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Basic geometric structure: liner

A liner is a mathematical structure (X, £) that consists of a
set X whose elements are called points and a family £ of
subsets of X whose elements are called lines, such that the
following axioms are satisfied:

@ any two distinct points belongs to a unique line;

@ every line contains at least two points.
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Basic geometric structure: liner

A liner is a mathematical structure (X, £) that consists of a
set X whose elements are called points and a family £ of
subsets of X whose elements are called lines, such that the
following axioms are satisfied:

@ any two distinct points belongs to a unique line;

@ every line contains at least two points.

For two distinct points x, y of a liner (X, L) let x y denote the
unique line L € £ containing these two points.

If x =y, then put x y := {x} = {y}.
For subsets A, B C X let

AB=|JJab

be the union of all lines connecting the points of the sets A, B.
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Flats and hulls

Definition

A subset A of a liner X is called a flat if Vx,y € A (x y C A).
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Flats and hulls

A subset A of a liner X is called a flat if Vx,y € A (x y C A).

Definition

The flat hull A of a subset A C X of a liner (X, £) is the
smallest flat that contains the set A.

This flat is equal to the intersection of all flats that contain
the set A.
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Flats and hulls

A subset A of a liner X is called a flat if Vx,y € A (x y C A).

Definition
The flat hull A of a subset A C X of a liner (X, £) is the
smallest flat that contains the set A.

This flat is equal to the intersection of all flats that contain
the set A.

It is also equal to the union of the increasing sequence of sets
(A;)new, defined by the recursive formula:

A=A and A1 =A, A, for n>0.
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Rank and Dimension

Definition
For a subset A C X of a liner X, the cardinal
|A|| == min{|B|: BC X, AC B}
is called the rank of the set A, and the cardinal
dim(A) .= |JA|| - 1

is called the dimension of the set A in the liner X.

v

Lines are flats of rank 2 and dimension 1.
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Rank and Dimension

Definition
For a subset A C X of a liner X, the cardinal
|A|| == min{|B|: BC X, AC B}
is called the rank of the set A, and the cardinal
dim(A) .= |JA|| - 1

is called the dimension of the set A in the liner X.

Lines are flats of rank 2 and dimension 1.

Definition

Flats of dimension 2 are called planes.
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Parallel Postulates: affine liners

Definition
A liner (X, L) is called affine if

Vo,x,ye X Vpexy\ox Jlucoy (upNox=9)
4
u p\
o X
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Projective and proaffine liners

Definition: A liner (X, £) is called projective if
Vo,x,ye X Vpexy Yuecoy\{p} (upnox+# ). J

y

J
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Projective and proaffine liners

Definition: A liner (X, £) is called projective if
Vo,x,ye X Vpexy Yuecoy\{p} (upnox+# ). J

y

p
u

0 X
Definition: A liner (X, £) is called proaffine if
Vox,yeXVpexydveoyVueoy\{v} (upnox # @)J
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Order of affine and projective liners

Observation

Any two lines in an affine liner contain the same number of
points. This number is called the order of an affine liner.

v
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Order of affine and projective liners

Observation

Any two lines in an affine liner contain the same number of
points. This number is called the order of an affine liner.

Definition

A liner (X, L) is n-long if every line L € £ has cardinality
L[> n.

v
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Order of affine and projective liners

Any two lines in an affine liner contain the same number of
points. This number is called the order of an affine liner.

A liner (X, L) is n-long if every line L € £ has cardinality
L[> n.

Theorem (simple)

Any two lines in a 3-long projective liner contain the same
number of points.

v
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Order of affine and projective liners

Any two lines in an affine liner contain the same number of
points. This number is called the order of an affine liner.

A liner (X, L) is n-long if every line L € £ has cardinality
L[> n.

Theorem (simple)

Any two lines in a 3-long projective liner contain the same
number of points.

Definition: The order of a 3-long projective liner is the
number of points in a line minus 1.

v
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Prime and prime-power liners

Definition

An affine or projective liner is called
@ prime if its order is a prime number;

@ prime-power if its order is a power of a prime number.
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Prime and prime-power liners

Definition

An affine or projective liner is called
@ prime if its order is a prime number;

@ prime-power if its order is a power of a prime number.

Empirical Fact:

All known finite affine or projective liners are prime-power.
Moreover, every finite 3-long projective liner of rank || .X|| > 4
IS prime-power.
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Prime and prime-power liners

Definition

An affine or projective liner is called
@ prime if its order is a prime number;

@ prime-power if its order is a power of a prime number.

Empirical Fact:

All known finite affine or projective liners are prime-power.
Moreover, every finite 3-long projective liner of rank || .X|| > 4
IS prime-power.

Problem
Is every finite 3-long projective plane prime-power?
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(Strongly) regular liners

A liner (X, L) is strongly regular if AU {x} = A x for every
flat A C X and point x € X \ A, that have a common point.

Taras Banakh Algebra and Geometry in Liners



(Strongly) regular liners

Definition

A liner (X, L) is strongly regular if AU {x} = A x for every
flat A C X and point x € X \ A, that have a common point.

A liner is strongly regular if and only if it is projective.

v
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(Strongly) regular liners

Definition

A liner (X, L) is strongly regular if AU {x} = A x for every
flat A C X and point x € X \ A, that have a common point.

A liner is strongly regular if and only if it is projective.

Definition
A liner (X, L) is regular if AUL = AL for ev ery flat A C X
and line L C Xwith LN A # @.

v
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(Strongly) regular liners

Definition

A liner (X, L) is strongly regular if AU {x} = A x for every
flat A C X and point x € X \ A, that have a common point.

A liner is strongly regular if and only if it is projective.

Definition
A liner (X, L) is regular if AUL = AL for ev ery flat A C X
and line L C Xwith LN A # @.

Theorem (non-trivial)

Every 4-long affine liner is regular.
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Spaces

Definition
A space is any 3-long regular liner of rank > 3.
Any 4-long affine liner of rank || X|| > 3 is an affine space.
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Projective completions of proaffine liners

Definition
A liner (X, Lx) is a subliner of a liner (Y, Ly) if X C Y and
EX:{XﬂLiLeﬁx and |XﬂL|22}
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Projective completions of proaffine liners

A liner (X, Lx) is a subliner of a liner (Y, Ly) if X C Y and
EX:{XﬂLiLeﬁx and |XﬂL|22}

V.

A projective liner Y is a projective completion of a liner X
if Y is 3-long, X is a subliner of Y and Y\ X # Y.
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Projective completions of proaffine liners

A liner (X, Lx) is a subliner of a liner (Y, Ly) if X C Y and
,CX:{XQLZLG,&X and |XﬂL|22}

A projective liner Y is a projective completion of a liner X
if Y is 3-long, X is a subliner of Y and Y\ X # Y.

Theorem (Kuiper—-Dembowski)

Every proaffine space X has a projective completion (which is
unique up to an isomorphism).
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Projective completions of proaffine liners

A liner (X, Lx) is a subliner of a liner (Y, Ly) if X C Y and
,CX:{XQLZLG,&X and |XﬂL|22}

A projective liner Y is a projective completion of a liner X
if Y is 3-long, X is a subliner of Y and Y\ X # Y.

Theorem (Kuiper—-Dembowski)

Every proaffine space X has a projective completion (which is
unique up to an isomorphism).
If | X|| > 4, then the remainder Y \ X is flat in Y.
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Projective completions of proaffine liners

A liner (X, Lx) is a subliner of a liner (Y, Ly) if X C Y and
,CX:{XQLZLG,&X and |XﬂL|22}

A projective liner Y is a projective completion of a liner X
if Y is 3-long, X is a subliner of Y and Y\ X # Y.

Theorem (Kuiper—-Dembowski)

Every proaffine space X has a projective completion (which is
unique up to an isomorphism).

If || X|| > 4, then the remainder Y \ X is flat in Y.

If X is finite and || X|| = 3, then Y \ X is one of the following:
the empty set, a singleton, a line, or a punctured line.
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Part Il: Desarguesian liners

Part Il
Desarguesian Liners




Subparallelity and parallelity of flats

Definition
Given two flats A, B in a liner (X, £), we write
o A H B and say that the flat A is subparallel to the flat B if
A C B U{a} for every point a € A;

@ A || B and say that the flat A is parallel to the flat B if
A|| B and BJ| A.

=) = = =
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Subparallelity and parallelity of flats

Given two flats A, B in a liner (X, £), we write
o A H B and say that the flat A is subparallel to the flat B if
A C B U{a} for every point a € A;

@ A || B and say that the flat A is parallel to the flat B if
A|| B and BJ| A.

Theorem (non-trivial)

For every flat A and point x in an affine space X there exists a
unique flat B C X with x € B || A.

™ = = =
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Subparallelity and parallelity of flats

Given two flats A, B in a liner (X, £), we write
o A H B and say that the flat A is subparallel to the flat B if
A C B U{a} for every point a € A;

@ A || B and say that the flat A is parallel to the flat B if
A|| B and BJ| A.

\,

Theorem (non-trivial)

For every flat A and point x in an affine space X there exists a
unique flat B C X with x € B || A.

Corollary (Playfair Axiom)

For every line L and point x in an affine space, there exists a
unique line \ that contains the point x and is paralell to L.

™ = = =
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Desargues Theorem

Lines Ly,..., L, in a liner (X, L) are called paraconcurrent if
they are either pairwise parallel or have a common point.

Theorem (Desargues (1591 — 1661))

Let (X, L) be an affine space of dimension dim(X) > 3.

For every paraconcurrent lines A, B, C € L and points

a,a €A\ (BUC), bpe B\ (AUC), c,c’ € C\ (AUB) with
abl||a b andbc| b c, wehaveac| ac.
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Non-Desarguesian planes: the Moulton plane

Desargues Theorem is not necessarily true in affine spaces of
dimension 2. A counterexample is the Moulton plane,
discovered by an american astronomer Moulton in 1902.

The Moulton plane is the liner X := R x R endowed with the
family of lines

L:={l,p:a,beR}U{L.: c € R}, where

Le:={(c.y):y e R},

Lop:={(x,ax +b) : x € R} if a >0,
Lop:={(x,3ax+b): x <0} U{(x,ax + b) : x > 0},
if a<O.
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The Moulton plane is non-Desarguesian

X

\B{@
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Desarguesian liners

Definition

An affine liner (X, £) is called Desarguesian if for any
concurrent lines A, B, C € £ and points a,a" € A\ (BU C),
b,b € B\ (AUC), ¢, € C\(AUB) with ab| & b and

bcl| b c’wehaveac| ac.
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Desarguesian liners

Definition

An affine liner (X, £) is called Desarguesian if for any
concurrent lines A, B, C € £ and points a,a’ € A\ (BU C),
b,b' € B\ (AUC), c,c’ € C\ (AUB) with ab | a b and
bcl| b c’wehaveac| ac.

By the Desargues Theorem, every affine space of dimension
> 3 is Desarguesian.
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Desarguesian liners

Definition

An affine liner (X, £) is called Desarguesian if for any
concurrent lines A, B, C € £ and points a,a’ € A\ (BU C),
b,b' € B\ (AUC), c,c’ € C\ (AUB) with ab | a b and
bcl| b c’wehaveac| ac.

By the Desargues Theorem, every affine space of dimension
> 3 is Desarguesian. The Moulton plane is not Desarguesian.
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Thalesian liners

Definition

An affine liner (X, L) is called Thalesian if for any parallel
lines A, B, C in X and any points a,a’ € A\ (BU C),

b,b' € B\ (AUC), c,c’ € C\ (AUB) with ab | a b and
bc| b c, wehaveac| dc.

C C C

/
b b B
a a A
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Thalesian liners

Definition

An affine liner (X, L) is called Thalesian if for any parallel
lines A, B, C in X and any points a,a’ € A\ (BU C),

b,b' € B\ (AUC), c,c’ € C\ (AUB) with ab | a b and
bc| b c, wehaveac| dc.

c e
/
b b B
a a A
It can be shown that every Desarguesian affine space is

Thalesian.

Taras Banakh Algebra and Geometry in Liners



Thalesian liners

Definition

An affine liner (X, L) is called Thalesian if for any parallel
lines A, B, C in X and any points a,a’ € A\ (BU C),

b,b' € B\ (AUC), c,c’ € C\ (AUB) with ab | a b and
bc| b c, wehaveac| dc.

C C C

/
b b B
a a A

It can be shown that every Desarguesian affine space is
Thalesian. The Moulton plane is not Thalesian.
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Moufang liners

Definition

An affine liner X is Moufang if for any distinct parallel lines
A, B, C, D and distinct points a,a’ € A, b,b' € B, ¢c,c’ € C
with @ #abnNa b CDand @ #bcNb ¢ C D we have
@#acnacCD.
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Pappian liners

Definition

An affine liner (X, £) is Pappian if for any concurrent lines
L, € £ and any distinct points a,b,c € L\ L’ and
a,b,c’el’\Lwithab'| aband bc' || b c, we have
ac'||dc.
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Para-Pappian liners

Definition

An affine liner (X, £) is para-Pappian if for any parallel lines
L,L" € £ and any distinct points a,b,c € L\ L’ and
a,b',c’ e '\ Lwithab|a band bc|b c, we have ac’|d c.

c’ b a [
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Papp=-Desargues=Moufang=-Thales=-para-Papp

For every (finite) affine space, the following implications hold:
Pappian
H >+finite (by Wedderburn Theorem)

Desarguesian
H >+ﬁnite (by Artin—Zorn Theorem)

Moufang

H >\ +prime

Thalesian

ﬂ 5 +prime

para-Pappian
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Papp=-Desargues=Moufang=-Thales=-para-Papp

For every (finite) affine space, the following implications hold:
Pappian
U >+finite (by Wedderburn Theorem)

Desarguesian
U >+ﬁnite (by Artin—Zorn Theorem)

Moufang

U >\ +prime

Thalesian

U 5 +prime

para-Pappian

Example: There exists an affine plane of order 9 which is
Thalesian but not Moufang.
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Papp=-Desargues=Moufang=-Thales=-para-Papp

For every (finite) affine space, the following implications hold:
Pappian
U >+finite (by Wedderburn Theorem)

Desarguesian
U >+ﬁnite (by Artin—Zorn Theorem)
Moufang

U >\ +prime

Thalesian

U 5 +prime

para-Pappian

Example: There exists an affine plane of order 9 which is
Thalesian but not Moufang.
OpenProblem: Is every para-Pappian affine space Thalesian?
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Algebraization of Desarguesian affine spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian affine space (X, L) determines a canonical
vector space X over certain corps Ry that acts on X so that
the lines in X can be writen as {x + sv : s € Rx}, where

x € X and v € X\ {0}. The corps Ry is a field iff X is
Pappian.
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Algebraization of Desarguesian affine spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian affine space (X, L) determines a canonical
vector space X over certain corps Ry that acts on X so that
the lines in X can be writen as {x + sv : s € Rx}, where

x € X and v € X\ {0}. The corps Ry is a field iff X is
Pappian. )
How does the structure of a Desarguesian liner determine the
structure of a vector space? What is the nature of vectors and
how to define scalars and operations over vectors and scalars?

Why do they have the properties, well-known from the Linear
Algebra?
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Part Ill: Vectors and Scalars

Part |l
Vectors and Scalars
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Algebraization of Desarguesian affine spaces

Theorem (the most probably, Hilbert, 1899)

Every Desarguesian affine space (X, L) determines a canonical
vector space X over certain corps Ry that acts on X so that
the lines in X can be writen as {x + sv : s € Rx}, where

x € X and v € X\ {0}. The corps Ry is a field iff X is
Pappian. )
How does the structure of a Desarguesian liner determine the
structure of a vector space? What is the nature of vectors and
how to define scalars and operations over vectors and scalars?

Why do they have the properties, well-known from the Linear
Algebra?

Taras Banakh Algebra and Geometry in Liners



Affine transformations of lines

Definition (of parallel projection)

A bijective map F : A — B between two lines in an affine
space (X, L) is called
@ a parallel projection along a line A,
if F={(a,b) € Ax B:abl||A};
@ parallel projection if F is a parallel projection along some
line A;
@ parallel shift if F: A — B is a parallel projection between
parallel lines A, B;
@ parallel translation if F is a composition of finitely many
parallel shifts between lines;

@ affine transformation if F is a composition of finitely
many parallel projections between lines.
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Parallel projections between lines
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Uniqueness theorem for parallel translations

Theorem (non-trivial)

Affine space (X, L) is Thalesian if and only if for any points
x,y,z € X with x # y there exist unique line A and parallel
translation F : x y — A with F(x) = z.

This theorem allows to define a notion of a vector in a
Thalesian affine space in the standard way as an equivalence
class of ordered pairs pf points.
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Vectors in Thalesian affine spaces

We say that two pairs of points xy, uv € X? in an affine space
(X, L) are translation equivalent if Fxy = uv for some parallel
translation F between lines in X. The relation of translation
equivalence divides the set X2 of pairs of points into disjoint
equivalence classes, called vectors.

For a pair of point x,y € X, the vector )Tf/ is the class of all
ordered pairs, which are translation equivalent to the pair xy.

The equivalence class {xx : x € X} is called
the zero vector and is denoted by 0.
The set of all vectors in X is denoted by X.

The preceding theorem implies that for every vector v € X
and point x € X in a Thalesian affine space (X, L) there
exists a unique point y € X such that xy = v (i.e., the vector
vV can be constructed from any given point x).
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Operations on vectors

For a Thalesian affine space X there exists a unique binary
operation + : X x X — X, turning X into a commutative
group and has the proerty:

Vx,y,z € X (xy + yz = x2).

For any Thalesian affine space X there exists a unique action
+ : X x X — X such that:

QVW,ieXVxeX (V4+i)+x=v+(7+x);
Q Vx,ye X >7)>/—|—x:y.

Taras Banakh Algebra and Geometry in Liners



Uniqueness Theorem for affine transformations

Theorem (non-trivial)

An affine space (X, £) is Desarguesian if and only if for any
pairs xy, uv € X? with x # y and u # v there exists a unique
affine transformations F : x y — u v with Fxy = uv.

This theorem allows to define a notion of a scalar in a
Desarguesian affine space as an equivalence class of ordered
linear triples,

by analogy with the notion of vector.

A linear triple in a liner X is an ordered triple xyz € X3 with
y€xz and x # z.
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Linear triples and their affine transformations

Two linear triples xyz, uvw € X2 are called affinely equivalent
if Fxyz = uvw for some affine transformation F between lines.

The relation of affine equivalence divides the set X of linear
triples into disjoint equivalence classes, called scalars.

For a linear triple xzy € X, the scalar xy2 is the class of all
linear triples, which are affinely equivalent to the triple xyz.

The set of scalars in X is denoted by Ry.

This set contains two distinguished elements:

0:={xyz € X3: x=y#z} and 1:= {xyz € X3 : x#y=z}.
The preceding theorem implies that for any scalar o and pair
xz € X? with x # z in a Desarguesian affine space (X, £)
there exists a unique point y € X such that xyz € a.
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Operations of multiplication and addition of scalars

For every Desarguesian affine space X
there exist unique binary operations

Ry x Ry - Rx and +:Rx x Rx — Ry,
turning Rx into a corps (= division ring) and have the
following properties:

e Yoxy, oye € X o_xf/-cﬁ:%;
o Yoxe, oye, oze € X (oX + oy = 0z) = (oxé + oyé = oz8).

V.
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Multiplication of a vector by a scalar

For every Desarguesian affine space X there exists a unique
operatlon of mu|t|p||cat|on of scalars by vectors
‘Rx x X = X, - : (s, V) — s-V, satisfying the axioms:

o vs,tevaVeX (st)-V=s-(t-V);
Q@ Vs,teRxWeX (s+t)-V=s-V+t-V
QVscRyV,ieX s-(V+i)=s-V+s-0

.
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Pappus and commutativity of the scalar corps

Theorem (Pappus of Alexandria; 270-350)

For a Desarguesian affine space X, the corps Ry is a field iff
the Pappus Axiom holds: for any concurrent lines L, L' € L
and distinct points x,y,z € L\ L, x',y',z/ € L'\ L,

if xy || xX'yandyZ |y’ z then x Z/ || X' z.

Xy z
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Part IV: non-Desarguesian planes

Part 1ll:
non-Desarguesian
Geometry




Algebraization of affine planes

Affine spaces of dimension > 3 are Desarguesian and hence
admit a canonical structure of a vector space over some corps.

For affine planes (i.e., affine spaces of dimension 2), the
situation is more complicated.

Nonetheless, any affine plane can be algebraized by a suitable
ternary-ring, as was suggested by Marshall Hall in 1943.
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Based affine planes

Definition

An affine base in an affine plane I is any ordered triple of
non-collinear points uow € M3, called the unit, origin, and
biunit of the affine base vow.

An affine plane endowed with an affine base is called a based

affine plane.
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Based affine planes

Definition

An affine base in an affine plane I is any ordered triple of
non-collinear points uow € M3, called the unit, origin, and
biunit of the affine base vow.

An affine plane endowed with an affine base is called a based
affine plane.

By the Playfair Axiom (holding in affine planes), for every
affine base vow in an affine plane I1, there exists a unique
point e € Il completing the triangle uow to a parallelogram,
e, ue|lowand wel ou.

The point e is called the diunit of the affine base uvow and the
line o e is the diagonal of the affine base uow.
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Based affine planes

o, the origin

u, the unit

w, the biunit

e, the diunit

o u, the horizontal axis
o w, the vertical axis
A = o e, the diagonal
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Coordinates in based affine planes

Let (M, uow) be a based affine plane. Since I is Playfair, for
every point p € I1 there exist unique points p’, p” € A
(called the horizontal and vertical coordinates of p)

such that p p’||ow and p p” || o u.
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The coordinate chart of a based affine plane

The map C: M — A2, C: p+ p'p”, is a bijective map from
the affine plane M onto the square A2 of the diagonal A of the
affine base uow. This bijective map C : M1 — AZ is called the
coordinate chart of the based affine plane.
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The coordinate chart of a based affine plane

The map C: M — A2, C: p+ p'p”, is a bijective map from
the affine plane M onto the square A2 of the diagonal A of the
affine base uow. This bijective map C : M1 — AZ is called the
coordinate chart of the based affine plane.

The set A% endowed with the family of lines {C[L] : L € L} is
called the coordinate plane of the based affine plane (1, uow).
The coordinate plane A? carries the canonical base (eo,00,0€).

n A oA A2
/I
p p// C Op// RP é/ p//
w A oe -
p/ p/pl
0 u oo po eo Ao

Taras Banakh Algebra and Geometry in Liners



Equations of lines in coordinates

The equations of non-vertical lines in based affine planes can
be written down using a special ternary operation

Tuow : A% — A, which assigns to every triple xab € A3 the
unique point y € A denoted by x,a, b such that ob xy || 0o ea.
The point y is the unique common point of the vertical line
L, :={p: p' = x} and the unique line L, ; which contains the
point ob € o w (with coordinates o, b) and is parallel to the
line L, . := oo ea connnecting the points o (with coordinates
0, 0) and the point ea (with coordinates e, a).
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The ternary operation

A La b
xy Y = Xx arb
X La,o
b
ob
W e
g ea
(0] u
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Equations of lines y = x,a_ b

The definition of the ternary operation T, ensures that the
line L, is determined by the equation y = x, a; b, more
precisely,

Lop={peN:p"=plab} = C'[{xy € A%y = x.a,b}].
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Properties of the ternary-operation T,

For every based affine plane (I, uow), the ternary operation
Toow : A3 = A, Tyon : xab = x.a,b,
has the following four properties:
Q x.o0.b=b=o0.x.band x,e, o= x = e.x,o0 for every
points x, b € A;
@ for every points a,x,y € A, there exists a unique point
b € A such that x,a, b=y,
© for every points a, b, c,d € A with a # c, there exists a
unique point x € A such that x,a, b = x.c.d;
o

for every points X, y, X,y € A with X # X, there exist
unique points a, b € A such that Xx.a, b=y and
)?X a+b = _),}
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Definition (Hall, 1943): A ternary-ring is a set R endowed
with a ternary operation
T:R® =R, T:xabwr xyayb,

satisfying the following four axioms:

(T1) there exist distinct elements 0,1 € R such that Vx,b € R
Xx04b=b=0xxyband x,1,0=x=1,x,0;

(T2) for every elements a, b, c,d € R with a # c, there exists
a unique element x € R such that x,a, b = x,c,d;

(T3) for every elements a, x,y € R, there exists a unique
element b € R such that x,a, b= y;

(T4) Vx,y,%,7 € R with X # X, there exist unique elements
a,b € R such that X,a;b=y and X a,b=7y.

The (unique) elements 0,1 appearing in the axiom (T1) are

called the zero and unit of the ternary-ring R.
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The coordinate plane of a ternary-ring

Given a ternary-ring R, consider the affine plane whose set of

point is R? and the family of lines is
L:={L.:ceR}U{L,p:a,be R},

where

Lc:={xy € R*:x=c} and L, :={xy € R?:y = xa,b}

for a, b, c € R. The affine plane R? is endowed with the
canonical affine base (10,00, 01) and hence is a based affine
plane, called the coordinate plane of the ternary-ring R.
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The coordinate plane of a ternary-ring

Given a ternary-ring R, consider the affine plane whose set of

point is R? and the family of lines is
L:={L.:ceR}U{L,p:a,be R},

where

Lc:={xy € R*:x=c} and L, :={xy € R?:y = xa,b}

for a, b, c € R. The affine plane R? is endowed with the
canonical affine base (10,00, 01) and hence is a based affine
plane, called the coordinate plane of the ternary-ring R.

Theorem (Hall, 1943)

For every ternary-ring R its coordinate plane R? is a based
affine plane. Moreover, for every based affine plane (I, uow),
the coordinate chart C : Tl — A2 is an isomorphism between
the based affine plane (I, uow) and the coordinate plane of
the ternary-ring (A2, Tuow ).
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Addition and multiplication in ternary-rings

Every ternary-ring (R, T) carries two binary operations

+:RxR—=R, +:(x,b)—x+b:=T(x,1,b) =x,1,b,
tRxR—=R, -:(x,a)—x-a:=T(x,a,0)=xya.0,

called the addition and multiplication operations in R.

Example: Every corps R endowed with the ternary operation
T:R*—= R, T:(x,ab)~ (x-a)+b,
is a linear ternary-ring.
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Addition and multiplication in ternary-rings

Every ternary-ring (R, T) carries two binary operations

+:RxR—=R, +:(x,b)—x+b:=T(x,1,b) =x,1,b,
tRxR—=R, -:(x,a)—x-a:=T(x,a,0)=xya.0,

called the addition and multiplication operations in R.

Definition: A ternary-ring R is linear if
Vx,a,b € R xxa b= (x-a)+b:=(x«xa;0)x1:b.

Therefore, the ternary operation of a linear ternary-ring is
uniquely determined by the addition and multiplication.

Example: Every corps R endowed with the ternary operation
T:R*—= R, T:(x,ab)~ (x-a)+b,
is a linear ternary-ring.
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Loops and O-loops

A magma is a set endowed with a binary operation.
A magma M is

@ unital if it contains an element 1 € M, called the identity
of M, suchthatVxe M 1 -x=x=x-1;

@ a loop if M is a unital magma such that
Vabe M Jx,yeM (x-a=b A a-y=b);

@ 0-magma if M contains an element 0 € M, called the
zero of M, suchthat Vxe M x-0=0=0"-x;

@ a O-loop if M is a unital 0-magma such that
Vae M\{0}Vbe M3lx,y e M (x-a=b A a-y =b).
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Additive and multiplicative loops of a ternary-ring

If R is a ternary-ring, then (R,+) is a loop and (R,-) is a
0-loop such that for every a € R\ {1} and b € R, the
equation x - a = x + b has a unique solution x € R.
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Additive and multiplicative loops of a ternary-ring

If R is a ternary-ring, then (R,+) is a loop and (R,-) is a
0-loop such that for every a € R\ {1} and b € R, the
equation x - a = x + b has a unique solution x € R.

Definition

Let R be a ternary-ring and R* := R\ {0}. The loops (R, +)
and (R*,-) are called the additive loop and the multiplicative
loop of the ternary-ring R, respectively.
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Some properties of ternary-rings

A ternary-ring R is called

commutative-plus if Vx,y € R x+y =y + x;
commutative-dot if Vx,y € R x-y =y -x;

commutative if it is commutative-plus and commutative-dot;
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Some properties of ternary-rings

A ternary-ring R is called

commutative-plus if Vx,y € R x+y =y + x;
commutative-dot if Vx,y € R x-y =y -x;

commutative if it is commutative-plus and commutative-dot;

associative-plus if Vx,y,z € R x+(y +2z)=(x+y)+ z
associative-dot if Vx,y,z€ R x-(y-z) = (x-y) -z
associative if R is associative-plus and associative-dot;
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Some properties of ternary-rings

A ternary-ring R is called

commutative-plus if Vx,y € R x+y =y + x;
commutative-dot if Vx,y € R x-y =y -x;

commutative if it is commutative-plus and commutative-dot;
associative-plus if Vx,y,z€ R x+ (y +z)=(x+y)+z
associative-dot if Vx,y,z€ R x-(y-z) = (x-y) - z
associative if R is associative-plus and associative-dot;
inversive-plus if Vx e RIx~ e RVy € R (y +x)+x~ =y;
inversive-dot f Vx e RIx L e RVy eR (y-x)-x L =y;
inversive if R is inversive-plus and inversive-dot;
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Some properties of ternary-rings

A ternary-ring R is called

commutative-plus if Vx,y € R x+y =y + x;
commutative-dot if Vx,y € R x-y =y - x;

commutative if it is commutative-plus and commutative-dot;
associative-plus if Vx,y,z€ R x+ (y +z)=(x+y)+z
associative-dot if Vx,y,z€ R x-(y-z)=(x-y)-z
associative if R is associative-plus and associative-dot;
inversive-plus if Vx € R3x~ € RVy € R (y + x) —l—x* =y,
inversive-dot f Vx e RIx L e RVy eR (y-x)-x L =y;
inversive if R is inversive-plus and inversive-dot;
left-distributive if Va,x,y € R a-(x+y)=(a-x)+(a-y);
right-distributive if Vx,y, b € R (x+y)-b=(x-b)+(y-b);
distributive if R is left-distributive and right-distributive;
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Some properties of ternary-rings

A ternary-ring R is called

commutative-plus if Vx,y € R x+y =y + x;
commutative-dot if Vx,y € R x-y =y - x;

commutative if it is commutative-plus and commutative-dot;
associative-plus if Vx,y,z€ R x+ (y +z)=(x+y)+z
associative-dot if Vx,y,z€ R x-(y-z)=(x-y)-z
associative if R is associative-plus and associative-dot;
inversive-plus if Vx € R3x~ € RVy € R (y + x) —l—x* =y,
inversive-dot f Vx e RIx L e RVy eR (y-x)-x L =y;
inversive if R is inversive-plus and inversive-dot;
left-distributive if Va,x,y € R a-(x+y)=(a-x)+(a-y);
right-distributive if Vx,y, b € R (x+y)-b=(x-b)+(y-b);
distributive if R is left-distributive and right-distributive;

a corps if R is linear, distributive and associative;

a field if R is a commutative corps.
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Pappian < commutative-dot

Definition: A ternary-ring R is called a ternary-ring of an
affine plane MM if M is isomorphic to the coordinate plane R? of
the ternary-ring R.

Theorem (Klingenberg, 1955)

For an affine plane T, the following conditions are equivalent:

Q 1 is Pappian;
@ every ternary-ring of 1 is commutative-dot;
© every/some ternary-ring of I is a field;
Q for every points a, b, c,a, 3,y € X with
abllac|Byfbclay]ap,
the lines a o, b B, ¢ y are paraconcurrent.
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Commutative-dot affine planes

Geometrically, the last condition
(responsible for the commutativity of multiplication):
For every points a, b, ¢, a, B,y € X with

ablacl|Bylbcllay|ap,
the lines a o, b 3, c v are paraconcurrent,
looks as follows:

g s
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Desarguesian < associative-dot

Theorem (Klingenberg, 1955)

For an affine plane N, the following conditions are equivalent:

© 1 /s Desarguesian;
@ every ternary-ring of 1 is associative-dot;
© every/some ternary-ring of I is a corps;

o e vy poiii 0,8, €62 8 5, 8 € 1 eits
abllcd||aB|véfad|bec| Byl adand
ocaanNbpfnNcry, wehaveo € d.
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Associative-dot affine planes

Geometrically, the last condition

(responsible for the associativity of multiplication):
for every points o0, a, b, c,d,a, 3,7,6 € Il with
abllcd|aBlvdffad|bc|By]|adand
ocaanNbpfnNc-, we have o € d§,

looks as follows:

B gl

o
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Moufang < inversive-dot

Theorem (Skornyakov, Saint-Soucie, 1952)
For an affine plane N, the following conditions are equivalent:
Q 1 is Moufang;

Q every ternary-ring of I is inversive-dot;

© every/some ternary-ring of I is linear, distributive,
inversive-dot and commutative-plus;

Q for every line D C X and points o,a,c,a,y € D and
b,d, 3,5 € X\ D with
ablcd|ap|[voffad|bc| By adandochbp,
we have o € d 6.
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Inversive-dot affine planes

Geometrically, the last condition

(responsible for the inversivity of multiplication):

¥ line D and points 0,a,¢,a,v € D and b, d, 3,6 € X\ D
with ab | cd | a B 76 )kad|be|Fy|adand

o€ bf3, we have o € d 4,

looks as follows:

(0]
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Thalesian < quasi-field

Definition: A ternary-ring R is called a quasi-field if R is
linear, right-distributive, and associative-plus.

Theorem (Veblen, 1916)

For an affine plane N, the following conditions are equivalent:
© 11 is Thalesian;
Q every ternary-ring of [ is a quasi-field;

© some ternary-ring of I is a quasi-field.

/

C C C

/
b b B
a a A
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para-Pappian < commutative-plus

An affine plane N is para-Pappian if and only if every
ternary-ring of 1 is commutative-plus.

c b’ a [
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Prime affine planes

For a prime athne plane N, the following conditions are
equivalent:

© 1 is Pappian;

© [ /s Desarguesian;

© I is Moufang;

Q 11 is Thalesian;

O [1 is para-Pappian;

Q every ternary-ring of 1 is inversive-plus;

@ VD € Ln Va,d,a,6 € DVb,c, 5,7 €M\ D with
abllcd|lap|lvéfac|bd|ay|Bdandbp| D,
we have c v || D.
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Inversive-dot affine planes

Geometrically, the last condition
(responsible for the inversivity of the addition):

VD € L Va,d,a,0 € DVb,c,B,y €N\ D
(abllcd|aBllvdfaclbd|ay|BonbB||D)=c~|D

looks as follows:

g )
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Alegbra versus Geometry in affine planes

Ternary-ring: Affine plane:

commutative-dot <= Pappian

| || Y

associative-dot <= Desarguesian

H >\+finite

inversive-dot <———= Moufang

ﬂ >\+prime

quasi-field <= Thalesian

u [

commutative-plus <> para-Pappian

H >\ +prime

inversive-plus
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Part V: Selected Open Problems

Part V:
Selected Open Problems
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Open Problems on liners: order

An affine plane X is called prime (resp. prime power) if its
order is equal to (some power of) a prime number.

Problem

Is any finite affine plane prime power?

The best existing result in the positive direction is:

Theorem (Liineburg, 1960)

Every finite commutative-plus affine liner is prime power.

Problem
Is any finite associative-plus affine liner prime power?

Problem
Is prime affine liner of (para-)Pappian?

e ————— =
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Open Problems on liners: order

Theorem (Bruck—Ryser, 1948)

If a finite affine liner has order n € {1,2} + 47, then
n = a®> + b? for some integer numbers a, b.

The order of an affine liner cannot be equal to 6, 14, 22,...

Theorem (Lam, Thiel, Swiercz, 1989)
The order of an affine plane cannot be equal to 10 = 92 + 12.

Problem

Is there an affine liner of order 127
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Open Problems: embeddings

Theorem (Hall, 1943)

Every liner is a subliner of some projective plane.

Problem (Hall)

Is every finite liner a subliner of some finite projective plane?
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Open Problems on liners: homogeneity

A liner X is called
@ homogeneous if for every points x, y € X there exists an
automorphism A : X — X such that Ax = y;
@ 2-homogeneous if for every pairs xy, x'y’ € X2\ A there
exists an automorphism A : X — X such that Axy = x'y/;

@ 3-homogeneous if for every affine bases uow, uv'o’'w’ € X3
there exists an automorphism A : X — X such that
Auow = uv'o'w. )

Every Moufang affine liner is 3-homogeneous.

Problem

Is every 3-homogeneous affine liner Moufang?
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Open Problems: homogeneity

Every 2-homogeneous finite affine liner is Pappian.

Problem

Is every homogeneous finite atfine liner Pappian?

There exists an athine liner with trivial automorphism group.

Problem

Is there a finite affine (or projective) liner with trivial
automorphism groups?
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