times}a_{+}b = y$;
- $(T4)$ $\forall \check{x}, \check{y}, \hat{x}, \hat{y} \in R$ with $\check{x} \neq \hat{x}$, there exist unique elements $a, b \in R$ such that $\breve{x}_{\times}a_+b = \breve{y}$ and $\hat{x}_{\times}a_+b = \hat{y}$.

The (unique) elements 0, 1 appearing in the axiom (T1) are called the zero and unit of the ternary-ring R .

The coordinate plane of a ternary-ring

Given a ternary-ring R , consider the affine plane whose set of point is R^2 and the family of lines is

$$
\mathcal{L}:=\{L_c:c\in R\}\cup\{L_{a,b}:a,b\in R\},\
$$

where

 $L_c := \{ xy \in R^2 : x = c \}$ and $L_{a,b} := \{ xy \in R^2 : y = x_x a_+ b \}$ for $a,b,c\in R$. The affine plane R^2 is endowed with the canonical affine base $(10, 00, 01)$ and hence is a based affine plane, called the coordinate plane of the ternary-ring R .

For every ternary-ring R its coordinate plane R^2 is a based affine plane. Moreover, for every based affine plane (Π, uow) , the coordinate chart C : $\Pi \to \Delta^2$ is an isomorphism between the based affine plane (Π, uow) and the coordinate plane of the ternary-ring $(\Delta^2, T_{\text{uow}})$.

 \circ \circ

The coordinate plane of a ternary-ring

Given a ternary-ring R , consider the affine plane whose set of point is R^2 and the family of lines is

$$
\mathcal{L}:=\{L_c:c\in R\}\cup\{L_{a,b}:a,b\in R\},\
$$

where

 $L_c := \{ xy \in R^2 : x = c \}$ and $L_{a,b} := \{ xy \in R^2 : y = x_x a_+ b \}$ for $a,b,c\in R$. The affine plane R^2 is endowed with the canonical affine base $(10, 00, 01)$ and hence is a based affine plane, called the coordinate plane of the ternary-ring R .

Theorem (Hall, 1943)

For every ternary-ring R its coordinate plane R^2 is a based affine plane. Moreover, for every based affine plane (Π, uow) , the coordinate chart C : $\Pi \rightarrow \Delta^2$ is an isomorphism between the based affine plane (Π, uow) and the coordinate plane of the ternary-ring $(\Delta^2, T_{\text{now}})$.

 000

Addition and multiplication in ternary-rings

Every ternary-ring (R, T) carries two binary operations

$$
+: R \times R \to R, \quad + : (x, b) \mapsto x + b := T(x, 1, b) = x_x 1_x b,
$$

$$
\cdot : R \times R \to R, \quad \cdot : (x, a) \mapsto x \cdot a := T(x, a, 0) = x_x a_1 0,
$$

called the addition and multiplication operations in R .

Definition: A ternary-ring R is linear if $\forall x, a, b \in R$ $x_x a_+ b = (x \cdot a) + b := (x_x a_+ 0)_x 1_+ b$.

Therefore, the ternary operation of a linear ternary-ring is uniquely determined by the addition and multiplication.

Example: Every corps R endowed with the ternary operation $T: \mathbb{R}^3 \to \mathbb{R}, \quad T: (x, a, b) \mapsto (x \cdot a) + b,$ is a linear ternary-ring.

 $\left\langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\rangle$

The Co

ヨッ

 QQ

Addition and multiplication in ternary-rings

Every ternary-ring (R, T) carries two binary operations

$$
+: R \times R \to R, \quad + : (x, b) \mapsto x + b := T(x, 1, b) = x_x 1_+ b,
$$

$$
\cdot : R \times R \to R, \quad \cdot : (x, a) \mapsto x \cdot a := T(x, a, 0) = x_x a_+ 0,
$$

called the addition and multiplication operations in R.

Definition: A ternary-ring R is linear if $\forall x. a. b \in R$ $x \cdot a + b = (x \cdot a) + b := (x \cdot a + b) \cdot 1 + b$.

Therefore, the ternary operation of a linear ternary-ring is uniquely determined by the addition and multiplication.

Example: Every corps R endowed with the ternary operation $T: \mathbb{R}^3 \to \mathbb{R}, \quad T: (x, a, b) \mapsto (x \cdot a) + b,$ is a linear ternary-ring.

 QQ

A magma is a set endowed with a binary operation. A magma M is

- unital if it contains an element $1 \in M$, called the identity of M, such that $\forall x \in M$ $1 \cdot x = x = x \cdot 1$;
- a loop if M is a unital magma such that $\forall a, b \in M \exists ! x, y \in M \ (x \cdot a = b \land a \cdot y = b);$
- \bullet 0-magma if M contains an element $0 \in M$ called the zero of M, such that $\forall x \in M$ $x \cdot 0 = 0 = 0 \cdot x$;
- a 0-loop if M is a unital 0-magma such that $\forall a \in M \setminus \{0\} \ \forall b \in M \ \exists !x, y \in M \ \ (x \cdot a = b \ \land \ a \cdot y = b).$

 Ω

Additive and multiplicative loops of a ternary-ring

Theorem

If R is a ternary-ring, then $(R,+)$ is a loop and (R, \cdot) is a 0-loop such that for every $a \in R \setminus \{1\}$ and $b \in R$, the equation $x \cdot a = x + b$ has a unique solution $x \in R$.

Let R be a ternary-ring and $R^*:=R\setminus\{0\}$. The loops $(R,+)$ and (R^*, \cdot) are called the additive loop and the multiplicative loop of the ternary-ring R, respectively.

Additive and multiplicative loops of a ternary-ring

Theorem

If R is a ternary-ring, then $(R,+)$ is a loop and (R, \cdot) is a 0-loop such that for every $a \in R \setminus \{1\}$ and $b \in R$, the equation $x \cdot a = x + b$ has a unique solution $x \in R$.

Definition

Let R be a ternary-ring and $R^*:=R\setminus\{0\}.$ The loops $(R,+)$ and (R^*, \cdot) are called the additive loop and the multiplicative loop of the ternary-ring R , respectively.

A ternary-ring R is called commutative-plus if $\forall x, y \in R$ $x + y = y + x$; commutative-dot if $\forall x, y \in R$ $x \cdot y = y \cdot x$; commutative if it is commutative-plus and commutative-dot; associative-plus if $\forall x, y, z \in R$ $x + (y + z) = (x + y) + z$; associative-dot if $\forall x, y, z \in R$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$; associative if R is associative-plus and associative-dot; inversive-plus if $\forall x \in R \exists x^- \in R \ \forall y \in R \ \ (y+x) + x^- = y;$ inversive-dot if $\forall x \in R \; \exists x^{-1} \in R \; \forall y \in R \; \; (y \cdot x) \cdot x^{-1} = y;$ inversive if R is inversive-plus and inversive-dot; left-distributive if $\forall a, x, y \in R$ $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$; right-distributive if $\forall x, y, b \in R$ $(x + y) \cdot b = (x \cdot b) + (y \cdot b)$; distributive if R is left-distributive and right-distributive; a corps if R is linear, distributive and associative; a field if R is a commutative corps.

A ternary-ring R is called commutative-plus if $\forall x, y \in R$ $x + y = y + x$; commutative-dot if $\forall x, y \in R$ $x \cdot y = y \cdot x$; commutative if it is commutative-plus and commutative-dot; associative-plus if $\forall x, y, z \in R$ $x + (y + z) = (x + y) + z$; associative-dot if $\forall x, y, z \in R$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$; associative if R is associative-plus and associative-dot; inversive-plus if $\forall x \in R \exists x^- \in R \ \forall y \in R \ \ (y+x) + x^- = y;$ inversive-dot if $\forall x \in R \; \exists x^{-1} \in R \; \forall y \in R \; \; (y \cdot x) \cdot x^{-1} = y;$ inversive if R is inversive-plus and inversive-dot; left-distributive if $\forall a, x, y \in R$ $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$; right-distributive if $\forall x, y, b \in R$ $(x + y) \cdot b = (x \cdot b) + (y \cdot b)$; distributive if R is left-distributive and right-distributive; a corps if R is linear, distributive and associative;

a field if R is a commutative corps.

A ternary-ring R is called commutative-plus if $\forall x, y \in R$ $x + y = y + x$; commutative-dot if $\forall x, y \in R$ $x \cdot y = y \cdot x$; commutative if it is commutative-plus and commutative-dot; associative-plus if $\forall x, y, z \in R$ $x + (y + z) = (x + y) + z$; associative-dot if $\forall x, y, z \in R$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$; associative if R is associative-plus and associative-dot; inversive-plus if $\forall x \in R \exists x^- \in R \ \forall y \in R \ \ (y+x)+x^-=y;$ inversive-dot if $\forall x\in R\; \exists x^{-1}\in R\; \forall y\in R\;\; (y\cdot x)\cdot x^{-1}=y;$ inversive if R is inversive-plus and inversive-dot; left-distributive if $\forall a, x, y \in R$ $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$; right-distributive if $\forall x, y, b \in R$ $(x + y) \cdot b = (x \cdot b) + (y \cdot b)$; distributive if R is left-distributive and right-distributive; a corps if R is linear, distributive and associative;

a field if R is a commutative corps.

A ternary-ring R is called commutative-plus if $\forall x, y \in R$ $x + y = y + x$; commutative-dot if $\forall x, y \in R$ $x \cdot y = y \cdot x$; commutative if it is commutative-plus and commutative-dot; associative-plus if $\forall x, y, z \in R$ $x + (y + z) = (x + y) + z$; associative-dot if $\forall x, y, z \in R$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$; associative if R is associative-plus and associative-dot; inversive-plus if $\forall x \in R \exists x^- \in R \ \forall y \in R \ \ (y+x)+x^-=y;$ inversive-dot if $\forall x\in R\; \exists x^{-1}\in R\; \forall y\in R\;\; (y\cdot x)\cdot x^{-1}=y;$ inversive if R is inversive-plus and inversive-dot; left-distributive if $\forall a, x, y \in R$ $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$; right-distributive if $\forall x, y, b \in R$ $(x + y) \cdot b = (x \cdot b) + (y \cdot b)$; distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative; a field if R is a commutative corps.

A ternary-ring R is called commutative-plus if $\forall x, y \in R$ $x + y = y + x$; commutative-dot if $\forall x, y \in R$ $x \cdot y = y \cdot x$; commutative if it is commutative-plus and commutative-dot; associative-plus if $\forall x, y, z \in R$ $x + (y + z) = (x + y) + z$; associative-dot if $\forall x, y, z \in R$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$; associative if R is associative-plus and associative-dot; inversive-plus if $\forall x \in R \exists x^- \in R \ \forall y \in R \ \ (y+x)+x^-=y;$ inversive-dot if $\forall x\in R\; \exists x^{-1}\in R\; \forall y\in R\;\; (y\cdot x)\cdot x^{-1}=y;$ inversive if R is inversive-plus and inversive-dot; left-distributive if $\forall a, x, y \in R$ $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$; right-distributive if $\forall x, y, b \in R$ $(x + y) \cdot b = (x \cdot b) + (y \cdot b);$ distributive if R is left-distributive and right-distributive; a corps if R is linear, distributive and associative; a field if R is a commutative corps.

Definition: A ternary-ring R is called a ternary-ring of an affine plane Π if Π is isomorphic to the coordinate plane R^2 of the ternary-ring R .

Theorem (Klingenberg, 1955)

For an affine plane Π , the following conditions are equivalent:

- \bigcirc Π is Pappian;
- 2 every ternary-ring of Π is commutative-dot;
- \bullet every/some ternary-ring of Π is a field;

• for every points
$$
a, b, c, \alpha, \beta, \gamma \in X
$$
 with
\n
$$
\overline{ab} \parallel \overline{\alpha c} \parallel \overline{\beta \gamma} \parallel \overline{bc} \parallel \overline{a \gamma} \parallel \overline{\alpha \beta},
$$
\nthe lines $\overline{a \alpha}, \overline{b \beta}, \overline{c \gamma}$ are paraconcurrent.

つくへ

Commutative-dot affine planes

Geometrically, the last condition (responsible for the commutativity of multiplication): For every points $a, b, c, \alpha, \beta, \gamma \in X$ with

$$
\overline{\mathsf{a}\,\mathsf{b}}\parallel\overline{\alpha\,\mathsf{c}}\parallel\overline{\beta\,\gamma}\nparallel\overline{\mathsf{b}\,\mathsf{c}}\parallel\overline{\mathsf{a}\,\gamma}\parallel\overline{\alpha\,\beta},
$$

the lines $\overline{a\alpha}, \overline{b\beta}, \overline{c\gamma}$ are paraconcurrent, looks as follows:

Theorem (Klingenberg, 1955)

For an affine plane Π , the following conditions are equivalent:

- **1** Π is Desarguesian;
- ² every ternary-ring of Π is associative-dot;
- ³ every/some ternary-ring of Π is a corps;
- \bullet for every points o, a, b, c, d, α , β , γ , $\delta \in \Pi$ with $\overline{ab}\parallel\overline{cd}\parallel\overline{\alpha\beta}\parallel\overline{\gamma\delta}\parallel\overline{ad}\parallel\overline{bc}\parallel\overline{\beta\gamma}\parallel\overline{\alpha\delta}$ and $o \in \overline{a \alpha} \cap \overline{b \beta} \cap \overline{c \gamma}$, we have $o \in \overline{d \delta}$.

Associative-dot affine planes

Geometrically, the last condition (responsible for the associativity of multiplication): for every points o , a , b , c , d , α , β , γ , $\delta \in \Pi$ with $\overline{ab}\parallel\overline{cd}\parallel\overline{\alpha\beta}\parallel\overline{\gamma\delta}\parallel\overline{ad}\parallel\overline{bc}\parallel\overline{\beta\gamma}\parallel\overline{\alpha\delta}$ and $o \in \overline{a \alpha} \cap \overline{b \beta} \cap \overline{c \gamma}$, we have $o \in \overline{d \delta}$, looks as follows:

Theorem (Skornyakov, Saint-Soucie, 1952)

- For an affine plane Π , the following conditions are equivalent:
	- \bigcirc Π is Moufang;
	- ² every ternary-ring of Π is inversive-dot;
	- \bullet every/some ternary-ring of Π is linear, distributive, inversive-dot and commutative-plus;
	- \bullet for every line $D \subset X$ and points o, a, c, $\alpha, \gamma \in D$ and b, d, β , $\delta \in X \setminus D$ with $\overline{ab} \parallel \overline{cd} \parallel \overline{\alpha \beta} \parallel \overline{\gamma \delta} \parallel \overline{ad} \parallel \overline{bc} \parallel \overline{\beta \gamma} \parallel \overline{\alpha \delta}$ and $o \in \overline{b \beta}$, we have $o \in d \delta$.

Inversive-dot affine planes

Geometrically, the last condition (responsible for the inversivity of multiplication): \forall line D and points $o, a, c, \alpha, \gamma \in D$ and $b, d, \beta, \delta \in X \setminus D$ with \overline{ab} \parallel \overline{c} d \parallel $\overline{\alpha}$ β \parallel $\overline{\gamma}$ δ \parallel \overline{a} d \parallel \overline{b} \overline{c} \parallel $\overline{\beta}$ γ \parallel $\overline{\alpha}$ δ and $o \in \overline{b \beta}$, we have $o \in \overline{d \delta}$, looks as follows:

Thalesian \Leftrightarrow quasi-field

Definition: A ternary-ring R is called a quasi-field if R is linear, right-distributive, and associative-plus.

Theorem (Veblen, 1916)

For an affine plane Π , the following conditions are equivalent:

- \bullet Π is Thalesian:
- **2** every ternary-ring of Π is a quasi-field;
- \bullet some ternary-ring of Π is a quasi-field.

Theorem

An affine plane Π is para-Pappian if and only if every ternary-ring of Π is commutative-plus.

Prime affine planes

Theorem

For a prime affine plane Π , the following conditions are equivalent:

- \bigcirc Π is Pappian;
- **2** Π is Desarguesian;
- **3** Π is Moufang;
- **4** Π is Thalesian:
- ⁵ Π is para-Pappian;
- \bullet every ternary-ring of Π is inversive-plus;
- $\bigcirc \forall D \in \mathcal{L}_{\Pi} \forall a, d, \alpha, \delta \in D \forall b, c, \beta, \gamma \in \Pi \setminus D$ with \overline{ab} \overline{cd} \overline{d} \overline{a} \overline{c} \overline{d} \overline{d} \overline{c} \overline{c} \overline{b} \overline{d} \overline{d} \overline{a} \overline{c} \overline{d} \overline{b} \overline{d} \overline{b} \overline{d} \overline{b} \overline{d} \overline{b} \overline{d} \overline{b} $\overline{$ we have $\overline{c}\gamma \parallel D$.

Geometrically, the last condition (responsible for the inversivity of the addition): $\forall D \in \mathcal{L}_{\Pi}$ $\forall a, d, \alpha, \delta \in D$ $\forall b, c, \beta, \gamma \in \Pi \setminus D$ $(\overline{ab} \parallel \overline{c} \overline{d} \parallel \overline{\alpha \beta} \parallel \overline{\gamma \delta} \nparallel \overline{a} \overline{c} \parallel \overline{b} \overline{d} \parallel \overline{\alpha \gamma} \parallel \overline{\beta \delta} \wedge \overline{b} \overline{\beta} \parallel D) \Rightarrow \overline{c} \overline{\gamma} \parallel D$ looks as follows:

 Ω

Alegbra versus Geometry in affine planes

Ternary-ring: Affine plane:

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

Part V: Selected Open Problems

Part V: Selected Open Problems

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

つくへ

Open Problems on liners: order

An affine plane X is called prime (resp. prime power) if its order is equal to (some power of) a prime number.

Problem

Is any finite affine plane prime power?

The best existing result in the positive direction is:

Theorem (Lüneburg, 1960)

Every finite commutative-plus affine liner is prime power.

Problem

Is any finite associative-plus affine liner prime power?

Problem

Is prime affine liner of (para-)Pappian?

Open Problems on liners: order

Theorem (Bruck-Ryser, 1948)

If a finite affine liner has order $n \in \{1,2\} + 4\mathbb{Z}$, then $n=a^2+b^2$ for some integer numbers a, b.

Corollary

The order of an affine liner cannot be equal to $6, 14, 22, \ldots$

Theorem (Lam, Thiel, Swiercz, 1989)

The order of an affine plane cannot be equal to $10 = 9^2 + 1^2$.

Problem

Is there an affine liner of order 12 ?

Theorem (Hall, 1943)

Every liner is a subliner of some projective plane.

Problem (Hall)

Is every finite liner a subliner of some finite projective plane?

Open Problems on liners: homogeneity

Definition

A liner X is called

- homogeneous if for every points $x, y \in X$ there exists an automorphism $A: X \rightarrow X$ such that $Ax = y$;
- 2-homogeneous if for every pairs $xy, x'y' \in X^2 \setminus \Delta$ there exists an automorphism $A:X\to X$ such that $A{\mathsf{x}}{\mathsf{y}}={\mathsf{x}}'{\mathsf{y}}';$
- 3-homogeneous if for every affine bases $\mathit{uow}, \mathit{u'o'w'} \in X^3$ there exists an automorphism $A: X \rightarrow X$ such that A uow $= u' o' w$

Theorem

Every Moufang affine liner is 3-homogeneous.

Problem

Is every 3-homogeneous affine liner Mouf[an](#page-102-0)[g?](#page-104-0)

Open Problems: homogeneity

Theorem

Every 2-homogeneous finite affine liner is Pappian.

Problem

Is every homogeneous finite affine liner Pappian?

Theorem

There exists an affine liner with trivial automorphism group.

Problem

Is there a finite affine (or projective) liner with trivial automorphism groups?

T. Banakh, Geometry of Liners, https://www.researchgate.net/publication/ 383409915_Geometry_of_Liners

Thank you!

Taras Banakh [Algebra and Geometry in Liners](#page-0-0)

す口下

→ 何 ▶ → ヨ ▶ → ヨ ▶

Þ

 299