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Colorings of N
A coloring of N is a function χ : N→ {1, 2, . . . , k}

N = C1 ∪ C2 ∪ · · · ∪ Ck
pairwise disjoint

Theorem (Theorems)
For each coloring of N

Schur 1916:
there is a monochromatic set {a, b, a + b}
van der Waerden 1927:
for each n, there is a monochromatic arithmetic progression of length n
Deuber 1973:
for all m, p, c ∈ N, there is a monochromatic (m, p, c)-set
m, p, c ∈ N, x ∈ Nm

S(m, p, c, x) :=
{

cxt +
∑m+1

i=t+1
λi xi : t ∈ {1, . . . ,m}, ( ∀ i ∈ {t + 1, . . . ,m + 1} )(|λi | ≤ p)

}
S(2, 2, 1, x) = {1x1 + 0x2, 1x1 + 1x2, 1x1 + 2x2, 1x1−2x2, 1x1 − 1x2, 1x2} =

= {x1, x1 + x2, x1 + 2x2, x1 − 2x2, x1 − x2, x2}



Semigroup βN
βN: all ultrafilters on N
Basic open sets [A] := { p ∈ βN : A ∈ p }, A ⊆ N
βN ⊇ N : identify x with {A ⊆ N : x ∈ A }
Extend +: N× N→ N, to +: βN× βN→ βN such that:

for each x ∈ N the function q 7→ x + q is continuous
for each q ∈ βN the function p 7→ p + q is continuous
+ is associative on βN

(βN,+) is a compact right-topological semigroup

A ∈ p + q ←→ { x ∈ N : (∃B ∈ q )(x + B ⊆ A) } ∈ p

βN 3 e is idempotent: e + e = e

(∀A ∈ e )(∃A? ∈ e )( ∀ a ∈ A? )(∃B ∈ e )(a + B ⊆ A)

A
a + BB•a

A?



Hindman’s Theorem
Lemma (Numakura 1952)
Every nonempty compact right-topological semigroup has an idempotent.

a1, a2, . . . ∈ N, F = {i1, . . . , in} increasing enumeration

aF := ai1 + · · ·+ ain FinSum(a1, a2, . . . ) := { aF : F ∈ Fin(N) }

Theorem (Hindman 1974)
For each coloring of N, there is a sequence a1, a2, . . . ∈ N such that
FinSum(a1, a2, . . . ) is monochromatic.

Pick an idempotent e ∈ βN and a monochromatic A1 ∈ e

A1

•a1

a1 + A2

A2

a2•

A3

a2 + A3 a1 + a2 •
•a3

a1 + a3 •

a2 + a3 • a1 + a2 + a3•

ai1 + ai2 + · · ·+ aim ∈ Ai1 for i1 < i2 < · · · < im



Colorings of graphs
Theorem (Ramsey 1930)
For each coloring of [N]2, there is an infinite set A ⊆ N such that [A]2 is
monochromatic.

a1, a2, . . . ∈ N is proper: aF 6= aG for all F ,G ∈ Fin(N) with F < G

sumgraph of a1, a2, . . .
proper

:
{
{aF , aG} : F ,G ∈ Fin(N) with F < G

}

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 . . .

a2 + a4 = aFa2 + a4 = aF aG = a6 + a8 + a10aG = a6 + a8 + a10

aH = a7 + a9

6=

Theorem (Milliken 1975, Taylor 1976) (N,+)
For each coloring of [N]2, there is a proper sequence a1, a2, . . . ∈ N whose
sumgraph is monochromatic.



Colorings of graphs

partite graph of F1,F2, . . . ∈ Fin(N)
pairwise disjoint

:
{
{ai , aj} : ai ∈ Fi , aj ∈ Fj , i 6= j

}
partite sumgraph of F1,F2, . . . ∈ Fin(N), all sequences in F1 × F2 × · · ·
are proper{
{aF , aG} : (a1, a2, . . . ) ∈ F1 × F2 × · · · and F ,G ∈ Fin(N) with F < G

}
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

. . .

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

y

x

x + y 6=a2 + a4 = aF aG = a6 + a8 + a9

a1
a5



Colorings of graphs
S(m, p, c, x) :=

{
cxt +

∑m+1
i=t+1

λi xi : t ∈ {1, . . . ,m}, ( ∀ i ∈ {t + 1, . . . ,m + 1} )(|λi | ≤ p)
}

S(2, 2, 1, x) = {x1, x1 + x2, x1 + 2x2, x2, x1 − x2, x1 − 2x2}

Theorem (Bergelson–Hindman 1988) (N,+)
Let R1,R2, . . . be an enumeration of all families of (m, p, c)-sets. For each
coloring of [N]2, there are sets R1 ∈ R1,R2 ∈ R2, . . . such that the partite
sumgraph of R1,R2, . . . is monochromatic.

[N]2 = { (a, b) ∈ N2 : a > b }
there is a monchromatic set M
such that for each n, there are
arithmetic progressions A1,A2 ⊆ N
of length n with A1 × A2 ⊆ M

•••••••••••
••••••••••
•••••••••
••••••••
•••••••
••••••
•••••
••••

. . .

•
•
•

•
•
•

•
•
•



Colorings of covers
Sfin(A,B):

(∀A1,A2, . . . ∈ A )(∃ finite F1 ⊆ A1,F2 ⊆ A2, . . . )(
⋃

n∈N Fn ∈ B)

O : all countable open covers of X
Sfin(O,O):

F1 ⊆ U1

X

F2 ⊆ U2

X

F3 ⊆ U3

X X

. . .

F1 ⊆ U1

X

F2 ⊆ U2

X

F3 ⊆ U3

X X

. . .

X

. . .

ω-cover: ( ∀ finite F ⊆ X )(∃U ∈ U \ {X} )(F ⊆ U)
Ω: all countable ω-covers of X
λ-cover: ( ∀ x ∈ X )({U ∈ U : x ∈ U } is infinite)
Λ: all countable λ-covers of X



Colorings of covers
Theorem (Scheepers 1999)
If X is Sfin(O,O), then for every U ∈ Ω and a coloring of [τ ]2, there are finite
sets F1,F2, . . . ⊆ U such that⋃

n∈N Fn ∈ Λ and the partite graph of F1,F2, . . . is monochromatic.

Theorem (Scheepers 1996)
If X is Sfin(Ω,Ω), then for every U ∈ Ω and a coloring of [τ ]2, there are finite
sets F1,F2, . . . ⊆ U such that⋃

n∈N Fn ∈ Ω and the partite graph of F1,F2, . . . is monochromatic.

Y has countable fan tightness:

(∀A1,A2, . . . ⊆ Y , y ∈
⋂
n∈N

An )(∃ fin F1 ⊆ A1,F2 ⊆ A2, . . . )(y ∈
⋃
n∈N

Fn)

Just, Miller, Scheepers, Szeptycki 1996: X is Sfin(Ω,Ω) ↔ X is
Sfin(O,O) in all finite powers ↔ Cp(X ) has countable fan tightness



Colorings of covers
Theorem (Tsaban 2018) (τ,∪)
If X is Sfin(O,O), then for each decreasing sequence U1,U2, . . . ∈ Λ such that
U1 has no finite subcover and a coloring of [τ ]2, there are finite sets F1 ⊆ U1,
F2 ⊆ U2, . . . such that⋃

Fn ∈ Λ and the sumgraph of
⋃
F1,

⋃
F2, . . . is monochromatic.

Vn =
⋃
Fn

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 . . .

V2 ∪ V4 = VF VG = V6 ∪ V8 ∪ V10

VH = V7 ∪ V9

Theorem (Milliken 1975, Taylor 1976) (N,+)
For each coloring of [N]2, there is a proper sequence a1, a2, . . . ∈ N whose
sumgraph is monochromatic.



Topological games
Sfin(A,B):

(∀A1,A2, . . . ∈ A )(∃ finite F1 ⊆ A1,F2 ⊆ A2, . . . )(
⋃

n∈N Fn ∈ B)

Gfin(A,B)
Alice: A1 ∈ A A2 ∈ A . . .

Bob: F1 ⊆
finite

A1 F2 ⊆
finite

A2

If
⋃

n∈N Fn ∈ B, then Bob wins. Otherwise, Alice wins.

Bob has a winning strategy in Gfin([N]∞, [N]∞)
If X is σ-compact, then Bob has a winning strategy in Gfin(O,O)

Theorem (Hurewicz 1925)
X is Sfin(O,O) iff Alice has no winning strategy in Gfin(O,O).



Semigroup βS
βS: all ultrafilters on S
Basic open sets [A] := { p ∈ βS : A ∈ p }, A ⊆ S
βS ⊇ S : identify x with {A ⊆ S : x ∈ A }
Extend +: S × S → S, to +: βS × βS → βS such that:

for each x ∈ S the function q 7→ x + q is continuous
for each q ∈ βS the function p 7→ p + q is continuous
+ is associative on βS

(βS,+) is a compact right-topological semigroup

A ∈ p + q ←→ { x ∈ S : (∃B ∈ q )(x + B ⊆ A) } ∈ p

βS 3 e is idempotent: e + e = e

(∀A ∈ e )(∃A? ∈ e )( ∀ a ∈ A? )(∃B ∈ e )(a + B ⊆ A)

Lemma (Numakura 1952)
Every nonempty compact right-topological semigroup has an idempotent.



Superfilters and idempotents
[S]∞ ⊇ A is a superfilter on S:

A 3 A ⊆ B −→ B ∈ A
A ∪ B ∈ A −→ A ∈ A or B ∈ A

[S]∞ every ultrafilter Ω {A ∈ [X ]∞ : x ∈ A }

Lemma (Tsaban 2018)
Let a1, a2, . . . ∈ S be proper and A be a translation invariant superfilter on S.{

p ∈ βS : {FinSum(an, an+1, . . . ) : n ∈ N } ⊆ p ⊆ A
}

is a closed and nonempty subsemigroup of (βS,+).

S = (N,+), A = [N]∞
Ω 3 U = {U1,U2, . . . }, S = (U ,max), A = { V ∈ Ω : V ⊆ U },

A 3 V → {max{B,V } : V ∈ V } ∈ A

Ω 3 U with no finite subcover and closed under ∪, S = (U ,∪),
A = { V ∈ Ω : V ⊆ U }

A 3 V → {B ∪ V : V ∈ V } ∈ A



Superfilters and idempotents
βS 3 p is large for ∅ 6= R ⊆ Fin(S): ( ∀A ∈ p )(∃R ∈ R )(R ⊆ A)
There is a large p ∈ βS for ∅ 6= R ⊆ Fin(S) iff for each coloring of S,
there is a monochromatic set in R

Lemma (Deuber–Hindman 1987)
The set {

p ∈ βN : [N]∞ ⊇ p is large for each family of (m, p, c)-sets
}

is a closed and nonempty subsemigroup of (βN,+)

Lemma (Tsaban 2018)
Let a1, a2, . . . ∈ S be proper and A be a translation invariant superfilter on S.
The set{

p ∈ βS : A ⊇ p is large for
{
{x} : x ∈ FinSum(an, an+1, . . . )

}
, n ∈ N

}
is a closed and nonempty subsemigroup of (βS,+).



The main result
Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞,
there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S),
Alice has no winning strategy in Gfin(A,B).

For each coloring of [S]2, there are sets F1,F2, . . . ∈ Fin(S) such that
Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N Fn ∈ B,

the partite sumgraph of F1,F2, . . . is monochromatic.

F1

a1

F2

a2

F3

a3

F4

a4

F5

a5

F6

a6

F7

a7

F8

a8

F9

a9

F10

a10

. . .

a2 + a4 = aF aG = a6 + a8 + a9



Applications
Theorem (Bergelson–Hindman 1988) (N,+)
Let R1,R2, . . . be an enumeration of all families of (m, p, c)-sets. For each
coloring of [N]2, there are sets R1 ∈ R1,R2 ∈ R2, . . . such that

the partite sumgraph of R1,R2, . . . is monochromatic.

Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞,
S = (N,+), A = B = [N]∞

there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S)
Deuber–Hindman + Numakura
Alice has no winning strategy in Gfin(A,B).
Bob has a winning strategy in Gfin([N]∞, [N]∞)

For each coloring of [S]2, there are sets F1,F2, . . . ∈ Fin(S) such that
Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N Fn ∈ B,

the partite sumgraph of F1,F2, . . . is monochromatic.



Applications
Theorem (Scheepers 1996)
If X is Sfin(Ω,Ω), then for every U ∈ Ω and a coloring of [τ ]2, there are sets
F1,F2, . . . ∈ Fin(U) such that⋃

n∈N Fn ∈ Ω and the partite graph of F1,F2, . . . is monochromatic.

Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞,
Ω 3 U = {U1,U2, . . . }, S = (U ,max), A = {V ∈ Ω : V ⊆ U },B = Ω
there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S),
Rn = {{Un}, {Un+1}, . . . },

⋃
Rn = {Un,Un+1, . . . } = FinSum(Un,Un+1, . . . )

Alice has no winning strategy in Gfin(A,B).
X is Sfin(Ω,Ω) → Alice has no winning strategy in Gfin(Ω,Ω)

For each coloring of [S]2, there are sets F1,F2, . . . ∈ Fin(S) such that
Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N Fn ∈ B, Fn ⊆

⋃
Rn = {Un,Un+1, . . . } ⊆ U

the partite sumgraph of F1,F2, . . . is monochromatic.



Applications
Theorem (Scheepers 1999)
If X is Sfin(O,O), then for every U ∈ Ω and a coloring of [τ ]2, there are sets
F1,F2, . . . ∈ Fin(U) such that⋃

n∈N Fn ∈ Λ and the partite graph of F1,F2, . . . is monochromatic.

Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞,
Ω 3 U = {U1,U2, . . . }, S = (U ,max), A = {V ∈ Ω : V ⊆ U }, B = Λ
there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S)
Rn = {{Un}, {Un+1}, . . . },

⋃
Rn = {Un,Un+1, . . . } = FinSum(Un,Un+1, . . . )

Alice has no winning strategy in Gfin(A,B).
X is Sfin(Ω,Λ) → Alice has no win strategy in Gfin(Ω,Λ), also in Gfin(A,Λ)

For each coloring of [S]2, there are sets F1,F2, . . . ∈ Fin(S) such that
Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N Fn ∈ B Fn ⊆

⋃
Rn = {Un,Un+1, . . . } ⊆ U

the partite sumgraph of F1,F2, . . . is monochromatic



Applications
Theorem (Scheepers 1999)
If Y = Cp(X ) has countable fan tightness, then for every A ⊆ Y with 0 ∈ A
and a coloring of [P(Y )]2, there are finite sets F1,F2, . . . ⊆ A such that

0 ∈
⋃
{Fn : n ∈ N } and the partite graph of F1,F2, . . . is monochromatic.

Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞,
A = {a1, a2, . . . }, S = ([A]∞,max), A = B = {B ∈ [A]∞ : 0 ∈ B }
there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S)
Rn = {{an}, {an+1}, . . . },

⋃
Rn = {an, an+1, . . . } = FinSum(an, an+1, . . . )

Alice has no winning strategy in Gfin(A,B).
Y has countable fan tightness → Alice has no winning strategy in Gfin(A,A)

For each coloring of [S]2, there are F1,F2, . . . ∈ Fin(S) such that
Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N Fn ∈ B, Fn ⊆

⋃
Rn = {an, an+1, . . . } ⊆ A

the partite sumgraph of F1,F2, . . . is monochromatic



Theorem (Sz 2020)
Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞, there is an idempotent e ⊆ A, large for
R1,R2, . . . ⊆ Fin(S), and Alice has no winning strategy in Gfin(A,B). For each coloring of [S]2, there
are sets F1, F2, . . . ∈ Fin(S) such that Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N

Fn ∈ B, the partite
sumgraph of F1, F2, . . . is monochromatic.

{ t ∈ S : {s, t} is red } ∪ { t ∈ S : {s, t} is blue } = S \ {s} ∈ e

R1 3 R1 ⊆ F1 ⊆ A?
1 ⊆ A1 = M ∩

⋃
R1 e 3 M is monochromatic

There is e 3 B1 ⊆ A?
1 with F1 + B1 ⊆ A1

A1
A?

1 F1•
•

•
B1 F1 + B1

R2 3 R2 ⊆ F2 ⊆ A?
2 ⊆ A2 =

⋂
s∈F1
{ t ∈ S \ {s} : {s, t} is blue } ∩ B1 ∩

⋃
R2

There is e 3 B2 ⊆ A?
2 with F2 + B2 ⊆ A2

A2
A?

2 B2 F2 + B2F2
•
•

R3 3 R3 ⊆ F3 ⊆ A?
3 ⊆ A3 =

⋂
s∈F1∪F2∪F1+F2

{ t ∈ S\{s} : {s, t} is blue }∩B2∩
⋃
R3

There is e 3 B3 ⊆ A?
3 with F3 + B3 ⊆ A3, etc.

There is a play (A?
1 ,F1,A?

2 ,F2, . . . ) won by Bob⋃
n∈N Fn ∈ B �

F1 F2 F3 F4

. . .

a1 a2 a3 a4

a1 + a2 = = a2 + a3



A modification. . .
Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞,
there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S),
Alice has no winning strategy in G1(A,B).

For each coloring of [S]2, there are elements a1, a2, . . . ∈ S and sets
R1 ∈ R1,R2 ∈ R2, . . . such that

Rn 3 Rn 3 an and { an : n ∈ N } ∈ B,
the partite sumgraph of R1,R2, . . . is monochromatic.

R1

a1

R2

a2

R3

a3

R4

a4

R5

a5

R6

a6

R7

a7

R8

a8

R9

a9

R10

a10

. . .

a2 + a4 = aF aG = a6 + a8 + a9



. . . and its consequences
Theorem (Scheepers 1999)
If X is S1(O,O), then for every U ∈ Ω and a coloring of [τ ]2, there is V ⊆ U
such that V ∈ Λ and the graph [V]2 is monochromatic.

Theorem (Scheepers 1996)
If X is S1(Ω,Ω), then for every U ∈ Ω and a coloring of [τ ]2, there is V ⊆ U
such that V ∈ Ω and the graph [V]2 is monochromatic.

Y has countable strong fan tightness:

(∀A1,A2, . . . ⊆ Y , y ∈
⋂
n∈N

An )(∃ a1 ∈ A1, a2 ∈ A2, . . . )(y ∈ { an : n ∈ N })

Sakai 1988: X is S1(Ω,Ω) ↔ X is S1(O,O) in all finite powers ↔ Cp(X )
has countable strong fan tightness

Theorem (Pawlikowski 1994)
X is S1(O,O) iff Alice has no winning strategy in G1(O,O).



Richer structures
Theorem (Scheepers 1999)
If X is Sfin(O,O), then for every U ∈ Ω and a coloring of [τ ]2, there are finite
sets F1,F2, . . . ⊆ U such that⋃

n∈N Fn ∈ Λ and the partite graph of F1,F2, . . . is monochromatic.

Theorem (Tsaban 2018) (τ,∪)
If X is Sfin(O,O), then for each decreasing sequence U1,U2, . . . ∈ Λ such that
U1 has no finite subcover and a coloring of [τ ]2, there are finite sets F1 ⊆ U1,
F2 ⊆ U2, . . . such that⋃

Fn ∈ Λ and the sumgraph of
⋃
F1,

⋃
F2, . . . is monochromatic.

No: X = Fin(N), Un = {F ∈ X : n /∈ F }, U = {U1,U2, . . . } ∈ Ω

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 . . .

V2 ∪ V4 = VF



Richer structures
Theorem (Sz 2020) (τ,∪)
If X is Sfin(O,O), then for every U ∈ Ω with no finite subcover and a coloring
of [τ ]2 there are finite sets F1,F2, . . . ⊆ U such that⋃

n∈N Fn ∈ Λ and the partite graph of F1,F2, . . . is monochromatic,
the sumgraph of

⋃
F1,

⋃
F2, . . . is monochromatic.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

. . .

Vn =
⋃
Fn

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 . . .

V2 ∪ V4 = VF VG = V6 ∪ V8 ∪ V10

VH = V7 ∪ V9



Higher dimensions
A partite k-sumgraph of F1,F2, . . . ∈ Fin(S) is the set of all k-edges

{aG1 , . . . , aGk},

where (a1, a2, . . . ) ∈ F1 × F2 × · · · and G1 < · · · < Gk ∈ Fin(N).

Theorem (Sz 2020)

Assume that A,B ⊆ [S]∞, B is closed under supersets in [S]∞, k ≥ 2
there is an idempotent e ⊆ A, large for R1,R2, . . . ⊆ Fin(S),
Alice has no winning strategy in Gfin(A,B).

For each coloring of [S]k , there are sets F1,F2, . . . ∈ Fin(S) such that
Rn 3 Rn ⊆ Fn ⊆

⋃
Rn and

⋃
n∈N Fn ∈ B,

the partite k-sumgraph of F1,F2, . . . is monochromatic.



Comments about covering properties

Sfin(Ω,Ω)
d

Sfin(O,O)
d

S1(Ω, Γ)
p

S1(Ω,Ω)
cov(M)

S1(O,O)
cov(M)

strong measure zero
cov(M)
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