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Basic geometric structure: liner

A liner is a mathematical structure (X ,L) that consists of a
set X whose elements are called points and a family L of
subsets of X whose elements are called lines, such that the
following axioms are satis�ed:

any two distinct points belongs to a unique line;

every line contains at least two points.

For two distinct points x , y of a liner (X ,L) let x y denote the
unique line L ∈ L containing these two points.
If x = y , then put x y := {x} = {y}.
For subsets A,B ⊆ X let

A B :=
⋃
a∈A

⋃
b∈B

a b

be the union of all lines connecting the points of the sets A,B .
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Flats and hulls

De�nition

A subset A of a liner X is called a �at if ∀x , y ∈ A (x y ⊆ A).

De�nition

The �at hull A of a subset A ⊆ X of a liner (X ,L) is the
smallest �at that contains the set A.
This �at is equal to the intersection of all �ats that contain
the set A.
It is also equal to the union of the increasing sequence of sets
(An)n∈ω, de�ned by the recursive formula:

A0 = A and An+1 = An An for n ≥ 0.
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Rank and Dimension

De�nition

For a subset A ⊆ X of a liner X , the cardinal

∥A∥ := min{|B | : B ⊆ X , A ⊆ B}
is called the rank of the set A, and the cardinal

dim(A) := ∥A∥ − 1

is called the dimension of the set A in the liner X .

Example

Lines are �ats of rank 2 and dimension 1.

De�nition

Flats of dimension 2 are called planes.
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Parallel Postulates: a�ne liners

De�nition

A liner (X ,L) is called a�ne if

∀o, x , y ∈ X ∀p ∈ x y \ o x ∃!u ∈ o y (u p ∩ o x = ∅).

o x

u

y

p
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Projective and proa�ne liners

De�nition: A liner (X ,L) is called projective if

∀o, x , y ∈ X ∀p ∈ x y ∀u ∈ o y \ {p} (u p ∩ o x ̸= ∅).

o x

u

y

p

De�nition: A liner (X ,L) is called proa�ne if

∀o,x ,y ∈X ∀p ∈ x y ∃v ∈ o y ∀u ∈ o y \{v} (u p∩o x ̸= ∅).
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Order of a�ne and projective liners

Observation

Any two lines in an a�ne liner contain the same number of
points. This number is called the order of an a�ne liner.

De�nition

A liner (X ,L) is n-long if every line L ∈ L has cardinality
|L| ≥ n.

Theorem (simple)

Any two lines in a 3-long projective liner contain the same
number of points.

De�nition: The order of a 3-long projective liner is the
number of points in a line minus 1.
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Prime and prime-power liners

De�nition

An a�ne or projective liner is called

prime if its order is a prime number;

prime-power if its order is a power of a prime number.

Empirical Fact:

All known �nite a�ne or projective liners are prime-power.
Moreover, every �nite 3-long projective liner of rank ∥X∥ ≥ 4
is prime-power.

Problem

Is every �nite 3-long projective plane prime-power?
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(Strongly) regular liners

De�nition

A liner (X ,L) is strongly regular if A ∪ {x} = A x for every
�at A ⊆ X and point x ∈ X \ A, that have a common point.

Theorem

A liner is strongly regular if and only if it is projective.

De�nition

A liner (X ,L) is regular if A ∪ L = A L for ev ery �at A ⊆ X
and line L ⊆ Xwith L ∩ A ̸= ∅.

Theorem (non-trivial)

Every 4-long a�ne liner is regular.
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Spaces

De�nition

A space is any 3-long regular liner of rank ≥ 3.

Example

Any 4-long a�ne liner of rank ∥X∥ ≥ 3 is an a�ne space.
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Projective completions of proa�ne liners

De�nition

A liner (X ,LX ) is a subliner of a liner (Y ,LY ) if X ⊆ Y and
LX = {X ∩ L : L ∈ LX and |X ∩ L| ≥ 2}.

De�nition

A projective liner Y is a projective completion of a liner X
if Y is 3-long, X is a subliner of Y and Y \ X ̸= Y .

Theorem (Kuiper�Dembowski)

Every proa�ne space X has a projective completion (which is
unique up to an isomorphism).
If ∥X∥ ≥ 4, then the remainder Y \ X is �at in Y .
If X is �nite and ∥X∥ = 3, then Y \ X is one of the following:
the empty set, a singleton, a line, or a punctured line.
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Part II: Desarguesian liners
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Subparallelity and parallelity of �ats

De�nition

Given two �ats A,B in a liner (X ,L), we write
A |

∣∣B and say that the �at A is subparallel to the �at B if

A ⊆ B ∪ {a} for every point a ∈ A;

A ∥ B and say that the �at A is parallel to the �at B if
A |

∣∣B and B |
∣∣A.

Theorem (non-trivial)

For every �at A and point x in an a�ne space X there exists a
unique �at B ⊆ X with x ∈ B ∥ A.

Corollary (Playfair Axiom)

For every line L and point x in an a�ne space, there exists a
unique line Λ that contains the point x and is paralell to L.

Taras Banakh Algebra and Geometry in Liners



Subparallelity and parallelity of �ats

De�nition

Given two �ats A,B in a liner (X ,L), we write
A |

∣∣B and say that the �at A is subparallel to the �at B if

A ⊆ B ∪ {a} for every point a ∈ A;

A ∥ B and say that the �at A is parallel to the �at B if
A |

∣∣B and B |
∣∣A.

Theorem (non-trivial)

For every �at A and point x in an a�ne space X there exists a
unique �at B ⊆ X with x ∈ B ∥ A.

Corollary (Playfair Axiom)

For every line L and point x in an a�ne space, there exists a
unique line Λ that contains the point x and is paralell to L.

Taras Banakh Algebra and Geometry in Liners



Subparallelity and parallelity of �ats

De�nition

Given two �ats A,B in a liner (X ,L), we write
A |

∣∣B and say that the �at A is subparallel to the �at B if

A ⊆ B ∪ {a} for every point a ∈ A;

A ∥ B and say that the �at A is parallel to the �at B if
A |

∣∣B and B |
∣∣A.

Theorem (non-trivial)

For every �at A and point x in an a�ne space X there exists a
unique �at B ⊆ X with x ∈ B ∥ A.

Corollary (Playfair Axiom)

For every line L and point x in an a�ne space, there exists a
unique line Λ that contains the point x and is paralell to L.

Taras Banakh Algebra and Geometry in Liners



Desargues Theorem

Lines L1, . . . , Ln in a liner (X ,L) are called paraconcurrent if
they are either pairwise parallel or have a common point.

Theorem (Desargues (1591 � 1661))

Let (X ,L) be an a�ne space of dimension dim(X ) ≥ 3.
For every paraconcurrent lines A,B ,C ∈ L and points
a,a′ ∈A \ (B ∪C ), b,b′ ∈B \ (A∪C ), c ,c ′ ∈C \ (A∪B) with
a b ∥ a′ b′ and b c ∥ b′ c ′, we have a c ∥ a′ c ′.

B

C

A

o b
a

c

b′

a′

c ′
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Non-Desarguesian planes: the Moulton plane

Desargues Theorem is not necessarily true in a�ne spaces of
dimension 2. A counterexample is the Moulton plane,
discovered by an american astronomer Moulton in 1902.

The Moulton plane is the liner X := R× R endowed with the
family of lines

L := {La,b : a, b ∈ R} ∪ {Lc : c ∈ R}, where

Lc := {(c , y) : y ∈ R},
La,b := {(x , ax + b) : x ∈ R} if a ≥ 0,

La,b := {(x , 1
2
ax + b) : x ≤ 0} ∪ {(x , ax + b) : x ≥ 0},

if a < 0.
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The Moulton plane is non-Desarguesian

A

C

B

a a′

b b′

c c ′
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Desarguesian liners

De�nition

An a�ne liner (X ,L) is called Desarguesian if for any
concurrent lines A,B ,C ∈ L and points a, a′ ∈ A \ (B ∪ C ),
b, b′ ∈ B \ (A ∪ C ), c , c ′ ∈ C \ (A ∪ B) with a b ∥ a′ b′ and
b c ∥ b′ c ′ we have a c ∥ a′ c ′.

a′

c

c ′

a

b

b′

By the Desargues Theorem, every a�ne space of dimension
≥ 3 is Desarguesian.The Moulton plane is not Desarguesian.
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Thalesian liners

De�nition

An a�ne liner (X ,L) is called Thalesian if for any parallel
lines A,B ,C in X and any points a, a′ ∈ A \ (B ∪ C ),
b, b′ ∈ B \ (A ∪ C ), c , c ′ ∈ C \ (A ∪ B) with a b ∥ a′ b′ and
b c ∥ b′ c ′, we have a c ∥ a′ c ′.

A

B

C

a

c

b

a′

c ′

b′

It can be shown that every Desarguesian a�ne space is
Thalesian. The Moulton plane is not Thalesian.
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Moufang liners

De�nition

An a�ne liner X is Moufang if for any distinct parallel lines
A,B ,C ,D and distinct points a, a′ ∈ A, b, b′ ∈ B , c , c ′ ∈ C
with ∅ ̸= a b ∩ a′ b′ ⊆ D and ∅ ̸= b c ∩ b′ c ′ ⊆ D we have
∅ ̸= a c ∩ a′ c ′ ⊆ D.

D

C

B

A

c

a

b

a′

b′

c ′
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Pappian liners

De�nition

An a�ne liner (X ,L) is Pappian if for any concurrent lines
L, L′ ∈ L and any distinct points a, b, c ∈ L \ L′ and
a′, b′, c ′ ∈ L′ \ L with a b′ ∥ a′ b and b c ′ ∥ b′ c , we have
a c ′ ∥ a′ c .

L

L′

o a b c

c ′

b′

a′
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Para-Pappian liners

De�nition

An a�ne liner (X ,L) is para-Pappian if for any parallel lines
L, L′ ∈ L and any distinct points a, b, c ∈ L \ L′ and
a′, b′,c ′ ∈ L′ \ L with a b′∥a′ b and b c ′∥b′ c , we have a c ′∥a′ c .

L

L′

a b c

c ′ b′ a′
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Papp⇒Desargues⇒Moufang⇒Thales⇒para-Papp

For every (�nite) a�ne space, the following implications hold:

Pappian

��
Desarguesian

��

+�nite (by Wedderburn Theorem)

XX

Moufang

��

+�nite (by Artin�Zorn Theorem)

XX

Thalesian

��

+prime

YY

para-Pappian

+prime

[[

Example: There exists an a�ne plane of order 9 which is
Thalesian but not Moufang.
OpenProblem: Is every para-Pappian a�ne space Thalesian?
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OpenProblem: Is every para-Pappian a�ne space Thalesian?
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Algebraization of Desarguesian a�ne spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian a�ne space (X ,L) determines a canonical

vector space X⃗ over certain corps RX that acts on X so that
the lines in X can be writen as {x + sv⃗ : s ∈ RX}, where
x ∈ X and v⃗ ∈ X⃗ \ {⃗0}. The corps RX is a �eld i� X is
Pappian.

Question

How does the structure of a Desarguesian liner determine the
structure of a vector space? What is the nature of vectors and
how to de�ne scalars and operations over vectors and scalars?
Why do they have the properties, well-known from the Linear
Algebra?
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Part III: Vectors and Scalars

Part III

Vectors and Scalars
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A�ne transformations of lines

De�nition (of parallel projection)

A bijective map F : A → B between two lines in an a�ne
space (X ,L) is called

a parallel projection along a line Λ,
if F = {(a, b) ∈ A× B : a b |

∣∣Λ};
parallel projection if F is a parallel projection along some
line Λ;

parallel shift if F : A → B is a parallel projection between
parallel lines A,B ;

parallel translation if F is a composition of �nitely many
parallel shifts between lines;

a�ne transformation if F is a composition of �nitely
many parallel projections between lines.
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Parallel projections between lines

Λ B

A

F
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Uniqueness theorem for parallel translations

Theorem (non-trivial)

A�ne space (X ,L) is Thalesian if and only if for any points
x , y , z ∈ X with x ̸= y there exist unique line Λ and parallel
translation F : x y → Λ with F (x) = z .

This theorem allows to de�ne a notion of a vector in a
Thalesian a�ne space in the standard way as an equivalence
class of ordered pairs pf points.
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Vectors in Thalesian a�ne spaces

We say that two pairs of points xy , uv ∈ X 2 in an a�ne space
(X ,L) are translation equivalent if Fxy = uv for some parallel
translation F between lines in X . The relation of translation
equivalence divides the set X 2 of pairs of points into disjoint
equivalence classes, called vectors.
For a pair of point x , y ∈ X , the vector −→xy is the class of all
ordered pairs, which are translation equivalent to the pair xy .

The equivalence class {xx : x ∈ X} is called
the zero vector and is denoted by 0⃗.
The set of all vectors in X is denoted by X⃗ .

The preceding theorem implies that for every vector v⃗ ∈ X⃗
and point x ∈ X in a Thalesian a�ne space (X ,L) there
exists a unique point y ∈ X such that −→xy = v⃗ (i.e., the vector
v⃗ can be constructed from any given point x).
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Operations on vectors

Theorem

For a Thalesian a�ne space X there exists a unique binary
operation + : X⃗ × X⃗ → X⃗ , turning X⃗ into a commutative
group and has the proerty:

∀x , y , z ∈ X (−→xy +−→yz = −→xz).

Theorem

For any Thalesian a�ne space X there exists a unique action
+ : X⃗ × X → X such that:

1 ∀v⃗ , u⃗ ∈ X⃗ ∀x ∈ X (v⃗ + u⃗) + x = v⃗ + (u⃗ + x);

2 ∀x , y ∈ X −→xy + x = y .
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Uniqueness Theorem for a�ne transformations

Theorem (non-trivial)

An a�ne space (X ,L) is Desarguesian if and only if for any
pairs xy , uv ∈ X 2 with x ̸= y and u ̸= v there exists a unique
a�ne transformations F : x y → u v with Fxy = uv .

This theorem allows to de�ne a notion of a scalar in a
Desarguesian a�ne space as an equivalence class of ordered
linear triples,
by analogy with the notion of vector.

A linear triple in a liner X is an ordered triple xyz ∈ X 3 with
y ∈ x z and x ̸= z .

Taras Banakh Algebra and Geometry in Liners



Linear triples and their a�ne transformations

Two linear triples xyz , uvw ∈ X 3 are called a�nely equivalent
if Fxyz = uvw for some a�ne transformation F between lines.

The relation of a�ne equivalence divides the set
...
X of linear

triples into disjoint equivalence classes, called scalars.

For a linear triple xzy ∈
...
X , the scalar −→xyz is the class of all

linear triples, which are a�nely equivalent to the triple xyz .

The set of scalars in X is denoted by RX .
This set contains two distinguished elements:
0 := {xyz ∈ X 3 : x=y ̸=z} and 1 := {xyz ∈ X 3 : x ̸=y=z}.
The preceding theorem implies that for any scalar α and pair
xz ∈ X 2 with x ̸= z in a Desarguesian a�ne space (X ,L)
there exists a unique point y ∈ X such that xyz ∈ α.
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Operations of multiplication and addition of scalars

Theorem

For every Desarguesian a�ne space X
there exist unique binary operations

· : RX × RX → RX and + : RX × RX → RX ,

turning RX into a corps (= division ring) and have the
following properties:

∀oxy , oye ∈
...
X −→oxy · −→oye = −→oxe;

∀oxe, oye, oze ∈
...
X (−→ox +−→oy = −→oz) ⇒ (−→oxe +−→oye = −→oze).
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Multiplication of a vector by a scalar

Theorem

For every Desarguesian a�ne space X there exists a unique
operation of multiplication of scalars by vectors
· : RX × X⃗ → X⃗ , · : (s, v⃗) 7→ s·v⃗ , satisfying the axioms:

1 ∀s, t ∈ RX ∀v⃗ ∈ X⃗ (st) · v⃗ = s · (t · v⃗);
2 ∀s, t ∈ RX ∀v⃗ ∈ X⃗ (s + t) · v⃗ = s · v⃗ + t · v⃗ ;
3 ∀s ∈ RX ∀v⃗ , u⃗ ∈ X⃗ s · (v⃗ + u⃗) = s · v⃗ + s · u⃗.
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Pappus and commutativity of the scalar corps

Theorem (Pappus of Alexandria; 270�350)

For a Desarguesian a�ne space X , the corps RX is a �eld i�
the Pappus Axiom holds: for any concurrent lines L, L′ ∈ L
and distinct points x , y , z ∈ L \ L′, x ′, y ′, z ′ ∈ L′ \ L,
if x y ′ ∥ x ′ y and y z ′ ∥ y ′ z , then x z ′ ∥ x ′ z .

x y z

z ′

y ′

x ′
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Part IV: non-Desarguesian planes

Part III:

non-Desarguesian

Geometry
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Algebraization of a�ne planes

A�ne spaces of dimension ≥ 3 are Desarguesian and hence
admit a canonical structure of a vector space over some corps.

For a�ne planes (i.e., a�ne spaces of dimension 2), the
situation is more complicated.

Nonetheless, any a�ne plane can be algebraized by a suitable
ternary-ring, as was suggested by Marshall Hall in 1943.
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Based a�ne planes

De�nition

An a�ne base in an a�ne plane Π is any ordered triple of
non-collinear points uow ∈ Π3, called the unit, origin, and
biunit of the a�ne base uow .
An a�ne plane endowed with an a�ne base is called a based
a�ne plane.

By the Playfair Axiom (holding in a�ne planes), for every
a�ne base uow in an a�ne plane Π, there exists a unique
point e ∈ Π completing the triangle uow to a parallelogram,
i.e., u e ∥ o w and w e ∥ o u.
The point e is called the diunit of the a�ne base uow and the
line o e is the diagonal of the a�ne base uow .
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Based a�ne planes

∆

o u

w e

o, the origin
u, the unit
w , the biunit
e, the diunit
o u, the horizontal axis
o w , the vertical axis
∆ := o e, the diagonal
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Coordinates in based a�ne planes

Let (Π, uow) be a based a�ne plane. Since Π is Playfair, for
every point p ∈ Π there exist unique points p′, p′′ ∈ ∆
(called the horizontal and vertical coordinates of p)
such that p p′ |

∣∣ o w and p p′′ |
∣∣ o u.

∆

p′

p′′
p

o u

ew
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The coordinate chart of a based a�ne plane

The map C : Π → ∆2, C : p 7→ p′p′′, is a bijective map from
the a�ne plane Π onto the square ∆2 of the diagonal ∆ of the
a�ne base uow . This bijective map C : Π → ∆2 is called the
coordinate chart of the based a�ne plane.
The set ∆2 endowed with the family of lines {C [L] : L ∈ L} is
called the coordinate plane of the based a�ne plane (Π, uow).
The coordinate plane ∆2 carries the canonical base (eo,oo,oe).

∆

p′

p′′
p

o u

ew C

Π ∆2

∆o

o∆

p′o

p′p′

op′′ p′′p′′
p′p′′

oo eo

eeoe
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Equations of lines in coordinates

The equations of non-vertical lines in based a�ne planes can
be written down using a special ternary operation
Tuow : ∆3 → ∆, which assigns to every triple xab ∈ ∆3 the
unique point y ∈ ∆ denoted by x×a+b such that ob xy |

∣∣ oo ea.
The point y is the unique common point of the vertical line
Lx := {p : p′ = x} and the unique line La,b which contains the
point ob ∈ o w (with coordinates o, b) and is parallel to the
line Lo,a := oo ea connnecting the points o (with coordinates
o, o) and the point ea (with coordinates e, a).
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The ternary operation
∆ La,b

La,o

o u

w

a ea

e

b

x

y = x×a+bxy

ob
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Equations of lines y = x×a+b

The de�nition of the ternary operation Tuow ensures that the
line La,b is determined by the equation y = x×a+b, more
precisely,

La,b = {p ∈ Π : p′′ = p′×a+b} = C−1[{xy ∈ ∆2 : y = x×a+b}].
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Properties of the ternary-operation Tuow

Theorem

For every based a�ne plane (Π, uow), the ternary operation

Tuow : ∆3 → ∆, Tuow : xab 7→ x×a+b,

has the following four properties:

1 x×o+b = b = o×x+b and x×e+o = x = e×x+o for every
points x , b ∈ ∆;

2 for every points a, x , y ∈ ∆, there exists a unique point
b ∈ ∆ such that x×a+b = y ;

3 for every points a, b, c , d ∈ ∆ with a ̸= c , there exists a
unique point x ∈ ∆ such that x×a+b = x×c+d ;

4 for every points x̌ , y̌ , x̂ , ŷ ∈ ∆ with x̌ ̸= x̂ , there exist
unique points a, b ∈ ∆ such that x̌×a+b = y̌ and
x̂×a+b = ŷ .
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Ternary-rings

De�nition (Hall, 1943): A ternary-ring is a set R endowed
with a ternary operation

T : R3 → R , T : xab 7→ x×a+b,
satisfying the following four axioms:

(T1) there exist distinct elements 0, 1 ∈ R such that ∀x , b ∈ R
x×0+b = b = 0×x+b and x×1+0 = x = 1×x+0;

(T2) for every elements a, b, c , d ∈ R with a ̸= c , there exists
a unique element x ∈ R such that x×a+b = x×c+d ;

(T3) for every elements a, x , y ∈ R , there exists a unique
element b ∈ R such that x×a+b = y ;

(T4) ∀x̌ , y̌ , x̂ , ŷ ∈ R with x̌ ̸= x̂ , there exist unique elements
a, b ∈ R such that x̌×a+b = y̌ and x̂×a+b = ŷ .

The (unique) elements 0, 1 appearing in the axiom (T1) are
called the zero and unit of the ternary-ring R .
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The coordinate plane of a ternary-ring

Given a ternary-ring R , consider the a�ne plane whose set of
point is R2 and the family of lines is

L := {Lc : c ∈ R} ∪ {La,b : a, b ∈ R},
where

Lc := {xy ∈ R2 : x = c} and La,b := {xy ∈ R2 : y = x×a+b}
for a, b, c ∈ R . The a�ne plane R2 is endowed with the
canonical a�ne base (10, 00, 01) and hence is a based a�ne
plane, called the coordinate plane of the ternary-ring R .

Theorem (Hall, 1943)

For every ternary-ring R its coordinate plane R2 is a based
a�ne plane. Moreover, for every based a�ne plane (Π, uow),
the coordinate chart C : Π → ∆2 is an isomorphism between
the based a�ne plane (Π, uow) and the coordinate plane of
the ternary-ring (∆2,Tuow ).
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Addition and multiplication in ternary-rings

Every ternary-ring (R ,T ) carries two binary operations

+ : R × R → R , + : (x , b) 7→ x + b := T (x , 1, b) = x×1+b,

· : R × R → R , · : (x , a) 7→ x · a := T (x , a, 0) = x×a+0,

called the addition and multiplication operations in R .

De�nition: A ternary-ring R is linear if
∀x , a, b ∈ R x×a+b = (x ·a)+b := (x×a+0)×1+b.

Therefore, the ternary operation of a linear ternary-ring is
uniquely determined by the addition and multiplication.

Example: Every corps R endowed with the ternary operation
T : R3 → R , T : (x , a, b) 7→ (x · a) + b,

is a linear ternary-ring.
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Loops and 0-loops

A magma is a set endowed with a binary operation.
A magma M is

unital if it contains an element 1 ∈ M , called the identity
of M , such that ∀x ∈ M 1 · x = x = x · 1;
a loop if M is a unital magma such that
∀a, b ∈ M ∃!x , y ∈ M (x · a = b ∧ a · y = b);

0-magma if M contains an element 0 ∈ M , called the
zero of M , such that ∀x ∈ M x · 0 = 0 = 0 · x ;
a 0-loop if M is a unital 0-magma such that
∀a ∈ M \{0} ∀b ∈ M ∃!x , y ∈ M (x ·a = b ∧ a ·y = b).
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Additive and multiplicative loops of a ternary-ring

Theorem

If R is a ternary-ring, then (R ,+) is a loop and (R , ·) is a
0-loop such that for every a ∈ R \ {1} and b ∈ R , the
equation x · a = x + b has a unique solution x ∈ R .

De�nition

Let R be a ternary-ring and R∗ := R \ {0}. The loops (R ,+)
and (R∗, ·) are called the additive loop and the multiplicative
loop of the ternary-ring R , respectively.

Taras Banakh Algebra and Geometry in Liners



Additive and multiplicative loops of a ternary-ring

Theorem

If R is a ternary-ring, then (R ,+) is a loop and (R , ·) is a
0-loop such that for every a ∈ R \ {1} and b ∈ R , the
equation x · a = x + b has a unique solution x ∈ R .

De�nition

Let R be a ternary-ring and R∗ := R \ {0}. The loops (R ,+)
and (R∗, ·) are called the additive loop and the multiplicative
loop of the ternary-ring R , respectively.

Taras Banakh Algebra and Geometry in Liners



Some properties of ternary-rings

A ternary-ring R is called
commutative-plus if ∀x , y ∈ R x + y = y + x ;
commutative-dot if ∀x , y ∈ R x · y = y · x ;
commutative if it is commutative-plus and commutative-dot;

associative-plus if ∀x , y , z ∈ R x + (y + z) = (x + y) + z ;
associative-dot if ∀x , y , z ∈ R x · (y · z) = (x · y) · z ;
associative if R is associative-plus and associative-dot;

inversive-plus if ∀x ∈ R ∃x− ∈ R ∀y ∈ R (y + x) + x− = y ;
inversive-dot if ∀x ∈ R ∃x−1 ∈ R ∀y ∈ R (y · x) · x−1 = y ;
inversive if R is inversive-plus and inversive-dot;

left-distributive if ∀a, x , y ∈ R a · (x + y) = (a · x) + (a · y);
right-distributive if ∀x , y , b ∈ R (x + y) · b = (x · b) + (y · b);
distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative;
a �eld if R is a commutative corps.

Taras Banakh Algebra and Geometry in Liners



Some properties of ternary-rings

A ternary-ring R is called
commutative-plus if ∀x , y ∈ R x + y = y + x ;
commutative-dot if ∀x , y ∈ R x · y = y · x ;
commutative if it is commutative-plus and commutative-dot;

associative-plus if ∀x , y , z ∈ R x + (y + z) = (x + y) + z ;
associative-dot if ∀x , y , z ∈ R x · (y · z) = (x · y) · z ;
associative if R is associative-plus and associative-dot;

inversive-plus if ∀x ∈ R ∃x− ∈ R ∀y ∈ R (y + x) + x− = y ;
inversive-dot if ∀x ∈ R ∃x−1 ∈ R ∀y ∈ R (y · x) · x−1 = y ;
inversive if R is inversive-plus and inversive-dot;

left-distributive if ∀a, x , y ∈ R a · (x + y) = (a · x) + (a · y);
right-distributive if ∀x , y , b ∈ R (x + y) · b = (x · b) + (y · b);
distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative;
a �eld if R is a commutative corps.

Taras Banakh Algebra and Geometry in Liners



Some properties of ternary-rings

A ternary-ring R is called
commutative-plus if ∀x , y ∈ R x + y = y + x ;
commutative-dot if ∀x , y ∈ R x · y = y · x ;
commutative if it is commutative-plus and commutative-dot;

associative-plus if ∀x , y , z ∈ R x + (y + z) = (x + y) + z ;
associative-dot if ∀x , y , z ∈ R x · (y · z) = (x · y) · z ;
associative if R is associative-plus and associative-dot;

inversive-plus if ∀x ∈ R ∃x− ∈ R ∀y ∈ R (y + x) + x− = y ;
inversive-dot if ∀x ∈ R ∃x−1 ∈ R ∀y ∈ R (y · x) · x−1 = y ;
inversive if R is inversive-plus and inversive-dot;

left-distributive if ∀a, x , y ∈ R a · (x + y) = (a · x) + (a · y);
right-distributive if ∀x , y , b ∈ R (x + y) · b = (x · b) + (y · b);
distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative;
a �eld if R is a commutative corps.

Taras Banakh Algebra and Geometry in Liners



Some properties of ternary-rings

A ternary-ring R is called
commutative-plus if ∀x , y ∈ R x + y = y + x ;
commutative-dot if ∀x , y ∈ R x · y = y · x ;
commutative if it is commutative-plus and commutative-dot;

associative-plus if ∀x , y , z ∈ R x + (y + z) = (x + y) + z ;
associative-dot if ∀x , y , z ∈ R x · (y · z) = (x · y) · z ;
associative if R is associative-plus and associative-dot;

inversive-plus if ∀x ∈ R ∃x− ∈ R ∀y ∈ R (y + x) + x− = y ;
inversive-dot if ∀x ∈ R ∃x−1 ∈ R ∀y ∈ R (y · x) · x−1 = y ;
inversive if R is inversive-plus and inversive-dot;

left-distributive if ∀a, x , y ∈ R a · (x + y) = (a · x) + (a · y);
right-distributive if ∀x , y , b ∈ R (x + y) · b = (x · b) + (y · b);
distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative;
a �eld if R is a commutative corps.

Taras Banakh Algebra and Geometry in Liners



Some properties of ternary-rings

A ternary-ring R is called
commutative-plus if ∀x , y ∈ R x + y = y + x ;
commutative-dot if ∀x , y ∈ R x · y = y · x ;
commutative if it is commutative-plus and commutative-dot;

associative-plus if ∀x , y , z ∈ R x + (y + z) = (x + y) + z ;
associative-dot if ∀x , y , z ∈ R x · (y · z) = (x · y) · z ;
associative if R is associative-plus and associative-dot;

inversive-plus if ∀x ∈ R ∃x− ∈ R ∀y ∈ R (y + x) + x− = y ;
inversive-dot if ∀x ∈ R ∃x−1 ∈ R ∀y ∈ R (y · x) · x−1 = y ;
inversive if R is inversive-plus and inversive-dot;

left-distributive if ∀a, x , y ∈ R a · (x + y) = (a · x) + (a · y);
right-distributive if ∀x , y , b ∈ R (x + y) · b = (x · b) + (y · b);
distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative;
a �eld if R is a commutative corps.
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Pappian ⇔ commutative-dot

De�nition: A ternary-ring R is called a ternary-ring of an
a�ne plane Π if Π is isomorphic to the coordinate plane R2 of
the ternary-ring R .

Theorem (Klingenberg, 1955)

For an a�ne plane Π, the following conditions are equivalent:

1 Π is Pappian;

2 every ternary-ring of Π is commutative-dot;

3 every/some ternary-ring of Π is a �eld;

4 for every points a, b, c , α, β, γ ∈ X with

a b ∥ α c ∥ β γ ∦ b c ∥ a γ ∥ α β,

the lines a α, b β, c γ are paraconcurrent.
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Commutative-dot a�ne planes

Geometrically, the last condition
(responsible for the commutativity of multiplication):
For every points a, b, c , α, β, γ ∈ X with

a b ∥ α c ∥ β γ ∦ b c ∥ a γ ∥ α β,

the lines a α, b β, c γ are paraconcurrent,
looks as follows:

a

c

γ

α

β

b

Taras Banakh Algebra and Geometry in Liners



Desarguesian ⇔ associative-dot

Theorem (Klingenberg, 1955)

For an a�ne plane Π, the following conditions are equivalent:

1 Π is Desarguesian;

2 every ternary-ring of Π is associative-dot;

3 every/some ternary-ring of Π is a corps;

4 for every points o, a, b, c , d , α, β, γ, δ ∈ Π with
a b ∥ c d ∥ α β ∥ γ δ ∦ a d ∥ b c ∥ β γ ∥ α δ and
o ∈ a α ∩ b β ∩ c γ, we have o ∈ d δ.
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Associative-dot a�ne planes

Geometrically, the last condition
(responsible for the associativity of multiplication):

for every points o, a, b, c , d , α, β, γ, δ ∈ Π with
a b ∥ c d ∥ α β ∥ γ δ ∦ a d ∥ b c ∥ β γ ∥ α δ and
o ∈ a α ∩ b β ∩ c γ, we have o ∈ d δ,

looks as follows:

o

a
d

b c
α δ

β γ
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Moufang ⇔ inversive-dot

Theorem (Skornyakov, Saint-Soucie, 1952)

For an a�ne plane Π, the following conditions are equivalent:

1 Π is Moufang;

2 every ternary-ring of Π is inversive-dot;

3 every/some ternary-ring of Π is linear, distributive,
inversive-dot and commutative-plus;

4 for every line D ⊂ X and points o, a, c , α, γ ∈ D and
b, d , β, δ ∈ X \ D with
a b ∥ c d ∥ α β ∥ γ δ ∦ a d ∥ b c ∥ β γ ∥ α δ and o ∈ b β,
we have o ∈ d δ.
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Inversive-dot a�ne planes

Geometrically, the last condition
(responsible for the inversivity of multiplication):

∀ line D and points o, a, c , α, γ ∈ D and b, d , β, δ ∈ X \ D
with a b ∥ c d ∥ α β ∥ γ δ ∦ a d ∥ b c ∥ β γ ∥ α δ and
o ∈ b β, we have o ∈ d δ,

looks as follows:

o

a

c

α

γ

b

d

δ

β
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Thalesian ⇔ quasi-�eld

De�nition: A ternary-ring R is called a quasi-�eld if R is
linear, right-distributive, and associative-plus.

Theorem (Veblen, 1916)

For an a�ne plane Π, the following conditions are equivalent:

1 Π is Thalesian;

2 every ternary-ring of Π is a quasi-�eld;

3 some ternary-ring of Π is a quasi-�eld.

A

B

C

a

c

b

a′

c ′

b′
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para-Pappian ⇔ commutative-plus

Theorem

An a�ne plane Π is para-Pappian if and only if every
ternary-ring of Π is commutative-plus.

L

L′

a b c

c ′ b′ a′
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Prime a�ne planes

Theorem

For a prime a�ne plane Π, the following conditions are
equivalent:

1 Π is Pappian;

2 Π is Desarguesian;

3 Π is Moufang;

4 Π is Thalesian;

5 Π is para-Pappian;

6 every ternary-ring of Π is inversive-plus;

7 ∀D ∈ LΠ ∀a, d , α, δ ∈ D ∀b, c , β, γ ∈ Π \ D with
a b ∥ c d ∥ α β ∥ γ δ ∦ a c ∥ b d ∥ α γ ∥ β δ and b β ∥ D,
we have c γ ∥ D.
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Inversive-dot a�ne planes

Geometrically, the last condition
(responsible for the inversivity of the addition):

∀D ∈ LΠ ∀a, d , α, δ ∈ D ∀b, c , β, γ ∈ Π \ D
(a b ∥ c d ∥ α β ∥ γ δ ∦ a c ∥ b d ∥ α γ ∥ β δ ∧ b β ∥ D) ⇒ c γ ∥ D

looks as follows:

a

db

c

β δ

γα
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Alegbra versus Geometry in a�ne planes

Ternary-ring: A�ne plane:

commutative-dot

��

ks +3 Pappian

��
associative-dot

��

ks +3 Desarguesian

��

+�nite

YY

inversive-dot

��

ks +3Moufang

��

+�nite

YY

quasi-�eld

��

ks +3 Thalesian

��

+prime

YY

commutative-plus

��

ks +3 para-Pappian

+prime

[[

inversive-plus

+prime

YY
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Part V: Selected Open Problems

Part V:

Selected Open Problems
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Open Problems on liners: order

An a�ne plane X is called prime (resp. prime power) if its
order is equal to (some power of) a prime number.

Problem

Is any �nite a�ne plane prime power?

The best existing result in the positive direction is:

Theorem (L�uneburg, 1960)

Every �nite commutative-plus a�ne liner is prime power.

Problem

Is any �nite associative-plus a�ne liner prime power?

Problem

Is prime a�ne liner of (para-)Pappian?
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Open Problems on liners: order

Theorem (Bruck�Ryser, 1948)

If a �nite a�ne liner has order n ∈ {1, 2}+ 4Z, then
n = a2 + b2 for some integer numbers a, b.

Corollary

The order of an a�ne liner cannot be equal to 6, 14, 22,...

Theorem (Lam, Thiel, Swiercz, 1989)

The order of an a�ne plane cannot be equal to 10 = 92 + 12.

Problem

Is there an a�ne liner of order 12?

Taras Banakh Algebra and Geometry in Liners



Open Problems: embeddings

Theorem (Hall, 1943)

Every liner is a subliner of some projective plane.

Problem (Hall)

Is every �nite liner a subliner of some �nite projective plane?
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Open Problems on liners: homogeneity

De�nition

A liner X is called

homogeneous if for every points x , y ∈ X there exists an
automorphism A : X → X such that Ax = y ;

2-homogeneous if for every pairs xy , x ′y ′ ∈ X 2 \∆ there
exists an automorphism A : X → X such that Axy = x ′y ′;

3-homogeneous if for every a�ne bases uow , u′o ′w ′ ∈ X 3

there exists an automorphism A : X → X such that
Auow = u′o ′w .

Theorem

Every Moufang a�ne liner is 3-homogeneous.

Problem

Is every 3-homogeneous a�ne liner Moufang?
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Open Problems: homogeneity

Theorem

Every 2-homogeneous �nite a�ne liner is Pappian.

Problem

Is every homogeneous �nite a�ne liner Pappian?

Theorem

There exists an a�ne liner with trivial automorphism group.

Problem

Is there a �nite a�ne (or projective) liner with trivial
automorphism groups?
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