Abstract colorings, games and ultrafilters

Piotr Szewczak

Cardinal Stefan Wyszyński University in Warsaw

December 3, 2020

Colorings of \mathbb{N}

A coloring of \mathbb{N} is a function $\chi: \mathbb{N} \rightarrow\{1,2, \ldots, k\}$

$$
\mathbb{N}=\underbrace{C_{1} \cup C_{2} \cup \cdots \cup C_{k}}_{\text {pairwise disjoint }}
$$

Theorem (Theorems)

For each coloring of \mathbb{N}

- Schur 1916: there is a monochromatic set $\{a, b, a+b\}$
- van der Waerden 1927: for each n, there is a monochromatic arithmetic progression of length n
- Deuber 1973:
for all $m, p, c \in \mathbb{N}$, there is a monochromatic (m, p, c)-set $m, p, c \in \mathbb{N}, x \in \mathbb{N}^{m}$

$$
S(m, p, c, x):=\left\{c x_{t}+\sum_{i=t+1}^{m+1} \lambda_{i} x_{i}: t \in\{1, \ldots, m\},(\forall i \in\{t+1, \ldots, m+1\})\left(\left|\lambda_{i}\right| \leq p\right)\right\}
$$

$$
\begin{aligned}
S(2,2, \mathbf{1}, x) & =\left\{\mathbf{1} x_{1}+\mathbf{0} x_{2}, \mathbf{1} x_{1}+\mathbf{1} x_{2}, \mathbf{1} x_{1}+2 x_{2}, \mathbf{1} x_{1}-2 x_{2}, \mathbf{1} x_{1}-\mathbf{1} x_{2}, \mathbf{1} x_{2}\right\}= \\
& =\left\{x_{1}, x_{1}+x_{2}, x_{1}+2 x_{2}, x_{1}-2 x_{2}, x_{1}-x_{2}, x_{2}\right\}
\end{aligned}
$$

Semigroup $\beta \mathbb{N}$

- $\beta \mathbb{N}$: all ultrafilters on \mathbb{N}
- Basic open sets $[A]:=\{p \in \beta \mathbb{N}: A \in p\}, A \subseteq \mathbb{N}$
- $\beta \mathbb{N} \supseteq \mathbb{N}$: identify x with $\{A \subseteq \mathbb{N}: x \in A\}$

■ Extend $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, to $+: \beta \mathbb{N} \times \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ such that:
■ for each $x \in \mathbb{N}$ the function $q \mapsto x+q$ is continuous
■ for each $q \in \beta \mathbb{N}$ the function $p \mapsto p+q$ is continuous
$\square+$ is associative on $\beta \mathbb{N}$

- $(\beta \mathbb{N},+)$ is a compact right-topological semigroup

$$
A \in p+q \longleftrightarrow\{x \in \mathbb{N}:(\exists B \in q)(x+B \subseteq A)\} \in p
$$

- $\beta \mathbb{N} \ni e$ is idempotent: $e+e=e$

$$
(\forall A \in e)\left(\exists A^{\star} \in e\right)\left(\forall a \in A^{\star}\right)(\exists B \in e)(a+B \subseteq A)
$$

Hindman's Theorem

Lemma (Numakura 1952)

Every nonempty compact right-topological semigroup has an idempotent.
$a_{1}, a_{2}, \ldots \in \mathbb{N}, F=\left\{i_{1}, \ldots, i_{n}\right\}$ increasing enumeration

$$
a_{F}:=a_{i_{1}}+\cdots+a_{i_{n}} \quad \operatorname{FinSum}\left(a_{1}, a_{2}, \ldots\right):=\left\{a_{F}: F \in \operatorname{Fin}(\mathbb{N})\right\}
$$

Theorem (Hindman 1974)

For each coloring of \mathbb{N}, there is a sequence $a_{1}, a_{2}, \ldots \in \mathbb{N}$ such that FinSum $\left(a_{1}, a_{2}, \ldots\right)$ is monochromatic.

■ Pick an idempotent $e \in \beta \mathbb{N}$ and a monochromatic $A_{1} \in e$

- $a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{m}} \in A_{i_{1}}$ for $i_{1}<i_{2}<\cdots<i_{m}$

Colorings of graphs

Theorem (Ramsey 1930)

For each coloring of $[\mathbb{N}]^{2}$, there is an infinite set $A \subseteq \mathbb{N}$ such that $[A]^{2}$ is monochromatic.

- $a_{1}, a_{2}, \ldots \in \mathbb{N}$ is proper: $a_{F} \neq a_{G}$ for all $F, G \in \operatorname{Fin}(\mathbb{N})$ with $F<G$
- sumgraph of $\underbrace{a_{1}, a_{2}, \ldots}_{\text {proper }}:\left\{\left\{a_{F}, a_{G}\right\}: F, G \in \operatorname{Fin}(\mathbb{N})\right.$ with $\left.F<G\right\}$

Theorem (Milliken 1975, Taylor 1976)

For each coloring of $[\mathbb{N}]^{2}$, there is a proper sequence $a_{1}, a_{2}, \ldots \in \mathbb{N}$ whose sumgraph is monochromatic.

Colorings of graphs

■ partite graph of $\underbrace{F_{1}, F_{2}, \ldots}_{\text {pairwise disjoint }} \in \operatorname{Fin}(\mathbb{N}):\left\{\left\{a_{i}, a_{j}\right\}: a_{i} \in F_{i}, a_{j} \in F_{j}, i \neq j\right\}$
■ partite sumgraph of $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(\mathbb{N})$, all sequences in $F_{1} \times F_{2} \times \ldots$ are proper
$\left\{\left\{a_{F}, a_{G}\right\}:\left(a_{1}, a_{2}, \ldots\right) \in F_{1} \times F_{2} \times \cdots\right.$ and $F, G \in \operatorname{Fin}(\mathbb{N})$ with $\left.F<G\right\}$

Colorings of graphs

$$
\begin{gathered}
S(m, p, c, x):=\left\{c x_{t}+\sum_{i=t+1}^{m+1} \lambda_{i} x_{i}: t \in\{1, \ldots, m\},(\forall i \in\{t+1, \ldots, m+1\})\left(\left|\lambda_{i}\right| \leq p\right)\right\} \\
S(2,2,1, x)=\left\{x_{1}, x_{1}+x_{2}, x_{1}+2 x_{2}, x_{2}, x_{1}-x_{2}, x_{1}-2 x_{2}\right\}
\end{gathered}
$$

Theorem (Bergelson-Hindman 1988)

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots$ be an enumeration of all families of (m, p, c)-sets. For each coloring of $[\mathbb{N}]^{2}$, there are sets $R_{1} \in \mathcal{R}_{1}, R_{2} \in \mathcal{R}_{2}, \ldots$ such that the partite sumgraph of R_{1}, R_{2}, \ldots is monochromatic.

- $[\mathbb{N}]^{2}=\left\{(a, b) \in \mathbb{N}^{2}: a>b\right\}$
- there is a monchromatic set M such that for each n, there are arithmetic progressions $A_{1}, A_{2} \subseteq \mathbb{N}$ of length n with $A_{1} \times A_{2} \subseteq M$

Colorings of covers

- $\mathrm{S}_{\text {fin }}(\mathcal{A}, \mathcal{B})$:

$$
\left(\forall A_{1}, A_{2}, \ldots \in \mathcal{A}\right)\left(\exists \text { finite } F_{1} \subseteq A_{1}, F_{2} \subseteq A_{2}, \ldots\right)\left(\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}\right)
$$

- O : all countable open covers of X
- $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$:

$\mathcal{F}_{1} \subseteq \mathcal{U}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{U}_{2}$

$\mathcal{F}_{3} \subseteq \mathcal{U}_{3}$

■ ω-cover: $(\forall$ finite $F \subseteq X)(\exists U \in \mathcal{U} \backslash\{X\})(F \subseteq U)$

- Ω : all countable ω-covers of X
- λ-cover: $(\forall x \in X)(\{U \in \mathcal{U}: x \in U\}$ is infinite $)$
- \wedge : all countable λ-covers of X

Colorings of covers

Theorem (Scheepers 1999)

If X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there are finite sets $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \subseteq \mathcal{U}$ such that

- $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \in \Lambda$ and the partite graph of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ is monochromatic.

Theorem (Scheepers 1996)

If X is $\mathrm{S}_{\text {fin }}(\Omega, \Omega)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there are finite sets $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \subseteq \mathcal{U}$ such that

- $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \in \Omega$ and the partite graph of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ is monochromatic.
- Y has countable fan tightness:

$$
\left(\forall A_{1}, A_{2}, \ldots \subseteq Y, y \in \bigcap_{n \in \mathbb{N}} \overline{A_{n}}\right)\left(\exists \operatorname{fin} F_{1} \subseteq A_{1}, F_{2} \subseteq A_{2}, \ldots\right)\left(y \in \overline{\bigcup_{n \in \mathbb{N}} F_{n}}\right)
$$

- Just, Miller, Scheepers, Szeptycki 1996: X is $\mathrm{S}_{\text {fin }}(\Omega, \Omega) \leftrightarrow X$ is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$ in all finite powers $\leftrightarrow \mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness

Colorings of covers

Theorem (Tsaban 2018)

If X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$, then for each decreasing sequence $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots \in \Lambda$ such that \mathcal{U}_{1} has no finite subcover and a coloring of $[\tau]^{2}$, there are finite sets $\mathcal{F}_{1} \subseteq \mathcal{U}_{1}$, $\mathcal{F}_{2} \subseteq \mathcal{U}_{2}, \ldots$ such that

■ $\bigcup \mathcal{F}_{n} \in \Lambda$ and the sumgraph of $\bigcup \mathcal{F}_{1}, \bigcup \mathcal{F}_{2}, \ldots$ is monochromatic.

$$
V_{n}=\bigcup \mathcal{F}_{n}
$$

Theorem (Milliken 1975, Taylor 1976)
For each coloring of $[\mathbb{N}]^{2}$, there is a proper sequence $a_{1}, a_{2}, \ldots \in \mathbb{N}$ whose sumgraph is monochromatic.

Topological games

- $\mathrm{S}_{\mathrm{fin}}(\mathcal{A}, \mathcal{B})$:

$$
\left(\forall A_{1}, A_{2}, \ldots \in \mathcal{A}\right)\left(\exists \text { finite } F_{1} \subseteq A_{1}, F_{2} \subseteq A_{2}, \ldots\right)\left(\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}\right)
$$

- $\mathrm{G}_{\mathrm{fin}}(\mathcal{A}, \mathcal{B})$

Alice:

Bob:
$A_{1} \in \mathcal{A}$ $A_{2} \in \mathcal{A}$

If $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}$, then Bob wins. Otherwise, Alice wins.

- Вов has a winning strategy in $\mathrm{G}_{\text {fin }}\left([\mathbb{N}]^{\infty},[\mathbb{N}]^{\infty}\right)$

■ If X is σ-compact, then Bob has a winning strategy in $\mathrm{G}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$
Theorem (Hurewicz 1925)
X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$ iff Alice has no winning strategy in $\mathrm{G}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$.

Semigroup βS

- β : all ultrafilters on S
- Basic open sets $[A]:=\{p \in \beta S: A \in p\}, A \subseteq S$
- $\beta S \supseteq S$: identify x with $\{A \subseteq S: x \in A\}$
- Extend $+: S \times S \rightarrow S$, to $+: \beta S \times \beta S \rightarrow \beta S$ such that:
- for each $x \in S$ the function $q \mapsto x+q$ is continuous
- for each $q \in \beta S$ the function $p \mapsto p+q$ is continuous
- + is associative on βS
- $(\beta S,+)$ is a compact right-topological semigroup

$$
A \in p+q \longleftrightarrow\{x \in S:(\exists B \in q)(x+B \subseteq A)\} \in p
$$

- $\beta S \ni e$ is idempotent: $e+e=e$

$$
(\forall A \in e)\left(\exists A^{\star} \in e\right)\left(\forall a \in A^{\star}\right)(\exists B \in e)(a+B \subseteq A)
$$

Lemma (Numakura 1952)
Every nonempty compact right-topological semigroup has an idempotent.

Superfilters and idempotents

- $[S]^{\infty} \supseteq \mathcal{A}$ is a superfilter on S :
- $\mathcal{A} \ni A \subseteq B \longrightarrow B \in \mathcal{A}$
- $A \cup B \in \mathcal{A} \longrightarrow A \in \mathcal{A}$ or $B \in \mathcal{A}$
- $[S]^{\infty}$ - every ultra

Let $a_{1}, a_{2}, \ldots \in S$ be proper and \mathcal{A} be a translation invariant superfilter on S.

$$
\left\{p \in \beta S:\left\{\operatorname{FinSum}\left(a_{n}, a_{n+1}, \ldots\right): n \in \mathbb{N}\right\} \subseteq p \subseteq \mathcal{A}\right\}
$$

is a closed and nonempty subsemigroup of $(\beta S,+)$.

- $S=(\mathbb{N},+), \mathcal{A}=[\mathbb{N}]^{\infty}$
$■ \Omega \ni \mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\}, S=(\mathcal{U}, \max), \mathcal{A}=\{\mathcal{V} \in \Omega: \mathcal{V} \subseteq \mathcal{U}\}$,

$$
\mathcal{A} \ni \mathcal{V} \rightarrow\{\max \{B, V\}: V \in \mathcal{V}\} \in \mathcal{A}
$$

■ $\Omega \ni \mathcal{U}$ with no finite subcover and closed under $\cup, S=(\mathcal{U}, \cup)$, $\mathcal{A}=\{\mathcal{V} \in \Omega: \mathcal{V} \subseteq \mathcal{U}\}$

$$
\mathcal{A} \ni \mathcal{V} \rightarrow\{B \cup V: V \in \mathcal{V}\} \in \mathcal{A}
$$

Superfilters and idempotents

- $\beta S \ni p$ is large for $\emptyset \neq \mathcal{R} \subseteq \operatorname{Fin}(S):(\forall A \in p)(\exists R \in \mathcal{R})(R \subseteq A)$
- There is a large $p \in \beta S$ for $\emptyset \neq \mathcal{R} \subseteq \operatorname{Fin}(S)$ iff for each coloring of S, there is a monochromatic set in \mathcal{R}

Lemma (Deuber-Hindman 1987)

The set

$$
\left\{p \in \beta N:[\mathbb{N}]^{\infty} \supseteq p \text { is large for each family of }(m, p, c) \text {-sets }\right\}
$$

is a closed and nonempty subsemigroup of $(\beta \mathbb{N},+)$

Lemma (Tsaban 2018)

Let $a_{1}, a_{2}, \ldots \in S$ be proper and \mathcal{A} be a translation invariant superfilter on S. The set

$$
\left\{p \in \beta S: \mathcal{A} \supseteq p \text { is large for }\left\{\{x\}: x \in \operatorname{FinSum}\left(a_{n}, a_{n+1}, \ldots\right)\right\}, n \in \mathbb{N}\right\}
$$

is a closed and nonempty subsemigroup of $(\beta S,+)$.

The main result

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}$,
- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$,
- Alice has no winning strategy in $\mathrm{G}_{\mathrm{fin}}(\mathcal{A}, \mathcal{B})$.

For each coloring of $[S]^{2}$, there are sets $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that

- $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}$,
- the partite sumgraph of F_{1}, F_{2}, \ldots is monochromatic.

Applications

Theorem (Bergelson-Hindman 1988)

Let $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots$ be an enumeration of all families of (m, p, c)-sets. For each coloring of $[\mathbb{N}]^{2}$, there are sets $R_{1} \in \mathcal{R}_{1}, R_{2} \in \mathcal{R}_{2}, \ldots$ such that

- the partite sumgraph of R_{1}, R_{2}, \ldots is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}$,

$$
S=(\mathbb{N},+), \mathcal{A}=\mathcal{B}=[\mathbb{N}]^{\infty}
$$

- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$ Deuber-Hindman + Numakura
- Alice has no winning strategy in $\mathrm{G}_{\text {fin }}(\mathcal{A}, \mathcal{B})$.

Bов has a winning strategy in $\mathrm{G}_{\text {fin }}\left([\mathbb{N}]^{\infty},[\mathbb{N}]^{\infty}\right)$
For each coloring of $[S]^{2}$, there are sets $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that

- $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}$,
- the partite sumgraph of F_{1}, F_{2}, \ldots is monochromatic.

Applications

Theorem (Scheepers 1996)

If X is $\mathrm{S}_{\mathrm{fin}}(\Omega, \Omega)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there are sets $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \in \operatorname{Fin}(\mathcal{U})$ such that

- $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \in \Omega$ and the partite graph of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}$,

$$
\Omega \ni \mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\}, S=(\mathcal{U}, \max), \mathcal{A}=\{\mathcal{V} \in \Omega: \mathcal{V} \subseteq \mathcal{U}\}, \mathcal{B}=\Omega
$$

- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$, $\mathcal{R}_{n}=\left\{\left\{U_{n}\right\},\left\{U_{n+1}\right\}, \ldots\right\}, \bigcup \mathcal{R}_{n}=\left\{U_{n}, U_{n+1}, \ldots\right\}=\operatorname{FinSum}\left(U_{n}, U_{n+1}, \ldots\right)$
- Alice has no winning strategy in $\mathrm{G}_{\text {fin }}(\mathcal{A}, \mathcal{B})$.
X is $\mathrm{S}_{\mathrm{fin}}(\Omega, \Omega) \rightarrow$ Alice has no winning strategy in $\mathrm{G}_{\mathrm{fin}}(\Omega, \Omega)$
For each coloring of $[S]^{2}$, there are sets $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that
- $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}, \quad \mathcal{F}_{n} \subseteq \bigcup \mathcal{R}_{n}=\left\{U_{n}, U_{n+1}, \ldots\right\} \subseteq \mathcal{U}$
- the partite sumgraph of F_{1}, F_{2}, \ldots is monochromatic.

Applications

Theorem (Scheepers 1999)

If X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there are sets $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \in \operatorname{Fin}(\mathcal{U})$ such that

- $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \in \Lambda$ and the partite graph of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}$,

$$
\Omega \ni \mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\}, S=(\mathcal{U}, \max), \mathcal{A}=\{\mathcal{V} \in \Omega: \mathcal{V} \subseteq \mathcal{U}\}, \mathcal{B}=\Lambda
$$

- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$ $\mathcal{R}_{n}=\left\{\left\{U_{n}\right\},\left\{U_{n+1}\right\}, \ldots\right\}, \bigcup \mathcal{R}_{n}=\left\{U_{n}, U_{n+1}, \ldots\right\}=\operatorname{FinSum}\left(U_{n}, U_{n+1}, \ldots\right)$
- Alice has no winning strategy in $\mathrm{G}_{\text {fin }}(\mathcal{A}, \mathcal{B})$.
X is $\mathrm{S}_{\mathrm{fin}}(\Omega, \Lambda) \rightarrow$ Alice has no win strategy in $\mathrm{G}_{\mathrm{fin}}(\Omega, \Lambda)$, also in $\mathrm{G}_{\mathrm{fin}}(\mathcal{A}, \Lambda)$
For each coloring of $[S]^{2}$, there are sets $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that
- $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B} \quad \mathcal{F}_{n} \subseteq \bigcup \mathcal{R}_{n}=\left\{U_{n}, U_{n+1}, \ldots\right\} \subseteq \mathcal{U}$
- the partite sumgraph of F_{1}, F_{2}, \ldots is monochromatic

Applications

Theorem (Scheepers 1999)

If $Y=\mathrm{C}_{\mathrm{p}}(X)$ has countable fan tightness, then for every $A \subseteq Y$ with $\mathbf{0} \in \bar{A}$ and a coloring of $[P(Y)]^{2}$, there are finite sets $F_{1}, F_{2}, \ldots \subseteq A$ such that
$■ \mathbf{0} \in \overline{\bigcup\left\{F_{n}: n \in \mathbb{N}\right\}}$ and the partite graph of F_{1}, F_{2}, \ldots is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}$,

$$
A=\left\{a_{1}, a_{2}, \ldots\right\}, S=\left([A]^{\infty}, \max \right), \mathcal{A}=\mathcal{B}=\left\{B \in[A]^{\infty}: \mathbf{0} \in \bar{B}\right\}
$$

- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$

$$
\mathcal{R}_{n}=\left\{\left\{a_{n}\right\},\left\{a_{n+1}\right\}, \ldots\right\}, \bigcup \mathcal{R}_{n}=\left\{a_{n}, a_{n+1}, \ldots\right\}=\operatorname{FinSum}\left(a_{n}, a_{n+1}, \ldots\right)
$$

- Alice has no winning strategy in $\mathrm{G}_{\text {fin }}(\mathcal{A}, \mathcal{B})$.
Y has countable fan tightness \rightarrow Alice has no winning strategy in $\mathrm{G}_{\mathrm{fin}}(\mathcal{A}, \mathcal{A})$
For each coloring of $[S]^{2}$, there are $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that
- $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}, \quad F_{n} \subseteq \bigcup \mathcal{R}_{n}=\left\{a_{n}, a_{n+1}, \ldots\right\} \subseteq A$
- the partite sumgraph of F_{1}, F_{2}, \ldots is monochromatic

Theorem (Sz 2020)

Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}$, there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$, and Alice has no winning strategy in $\mathrm{G}_{\text {fin }}(\mathcal{A}, \mathcal{B})$. For each coloring of $[S]^{2}$, there are sets $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}$, the partite sumgraph of F_{1}, F_{2}, \ldots is monochromatic.

- $\{t \in S:\{s, t\}$ is red $\} \cup\{t \in S:\{s, t\}$ is blue $\}=S \backslash\{s\} \in e$
- $\mathcal{R}_{1} \ni R_{1} \subseteq F_{1} \subseteq A_{1}^{\star} \subseteq A_{1}=M \cap \bigcup \mathcal{R}_{1}$
$e \ni M$ is monochromatic
- There is $e \ni B_{1} \subseteq A_{1}^{\star}$ with $F_{1}+B_{1} \subseteq A_{1}$

- $\mathcal{R}_{2} \ni R_{2} \subseteq F_{2} \subseteq A_{2}^{\star} \subseteq A_{2}=\bigcap_{s \in F_{1}}\{t \in S \backslash\{s\}:\{s, t\}$ is blue $\} \cap B_{1} \cap \bigcup \mathcal{R}_{2}$
- There is e $\ni B_{2} \subseteq A_{2}^{\star}$ with $F_{2}+B_{2} \subseteq A_{2}$

- $\mathcal{R}_{3} \ni R_{3} \subseteq F_{3} \subseteq A_{3}^{\star} \subseteq A_{3}=\bigcap_{s \in F_{1} \cup F_{2} \cup F_{1}+F_{2}}\{t \in S \backslash\{s\}:\{s, t\}$ is blue $\} \cap B_{2} \cap \bigcup \mathcal{R}_{3}$
- There is $e \ni B_{3} \subseteq A_{3}^{\star}$ with $F_{3}+B_{3} \subseteq A_{3}$, etc.
- There is a play $\left(A_{1}^{\star}, F_{1}, A_{2}^{\star}, F_{2}, \ldots\right)$ won by Bob
- $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}$

A modification. . .

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}$,
- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$,
- Alice has no winning strategy in $\mathrm{G}_{1}(\mathcal{A}, \mathcal{B})$.

For each coloring of $[S]^{2}$, there are elements $a_{1}, a_{2}, \ldots \in S$ and sets $R_{1} \in \mathcal{R}_{1}, R_{2} \in \mathcal{R}_{2}, \ldots$ such that

- $\mathcal{R}_{n} \ni R_{n} \ni a_{n}$ and $\left\{a_{n}: n \in \mathbb{N}\right\} \in \mathcal{B}$,
- the partite sumgraph of R_{1}, R_{2}, \ldots is monochromatic.

... and its consequences

Theorem (Scheepers 1999)

If X is $\mathrm{S}_{1}(\mathrm{O}, \mathrm{O})$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there is $\mathcal{V} \subseteq \mathcal{U}$ such that $\mathcal{V} \in \Lambda$ and the graph $[\mathcal{V}]^{2}$ is monochromatic.

Theorem (Scheepers 1996)

If X is $\mathrm{S}_{1}(\Omega, \Omega)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there is $\mathcal{V} \subseteq \mathcal{U}$ such that $\mathcal{V} \in \Omega$ and the graph $[\mathcal{V}]^{2}$ is monochromatic.

- Y has countable strong fan tightness:

$$
\left(\forall A_{1}, A_{2}, \ldots \subseteq Y, y \in \bigcap_{n \in \mathbb{N}} \overline{A_{n}}\right)\left(\exists a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots\right)\left(y \in \overline{\left\{a_{n}: n \in \mathbb{N}\right\}}\right)
$$

- Sakai 1988: X is $\mathrm{S}_{1}(\Omega, \Omega) \leftrightarrow X$ is $\mathrm{S}_{1}(\mathrm{O}, \mathrm{O})$ in all finite powers $\leftrightarrow \mathrm{C}_{\mathrm{p}}(X)$ has countable strong fan tightness

Theorem (Pawlikowski 1994)

X is $\mathrm{S}_{1}(\mathrm{O}, \mathrm{O})$ iff Alice has no winning strategy in $\mathrm{G}_{1}(\mathrm{O}, \mathrm{O})$.

Richer structures

Theorem (Scheepers 1999)

If X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^{2}$, there are finite sets $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \subseteq \mathcal{U}$ such that

- $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \in \Lambda$ and the partite graph of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ is monochromatic.

Theorem (Tsaban 2018)

If X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$, then for each decreasing sequence $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots \in \Lambda$ such that \mathcal{U}_{1} has no finite subcover and a coloring of $[\tau]^{2}$, there are finite sets $\mathcal{F}_{1} \subseteq \mathcal{U}_{1}$, $\mathcal{F}_{2} \subseteq \mathcal{U}_{2}, \ldots$ such that

■ $\bigcup \mathcal{F}_{n} \in \Lambda$ and the sumgraph of $\bigcup \mathcal{F}_{1}, \bigcup \mathcal{F}_{2}, \ldots$ is monochromatic.
No: $X=\operatorname{Fin}(\mathbb{N}), U_{n}=\{F \in X: n \notin F\}, \mathcal{U}=\left\{U_{1}, U_{2}, \ldots\right\} \in \Omega$

Richer structures

Theorem (Sz 2020)

If X is $\mathrm{S}_{\mathrm{fin}}(\mathrm{O}, \mathrm{O})$, then for every $\mathcal{U} \in \Omega$ with no finite subcover and a coloring of $[\tau]^{2}$ there are finite sets $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \subseteq \mathcal{U}$ such that

- $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{n} \in \Lambda$ and the partite graph of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ is monochromatic,
- the sumgraph of $\bigcup \mathcal{F}_{1}, \bigcup \mathcal{F}_{2}, \ldots$ is monochromatic.

Higher dimensions

- A partite k-sumgraph of $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ is the set of all k-edges

$$
\left\{a_{G_{1}}, \ldots, a_{G_{k}}\right\},
$$

where $\left(a_{1}, a_{2}, \ldots\right) \in F_{1} \times F_{2} \times \cdots$ and $G_{1}<\cdots<G_{k} \in \operatorname{Fin}(\mathbb{N})$.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq[S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}, k \geq 2$
- there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots \subseteq \operatorname{Fin}(S)$,
- Alice has no winning strategy in $\mathrm{G}_{\text {fin }}(\mathcal{A}, \mathcal{B})$.

For each coloring of $[S]^{k}$, there are sets $F_{1}, F_{2}, \ldots \in \operatorname{Fin}(S)$ such that

- $\mathcal{R}_{n} \ni R_{n} \subseteq F_{n} \subseteq \bigcup \mathcal{R}_{n}$ and $\bigcup_{n \in \mathbb{N}} F_{n} \in \mathcal{B}$,
- the partite k-sumgraph of F_{1}, F_{2}, \ldots is monochromatic.

Comments about covering properties

