Abstract colorings, games and ultrafilters

Piotr Szewczak

Cardinal Stefan Wyszyński University in Warsaw

December 3, 2020

Colorings of \mathbb{N}

A coloring of \mathbb{N} is a function $\chi \colon \mathbb{N} \to \{1, 2, \dots, k\}$

 $\mathbb{N} = \underbrace{C_1 \cup C_2 \cup \cdots \cup C_k}_{\text{pairwise disjoint}}$

Theorem (Theorems)

For each coloring of \mathbb{N}

Schur 1916:

there is a monochromatic set $\{a, b, a + b\}$

van der Waerden 1927:

for each n, there is a monochromatic arithmetic progression of length n

Deuber 1973:

for all $m, p, c \in \mathbb{N}$, there is a monochromatic (m, p, c)-set

 $m, p, c \in \mathbb{N}, x \in \mathbb{N}^m$

$$S(m, p, c, x) := \left\{ cx_t + \sum_{i=t+1}^{m+1} \lambda_i x_i : t \in \{1, \dots, m\}, (\forall i \in \{t+1, \dots, m+1\}) (|\lambda_i| \le p) \right\}$$

$$\begin{aligned} S(2,2,1,x) &= \{1x_1 + 0x_2, \ 1x_1 + 1x_2, \ 1x_1 + 2x_2, \ 1x_1 - 2x_2, \ 1x_1 - 1x_2, \ 1x_2\} = \\ &= \{x_1, \ x_1 + x_2, \ x_1 + 2x_2, x_1 - 2x_2, x_1 - x_2, x_2\} \end{aligned}$$

Semigroup $\beta \mathbb{N}$

- $\beta \mathbb{N}$: all ultrafilters on \mathbb{N}
- Basic open sets $[A] := \{ p \in \beta \mathbb{N} : A \in p \}, A \subseteq \mathbb{N}$
- $\beta \mathbb{N} \supseteq \mathbb{N}$: identify x with $\{A \subseteq \mathbb{N} : x \in A\}$
- Extend $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, to $+: \beta \mathbb{N} \times \beta \mathbb{N} \to \beta \mathbb{N}$ such that:
 - for each $x \in \mathbb{N}$ the function $q \mapsto x + q$ is continuous
 - for each $q \in \beta \mathbb{N}$ the function $p \mapsto p + q$ is continuous
 - \blacksquare + is associative on $\beta\mathbb{N}$
- $(\beta \mathbb{N}, +)$ is a compact right-topological semigroup

$$A \in p + q \longleftrightarrow \{ x \in \mathbb{N} : (\exists B \in q)(x + B \subseteq A) \} \in p$$

■ $\beta \mathbb{N} \ni e$ is idempotent: e + e = e

$$(\forall A \in e)(\exists A^{\star} \in e)(\forall a \in A^{\star})(\exists B \in e)(a + B \subseteq A)$$

Hindman's Theorem

Lemma (Numakura 1952)

Every nonempty compact right-topological semigroup has an idempotent.

 $a_1, a_2, \ldots \in \mathbb{N}$, $F = \{i_1, \ldots, i_n\}$ increasing enumeration

 $a_F := a_{i_1} + \cdots + a_{i_n}$ FinSum $(a_1, a_2, \dots) := \{a_F : F \in \operatorname{Fin}(\mathbb{N})\}$

Theorem (Hindman 1974)

For each coloring of \mathbb{N} , there is a sequence $a_1, a_2, \ldots \in \mathbb{N}$ such that $FinSum(a_1, a_2, \ldots)$ is monochromatic.

Pick an idempotent $e \in \beta \mathbb{N}$ and a monochromatic $A_1 \in e$

• $a_{i_1} + a_{i_2} + \dots + a_{i_m} \in A_{i_1}$ for $i_1 < i_2 < \dots < i_m$

Colorings of graphs

Theorem (Ramsey 1930)

For each coloring of $[\mathbb{N}]^2$, there is an infinite set $A \subseteq \mathbb{N}$ such that $[A]^2$ is monochromatic.

■ $a_1, a_2, \ldots \in \mathbb{N}$ is proper: $a_F \neq a_G$ for all $F, G \in Fin(\mathbb{N})$ with F < G

• sumgraph of $\underbrace{a_1, a_2, \dots}_{\text{proper}}$: $\left\{ \left\{ a_F, a_G \right\} : F, G \in Fin(\mathbb{N}) \text{ with } F < G \right\}$

Theorem (Milliken 1975, Taylor 1976)

 $(\mathbb{N},+)$

For each coloring of $[\mathbb{N}]^2$, there is a proper sequence $a_1, a_2, \ldots \in \mathbb{N}$ whose sumgraph is monochromatic.

Colorings of graphs

- partite graph of $\underbrace{F_1, F_2, \ldots}_{\text{pairwise disjoint}} \in \operatorname{Fin}(\mathbb{N}) : \{ \{a_i, a_j\} : a_i \in F_i, a_j \in F_j, i \neq j \}$
- partite sumgraph of $F_1, F_2, \ldots \in Fin(\mathbb{N})$, all sequences in $F_1 \times F_2 \times \cdots$ are proper

 $\big\{\,\{a_F,a_G\}:(a_1,a_2,\dots)\in F_1\times F_2\times\cdots \text{ and } F,G\in \mathrm{Fin}(\mathbb{N}) \text{ with } F< G\,\big\}$

Colorings of graphs

 $S(m, p, c, x) := \left\{ cx_t + \sum_{i=t+1}^{m+1} \lambda_i x_i : t \in \{1, \dots, m\}, (\forall i \in \{t+1, \dots, m+1\}) (|\lambda_i| \le p) \right\}$

$$S(2,2,1,x) = \{x_1, x_1 + x_2, x_1 + 2x_2, x_2, x_1 - x_2, x_1 - 2x_2\}$$

Theorem (Bergelson–Hindman 1988)

Let $\mathcal{R}_1, \mathcal{R}_2, \ldots$ be an enumeration of all families of (m, p, c)-sets. For each coloring of $[\mathbb{N}]^2$, there are sets $R_1 \in \mathcal{R}_1, R_2 \in \mathcal{R}_2, \ldots$ such that the partite sumgraph of R_1, R_2, \ldots is monochromatic.

•
$$[\mathbb{N}]^2 = \{ (a, b) \in \mathbb{N}^2 : a > b \}$$

• there is a monchromatic set Msuch that for each n, there are arithmetic progressions $A_1, A_2 \subseteq \mathbb{N}$ of length n with $A_1 \times A_2 \subseteq M$

 $(\mathbb{N},+)$

Colorings of covers

• $S_{fin}(\mathcal{A}, \mathcal{B})$:

 $(\forall A_1, A_2, \ldots \in \mathcal{A})(\exists finite F_1 \subseteq A_1, F_2 \subseteq A_2, \ldots)(\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B})$

- O : all countable open covers of X
- S_{fin}(O,O):

- ω -cover: $(\forall \text{ finite } F \subseteq X)(\exists U \in U \setminus \{X\})(F \subseteq U)$
- Ω : all countable ω -covers of X
- λ -cover: $(\forall x \in X)(\{ U \in U : x \in U \} \text{ is infinite})$
- A: all countable λ -covers of X

Colorings of covers

Theorem (Scheepers 1999)

If X is $S_{fin}(O, O)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there are finite sets $\mathcal{F}_1, \mathcal{F}_2, \ldots \subseteq \mathcal{U}$ such that

• $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \Lambda$ and the partite graph of $\mathcal{F}_1, \mathcal{F}_2, \ldots$ is monochromatic.

Theorem (Scheepers 1996)

If X is $S_{fin}(\Omega, \Omega)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there are finite sets $\mathcal{F}_1, \mathcal{F}_2, \ldots \subseteq \mathcal{U}$ such that

• $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \Omega$ and the partite graph of $\mathcal{F}_1, \mathcal{F}_2, \ldots$ is monochromatic.

Y has countable fan tightness:

$$(\forall A_1, A_2, \ldots \subseteq Y, y \in \bigcap_{n \in \mathbb{N}} \overline{A_n}) (\exists \text{ fin } F_1 \subseteq A_1, F_2 \subseteq A_2, \ldots) (y \in \bigcup_{n \in \mathbb{N}} F_n)$$

■ Just, Miller, Scheepers, Szeptycki 1996: X is $S_{fin}(\Omega, \Omega) \leftrightarrow X$ is $S_{fin}(O, O)$ in all finite powers $\leftrightarrow C_p(X)$ has countable fan tightness

Colorings of covers

 (τ, \cup)

Theorem (Tsaban 2018)

If X is $S_{fin}(O, O)$, then for each decreasing sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots \in \Lambda$ such that \mathcal{U}_1 has no finite subcover and a coloring of $[\tau]^2$, there are finite sets $\mathcal{F}_1 \subseteq \mathcal{U}_1$, $\mathcal{F}_2 \subseteq \mathcal{U}_2, \ldots$ such that

• $\bigcup \mathcal{F}_n \in \Lambda$ and the sumgraph of $\bigcup \mathcal{F}_1, \bigcup \mathcal{F}_2, \ldots$ is monochromatic.

Theorem (Milliken 1975, Taylor 1976) $(\mathbb{N}, +)$ For each coloring of $[\mathbb{N}]^2$, there is a proper sequence $a_1, a_2, \ldots \in \mathbb{N}$ whose sumgraph is monochromatic.

Topological games

If $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B}$, then BOB wins. Otherwise, ALICE wins.

- BOB has a winning strategy in $G_{\operatorname{fin}}([\mathbb{N}]^{\infty}, [\mathbb{N}]^{\infty})$
- If X is σ -compact, then BOB has a winning strategy in $G_{fin}(O, O)$

Theorem (Hurewicz 1925)

X is $S_{fin}(O, O)$ iff ALICE has no winning strategy in $G_{fin}(O, O)$.

Semigroup βS

- βS : all ultrafilters on S
- Basic open sets $[A] := \{ p \in \beta S : A \in p \}, A \subseteq S$
- $\beta S \supseteq S$: identify x with $\{A \subseteq S : x \in A\}$
- Extend $+: S \times S \rightarrow S$, to $+: \beta S \times \beta S \rightarrow \beta S$ such that:
 - for each $x \in S$ the function $q \mapsto x + q$ is continuous
 - for each $q \in \beta S$ the function $p \mapsto p + q$ is continuous
 - + is associative on βS
- $(\beta S, +)$ is a compact right-topological semigroup

$$A \in p + q \longleftrightarrow \{x \in S : (\exists B \in q)(x + B \subseteq A)\} \in p$$

■ $\beta S \ni e$ is idempotent: e + e = e

$$(\forall A \in e)(\exists A^* \in e)(\forall a \in A^*)(\exists B \in e)(a + B \subseteq A)$$

Lemma (Numakura 1952)

Every nonempty compact right-topological semigroup has an idempotent.

Superfilters and idempotents

Lemma (Tsaban 2018)

Let $a_1, a_2, \ldots \in S$ be proper and A be a translation invariant superfilter on S.

$$\left\{ p \in \beta S : \left\{ \mathsf{FinSum}(a_n, a_{n+1}, \dots) : n \in \mathbb{N} \right\} \subseteq p \subseteq \mathcal{A} \right\}$$

is a closed and nonempty subsemigroup of $(\beta S, +)$.

•
$$S = (\mathbb{N}, +), \ \mathcal{A} = [\mathbb{N}]^{\infty}$$

• $\Omega \ni \mathcal{U} = \{U_1, U_2, \dots\}, \ S = (\mathcal{U}, \max), \ \mathcal{A} = \{\mathcal{V} \in \Omega : \mathcal{V} \subseteq \mathcal{U}\}, \ \mathcal{A} \ni \mathcal{V} \to \{\max\{B, V\} : V \in \mathcal{V}\} \in \mathcal{A}$

• $\Omega \ni \mathcal{U}$ with no finite subcover and closed under \cup , $S = (\mathcal{U}, \cup)$, $\mathcal{A} = \{ \mathcal{V} \in \Omega : \mathcal{V} \subseteq \mathcal{U} \}$

$$\mathcal{A} \ni \mathcal{V} \to \{ B \cup V : V \in \mathcal{V} \} \in \mathcal{A}$$

Superfilters and idempotents

• $\beta S \ni p$ is large for $\emptyset \neq \mathcal{R} \subseteq \operatorname{Fin}(S)$: $(\forall A \in p)(\exists R \in \mathcal{R})(R \subseteq A)$

There is a large p ∈ βS for Ø ≠ R ⊆ Fin(S) iff for each coloring of S, there is a monochromatic set in R

Lemma (Deuber-Hindman 1987)

The set

 $\{ p \in \beta N : [\mathbb{N}]^{\infty} \supseteq p \text{ is large for each family of } (m, p, c)\text{-sets} \}$

is a closed and nonempty subsemigroup of ($\beta \mathbb{N},+)$

Lemma (Tsaban 2018)

Let $a_1, a_2, \ldots \in S$ be proper and \mathcal{A} be a translation invariant superfilter on S. The set

$$\left\{ p \in \beta S : \mathcal{A} \supseteq p \text{ is large for } \left\{ \{x\} : x \in \mathsf{FinSum}(a_n, a_{n+1}, \dots) \right\}, n \in \mathbb{N} \right\}$$

is a closed and nonempty subsemigroup of $(\beta S, +)$.

The main result

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}$, \mathcal{B} is closed under supersets in $[S]^{\infty}$,
- there is an idempotent $e \subseteq A$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq \operatorname{Fin}(S)$,
- ALICE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$.

For each coloring of $[S]^2$, there are sets $F_1, F_2, \ldots \in Fin(S)$ such that

- $\mathcal{R}_n \ni \mathcal{R}_n \subseteq \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n$ and $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}$,
- the partite sumgraph of F_1, F_2, \ldots is monochromatic.

Theorem (Bergelson-Hindman 1988)

 $(\mathbb{N},+)$

Let $\mathcal{R}_1, \mathcal{R}_2, \ldots$ be an enumeration of all families of (m, p, c)-sets. For each coloring of $[\mathbb{N}]^2$, there are sets $R_1 \in \mathcal{R}_1, R_2 \in \mathcal{R}_2, \ldots$ such that

• the partite sumgraph of R_1, R_2, \ldots is monochromatic.

Theorem (Sz 2020)

Assume that A, B ⊆ [S][∞], B is closed under supersets in [S][∞],
 S = (ℕ, +), A = B = [ℕ][∞]

there is an idempotent e ⊆ A, large for R₁, R₂,... ⊆ Fin(S)
 Deuber-Hindman + Numakura

ALICE has no winning strategy in G_{fin}(A, B).
 BOB has a winning strategy in G_{fin}([ℕ][∞], [ℕ][∞])

For each coloring of $[S]^2$, there are sets $F_1, F_2, \ldots \in Fin(S)$ such that

•
$$\mathcal{R}_n \ni \mathcal{R}_n \subseteq \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n$$
 and $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}$,

• the partite sumgraph of F_1, F_2, \ldots is monochromatic.

Theorem (Scheepers 1996)

If X is $S_{fin}(\Omega, \Omega)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there are sets $\mathcal{F}_1, \mathcal{F}_2, \ldots \in Fin(\mathcal{U})$ such that

• $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \Omega$ and the partite graph of $\mathcal{F}_1, \mathcal{F}_2, \ldots$ is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}$, \mathcal{B} is closed under supersets in $[S]^{\infty}$, $\Omega \ni \mathcal{U} = \{U_1, U_2, ...\}, S = (\mathcal{U}, \max), \mathcal{A} = \{\mathcal{V} \in \Omega : \mathcal{V} \subseteq \mathcal{U}\}, \mathcal{B} = \Omega$
- there is an idempotent $e \subseteq A$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq Fin(S)$, $\mathcal{R}_n = \{\{U_n\}, \{U_{n+1}\}, \ldots\}, \bigcup \mathcal{R}_n = \{U_n, U_{n+1}, \ldots\} = FinSum(U_n, U_{n+1}, \ldots)$
- ALICE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$. X is $S_{fin}(\Omega, \Omega) \rightarrow ALICE$ has no winning strategy in $G_{fin}(\Omega, \Omega)$

For each coloring of $[S]^2$, there are sets $F_1, F_2, \ldots \in Fin(S)$ such that

- $\mathcal{R}_n \ni \mathcal{R}_n \subseteq \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n \text{ and } \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}, \quad \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n = \{U_n, U_{n+1}, \dots\} \subseteq \mathcal{U}$
- the partite sumgraph of *F*₁, *F*₂, . . . is monochromatic.

Theorem (Scheepers 1999)

If X is $S_{fin}(O, O)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there are sets $\mathcal{F}_1, \mathcal{F}_2, \ldots \in Fin(\mathcal{U})$ such that

• $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \Lambda$ and the partite graph of $\mathcal{F}_1, \mathcal{F}_2, \ldots$ is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}$, \mathcal{B} is closed under supersets in $[S]^{\infty}$, $\Omega \ni \mathcal{U} = \{U_1, U_2, \dots\}, S = (\mathcal{U}, \max), \mathcal{A} = \{\mathcal{V} \in \Omega : \mathcal{V} \subseteq \mathcal{U}\}, \mathcal{B} = \Lambda$
- there is an idempotent $e \subseteq A$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq Fin(S)$ $\mathcal{R}_n = \{\{U_n\}, \{U_{n+1}\}, \ldots\}, \bigcup \mathcal{R}_n = \{U_n, U_{n+1}, \ldots\} = FinSum(U_n, U_{n+1}, \ldots)$
- ALICE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$. X is $S_{fin}(\Omega, \Lambda) \rightarrow ALICE$ has no win strategy in $G_{fin}(\Omega, \Lambda)$, also in $G_{fin}(\mathcal{A}, \Lambda)$

For each coloring of $[S]^2$, there are sets $F_1, F_2, \ldots \in Fin(S)$ such that

- $\mathcal{R}_n \ni \mathcal{R}_n \subseteq \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n \text{ and } \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}$ $\mathcal{F}_n \subseteq \bigcup \mathcal{R}_n = \{U_n, U_{n+1}, \dots\} \subseteq \mathcal{U}$
- the partite sumgraph of *F*₁, *F*₂, ... is monochromatic

Theorem (Scheepers 1999)

If $Y = C_p(X)$ has countable fan tightness, then for every $A \subseteq Y$ with $\mathbf{0} \in \overline{A}$ and a coloring of $[P(Y)]^2$, there are finite sets $F_1, F_2, \ldots \subseteq A$ such that $\mathbf{0} \in \overline{\bigcup \{F_n : n \in \mathbb{N}\}}$ and the partite graph of F_1, F_2, \ldots is monochromatic.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}, \mathcal{B}$ is closed under supersets in $[S]^{\infty}, \mathcal{A} = \{a_1, a_2, \ldots\}, S = ([\mathcal{A}]^{\infty}, \max), \mathcal{A} = \mathcal{B} = \{B \in [\mathcal{A}]^{\infty} : \mathbf{0} \in \overline{B}\}$
- there is an idempotent $e \subseteq A$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq Fin(S)$ $\mathcal{R}_n = \{\{a_n\}, \{a_{n+1}\}, \ldots\}, \bigcup \mathcal{R}_n = \{a_n, a_{n+1}, \ldots\} = FinSum(a_n, a_{n+1}, \ldots)$
- ALICE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$. Y has countable fan tightness \rightarrow ALICE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{A})$

For each coloring of $[S]^2$, there are $F_1, F_2, \ldots \in \operatorname{Fin}(S)$ such that

- $\mathcal{R}_n \ni \mathcal{R}_n \subseteq \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n \text{ and } \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}, \qquad \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n = \{a_n, a_{n+1}, \dots\} \subseteq \mathcal{A}$
- the partite sumgraph of F_1, F_2, \ldots is monochromatic

Theorem (Sz 2020)

Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}$, \mathcal{B} is closed under supersets in $[S]^{\infty}$, there is an idempotent $e \subseteq \mathcal{A}$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq \operatorname{Fin}(S)$, and Alice has no winning strategy in $G_{\operatorname{fin}}(\mathcal{A}, \mathcal{B})$. For each coloring of $[S]^2$, there are sets $F_1, F_2, \ldots \in \operatorname{Fin}(S)$ such that $\mathcal{R}_n \ni \mathcal{R}_n \subseteq F_n \subseteq \bigcup \mathcal{R}_n$ and $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B}$, the partite sumgraph of F_1, F_2, \ldots is monochromatic.

- $\{ t \in S : \{s,t\} \text{ is red } \} \cup \{ t \in S : \{s,t\} \text{ is blue } \} = S \setminus \{s\} \in e$
- $\begin{array}{l} \mathbb{R}_{1} \ni R_{1} \subseteq F_{1} \subseteq A_{1}^{*} \subseteq A_{1} = M \cap \bigcup \mathbb{R}_{1} \\ \text{There is } e \ni B_{1} \subseteq A_{1}^{*} \text{ with } F_{1} + B_{1} \subseteq A_{1} \\ \mathbb{R}_{2} \ni R_{2} \subseteq F_{2} \subseteq A_{2}^{*} \subseteq A_{2} = \bigcap_{s \in F_{1}} \{ t \in S \setminus \{s\} : \{s, t\} \text{ is blue }\} \cap B_{1} \cap \bigcup \mathbb{R}_{2} \\ \text{There is } e \ni B_{2} \subseteq A_{2}^{*} \text{ with } F_{2} + B_{2} \subseteq A_{2} \\ \mathbb{R}_{3} \ni R_{3} \subseteq F_{3} \subseteq A_{3}^{*} \subseteq A_{3} = \bigcap_{s \in F_{1} \cup F_{2} \cup F_{1} + F_{2}} \{ t \in S \setminus \{s\} : \{s, t\} \text{ is blue }\} \cap B_{2} \cap \bigcup \mathbb{R}_{3} \\ \mathbb{R}_{3} \ni R_{3} \subseteq F_{3} \subseteq A_{3}^{*} \subseteq A_{3} = \bigcap_{s \in F_{1} \cup F_{2} \cup F_{1} + F_{2}} \{ t \in S \setminus \{s\} : \{s, t\} \text{ is blue }\} \cap B_{2} \cap \bigcup \mathbb{R}_{3} \\ \mathbb{R}_{3} = \text{There is } e \ni B_{3} \subseteq A_{3}^{*} \text{ with } F_{3} + B_{3} \subseteq A_{3}, \text{ etc.} \\ \end{array}$
- There is a play $(A_1^*, F_1, A_2^*, F_2, \dots)$ won by Bob
- $\blacksquare \bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B} \qquad \Box$

A modification...

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}$,
- there is an idempotent $e \subseteq A$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq \operatorname{Fin}(S)$,
- ALICE has no winning strategy in $G_1(\mathcal{A}, \mathcal{B})$.

For each coloring of $[S]^2$, there are elements $a_1, a_2, \ldots \in S$ and sets $R_1 \in \mathcal{R}_1, R_2 \in \mathcal{R}_2, \ldots$ such that

- $\mathcal{R}_n \ni \mathcal{R}_n \ni a_n$ and $\{a_n : n \in \mathbb{N}\} \in \mathcal{B}$,
- the partite sumgraph of R_1, R_2, \ldots is monochromatic.

... and its consequences

Theorem (Scheepers 1999)

If X is $S_1(O, O)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there is $\mathcal{V} \subseteq \mathcal{U}$ such that $\mathcal{V} \in \Lambda$ and the graph $[\mathcal{V}]^2$ is monochromatic.

Theorem (Scheepers 1996)

If X is $S_1(\Omega, \Omega)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there is $\mathcal{V} \subseteq \mathcal{U}$ such that $\mathcal{V} \in \Omega$ and the graph $[\mathcal{V}]^2$ is monochromatic.

• Y has countable strong fan tightness:

$$(\forall A_1, A_2, \ldots \subseteq Y, y \in \bigcap_{n \in \mathbb{N}} \overline{A_n}) (\exists a_1 \in A_1, a_2 \in A_2, \ldots) (y \in \overline{\{a_n : n \in \mathbb{N}\}})$$

Sakai 1988: X is $S_1(\Omega, \Omega) \leftrightarrow X$ is $S_1(O, O)$ in all finite powers $\leftrightarrow C_p(X)$ has countable strong fan tightness

Theorem (Pawlikowski 1994)

X is $S_1(O, O)$ iff ALICE has no winning strategy in $G_1(O, O)$.

Richer structures

Theorem (Scheepers 1999)

If X is $S_{fin}(O, O)$, then for every $\mathcal{U} \in \Omega$ and a coloring of $[\tau]^2$, there are finite sets $\mathcal{F}_1, \mathcal{F}_2, \ldots \subseteq \mathcal{U}$ such that

• $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \Lambda$ and the partite graph of $\mathcal{F}_1, \mathcal{F}_2, \dots$ is monochromatic.

Theorem (Tsaban 2018)

If X is $S_{fin}(O, O)$, then for each decreasing sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots \in \Lambda$ such that \mathcal{U}_1 has no finite subcover and a coloring of $[\tau]^2$, there are finite sets $\mathcal{F}_1 \subseteq \mathcal{U}_1$, $\mathcal{F}_2 \subseteq \mathcal{U}_2, \ldots$ such that

• $\bigcup \mathcal{F}_n \in \Lambda$ and the sumgraph of $\bigcup \mathcal{F}_1, \bigcup \mathcal{F}_2, \ldots$ is monochromatic.

No: $X = \operatorname{Fin}(\mathbb{N})$, $U_n = \{ F \in X : n \notin F \}$, $\mathcal{U} = \{U_1, U_2, \dots\} \in \Omega$

 (τ, \cup)

Richer structures

 (τ, \cup)

Theorem (Sz 2020)

If X is $S_{fin}(O, O)$, then for every $\mathcal{U} \in \Omega$ with no finite subcover and a coloring of $[\tau]^2$ there are finite sets $\mathcal{F}_1, \mathcal{F}_2, \ldots \subseteq \mathcal{U}$ such that

- $\bigcup_{n\in\mathbb{N}}\mathcal{F}_n\in\Lambda$ and the partite graph of $\mathcal{F}_1,\mathcal{F}_2,\ldots$ is monochromatic,
- the sumgraph of $\bigcup \mathcal{F}_1, \bigcup \mathcal{F}_2, \ldots$ is monochromatic.

Higher dimensions

• A partite k-sumgraph of $F_1, F_2, \ldots \in Fin(S)$ is the set of all k-edges

 $\{a_{G_1},\ldots,a_{G_k}\},\$

where $(a_1, a_2, \dots) \in F_1 \times F_2 \times \dots$ and $G_1 < \dots < G_k \in Fin(\mathbb{N})$.

Theorem (Sz 2020)

- Assume that $\mathcal{A}, \mathcal{B} \subseteq [S]^{\infty}$, \mathcal{B} is closed under supersets in $[S]^{\infty}$, $k \geq 2$
- there is an idempotent $e \subseteq A$, large for $\mathcal{R}_1, \mathcal{R}_2, \ldots \subseteq \operatorname{Fin}(S)$,
- ALICE has no winning strategy in $G_{fin}(\mathcal{A}, \mathcal{B})$.

For each coloring of $[S]^k$, there are sets $F_1, F_2, \ldots \in Fin(S)$ such that

- $\mathcal{R}_n \ni \mathcal{R}_n \subseteq \mathcal{F}_n \subseteq \bigcup \mathcal{R}_n \text{ and } \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}$,
- the partite k-sumgraph of F_1, F_2, \ldots is monochromatic.

Comments about covering properties

$$\begin{array}{ccc} \mathsf{S}_{\mathrm{fin}}(\Omega,\Omega) & \longrightarrow & \mathsf{S}_{\mathrm{fin}}(\mathrm{O},\mathrm{O}) \\ & & & \uparrow & & \uparrow & \flat \\ \mathsf{S}_1(\Omega,\Gamma) & \longrightarrow & \mathsf{S}_1(\Omega,\Omega) & \longrightarrow & \mathsf{S}_1(\mathrm{O},\mathrm{O}) & \longrightarrow & \mathsf{strong} \text{ measure zero} \\ & \mathfrak{p} & & \mathsf{cov}(\mathcal{M}) & & \mathsf{cov}(\mathcal{M}) \end{array}$$