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Grassmannians and Projective Spaces

For a topological vector space X over a field F and a natural
number k let Grk(X ) be the space of k-dimensional linear

subspaces of X .

The space Grk(X ) is called the k-th Grasmannian of X .

We shall be interested in the simplest case of 1-Grassmannians.

In this case Gr1(X ) is the space of lines in X ,

or else the projective space of X .

It is well-known and well-studied space.

Indeed?
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Projective spaces

Topologically, Gr1(X ) is the quotient space X ∗/F ∗ of the space
X \ {0} by the action of the multiplicative group F ∗ = F \ {0}.

So, Gr1(X ) carries the quotient topology with respect to the orbit
map X ∗ → Gr1(X ), which is open (but not necessarily closed).

General topologists know that quotient topologies are dangerous
and can provide many surprises.

Let us consider the simplest surprising case.
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Rational Projective space

In the countable power Qω of the fields of rationals Q, consider the
countable linear subspace

Q<ω = {(xi )i∈ω ∈ Qω : |{i ∈ ω : xi 6= 0}| < ω}

consisting of all eventually zero sequences of rational numbers.

The space Q<ω carries the Tychonoff product topology inherited
from Qω. This is the topology of simple convergence.

It is clear that X = Q<ω is a countable metrizable space without
isolated points, so is homeomorphic to Q according to the classical

Theorem (Sierpiński)

A topological space X is homeomorphic to Q if and only if X is
countable metrizable and without isolated points.
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Topological characterizations of Q

Theorem (Sierpiński)

A topological space X is homeomorphic to Q if and only if
X is countable metrizable and without isolated points.

The metrizability in this theorem can be weakened to the second
countability (= existence of a countable base of the topology)
according to another classical

Theorem (Urysohn)

A topological space X is metrizable and separable if and only if
X is regular and second-countable.

Those two theorems imply

Corollary (Sierpiński–Urysohn)

A topological space X is homeomorphic to Q if and only if X is
countable, regular, second-countable and has no isolated points.
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Sierpiński–Urysohn Theorem

Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to Q if and only if X is
countable, regular, second-countable and has no isolated points.

Let us recall that a topological space X is regular if for any open
set U ⊂ X and point x ∈ U there exists an open set V such that

x ∈ V ⊆ V ⊆ U.
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The projective space QP∞

Theorem (Sierpiński–Urysohn)

A topological space X is homeomorphic to Q is and only if X is
countable, regular, second-countable and has no isolated points.

Let us return to our linear topological space X = Q<ω and its
projective space

QP∞ = X ∗/Q∗.

It is clear that the space QP∞ is countable, second-countable, and
has no isolated points.
What about the regularity of QP∞?

Surprise (first noticed by Gelfand and Fuks in 1967)

The space QP∞ is not regular.
Moreover, it is countable and connected!

How this is possible?
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The connectedness of QP∞

Take any non-empty open set U ⊆ QP∞ and let q−1[U] be its
preimage under the quotient map q : Q<ω \ {0} → QP∞.

The set q−1[U] is open and Q∗-conical, i.e., Q∗ · q−1[U] = q−1[U].

Since q−1[U] is open in the Tychonoff product topology, it
contains an open set of form V ×Qω\n for some
n = {0, . . . , n − 1} ∈ ω and some open set V ⊆ Qn \ {0}.
Being Q∗-conical, the set q−1[U] contains the Q∗-cone

Q∗ · (V ×Qω\n) = (Q∗ · V )×Qω\n

and then its closure

q−1[U] ⊃ Q∗ · V ×Qω\n = {0}n ×Qω\n

contains the linear subspace of finite codimension.

Since the quotienient map q is open, the closure U contains the
image q[{0}n ×Qω\n] for some n ∈ ω.
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The superconnectedness of QP∞

Therefore, for any nonempty open set U ⊆ QP∞ the closure U
contains the image q[{0}n ×Qω\n] for some n ∈ ω.

Consequently, for any nonempty open sets U1, · · ·Uk ⊆ QP∞ there
exists n ∈ ω such that

U1 ∩ · · · ∩ Uk ⊃ q[{0}n ×Qω\n] 6= ∅.

So, QP∞ is connected and moreover, QP∞ is superconnected!

Definition

A topological space X is called superconnected if for any nonempty
open sets U1, . . . ,Uk the intersection U1 ∩ · · · ∩ Uk is not empty.

Remark

Each superconnected space X is connected: assuming that X is
disconnected, we could write X as the union X = U1 ∪ U2 of two
non-empty disjoint open sets and then U1 ∩ U2 = U1 ∩ U2 = ∅.
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The coregularity of QP∞

Therefore the countable second-countable space QP∞ is
superconnected and not regular (otherwise it would be metrizable
and disconnected).
But it is not regular to a very small extent.

Observation

For any for any nonempty open sets U1, . . . ,Uk ⊆ QP∞ the
completement QP∞ \ (U1 ∩ · · · ∩ Uk) is a regular space!
Because QP∞ \ (U1 ∩ · · · ∩ Uk) ⊇ q[(Qn \ {0})×Qω\n].

Definition

A topological space X is coregular if X is Hausdorff and for any
nonempty open sets U1, . . . ,Uk ⊆ X the complement
X \ (U1 ∩ · · · ∩ Uk) is a regular space.
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Superconnected coregular spaces

Unified Definition

A Hausdorff topological space X is superconnected and coregular if
for any nonempty open sets U1, . . . ,Uk ⊆ X the intersection
U1 ∩ · · · ∩ Uk is not empty and its complement
X \ (U1 ∩ · · · ∩ Uk) is a regular space.

If {Un}n∈ω is a countable base of the topology in a superconnected
coregular Hausdorff space, then for every n ∈ ω the set

Xn = U1 ∩ · · · ∩ Un

is non-empty and its complement X \ Xn is a regular topological
space. Moreover the sequence (Xn)n∈ω is decreasing and has
empty intersection

⋂
n∈ω Xn = ∅.
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Is there any topological characterization of the space QP∞,
analogical to the topological characterization of the space Q?

Well, let us list what we know about the space QP∞:

countable,

second-countable,

Hausdorff;

superconnected;

coregular;

locally metrizable.

Do these properties uniquely identify the topology of QP∞?
No!
Nonetheless a topological characterization of QP∞ does exist!
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Main Theorem

Theorem

A topological space X is homeomorphic to the space QP∞ if and
only if X is countable, second-countable and possesses a
decreasing sequence of non-empty closed sets (Xn)n∈ω such that

X0 = X ,
⋂

n∈ω Xn = ∅, and Xn+1 ⊆ Xn for all n;

for every n ∈ ω the complement X \ Xn is a regular
topological space;

for every n ∈ ω and a nonempty relatively open set U ⊆ Xn

the closure U contains some Xm.

The sequence (Xn)n∈ω with the above properties is called a
superskeleton of X . If every set Xn+1 is nowhere dense in Xn, then
the superskeleton is called canonical.

A canonical superskeleton in QP∞ is the sequence (Xn)n∈ω of
closed subsets Xn = q[{0}n ×Qω\n].
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Proof of the Main Theorem

The proof is technically very difficult and exploits the classical
back-and-forth method of Cantor.
Given a canonical supersekeleton (Xn)n∈ω in a coregular
superconnected space X , we construct inductively two sequences
(xi )i∈ω in X and (yi )i∈ω in QP∞ so that the correspondence
h : xn → yn determines a homeomorphism between X and QP∞

mapping the sets Xn of the supersekeleton in X to the
corresponding sets in the canonical superskeleton in the space
QP∞.
The construction of the sequences (xi )i∈ω and (yi )i∈ω is inductive
with many conditions. Besides the points xi and yi we also
construct their basic neighborhoods Ui ,j and Vi ,j in order to
guarantee that the bijection h : xn → yn will be a homeomorphism.
The induction is done over the set Γ = ω ∪ (ω × ω), ordered by a
suitable well-order.
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A screenshot of a piece of the proof
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Coregular Universality of QP∞

We recall that a topological space X is coregular if it is Hausdorff
and for any nonempty open sets U1, . . . ,Un the complement
X \ (U1 ∩ · · · ∩ Un) is a regular topological space.

So, every regular topological space X is coregular.

The coregular space QP∞ has the following universal property.

Theorem

Every countable second-countable coregular topological space is
homeomorphic to a subspace of QP∞.
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Coregular spaces are semiregular

A subset of a topological space is called regular open if it is equal
to the interior of its closure.

A topological space is called semiregular if it has a base of the
topology consisting of regular open sets.

Proposition

Every coregular space is semiregular.

In particular

Corollary

The superconnected countable space QP∞ is semiregular.
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Homogeneity of the space QP∞

It is easy to see that for any lines `, `′ in the ltp Q<ω there exists a
linear homeomorphism H of Q<ω such that H(`) = `′.

This implies that the projective space QP∞ is topologically
homogeneous: for any points x , y ∈ QP∞ there exists a
homeomorphism h of QP∞ such that h(x) = y .

In fact, the space QP∞ is homogeneous in a much stronger sense.
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Deep and shallow subsets

A subset A of a topological space X is called

deep if for any non-empty open sets U1, . . . ,Un ⊆ X the set
A \ (U1 ∩ · · · ∩ Un) is finite.

shallow if there exist non-empty open sets U1, . . . ,Un ⊆ X
such that A ∩ (U1 ∩ · · · ∩ Un) = ∅.

Fact 1: For any deep (shallow) set A in a topological space X and
any homeomorphism h : X → X the set h(A) is deep (shallow).
Fact 2: Any infinite set in a second-countable space contains an
infinite subset which is either deep or shallow.
Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of QP∞)

Let A,B be two closed discrete subsets of QP∞. If the sets A,B
are either both deep or both shallow, then any bijection f : A→ B
extends to a homeomorphism h of QP∞ such that h(A) = B.

T.Banakh Rational projective space 19 / 34



Deep and shallow subsets

A subset A of a topological space X is called

deep if for any non-empty open sets U1, . . . ,Un ⊆ X the set
A \ (U1 ∩ · · · ∩ Un) is finite.

shallow if there exist non-empty open sets U1, . . . ,Un ⊆ X
such that A ∩ (U1 ∩ · · · ∩ Un) = ∅.

Fact 1: For any deep (shallow) set A in a topological space X and
any homeomorphism h : X → X the set h(A) is deep (shallow).
Fact 2: Any infinite set in a second-countable space contains an
infinite subset which is either deep or shallow.
Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of QP∞)

Let A,B be two closed discrete subsets of QP∞. If the sets A,B
are either both deep or both shallow, then any bijection f : A→ B
extends to a homeomorphism h of QP∞ such that h(A) = B.

T.Banakh Rational projective space 19 / 34



Deep and shallow subsets

A subset A of a topological space X is called

deep if for any non-empty open sets U1, . . . ,Un ⊆ X the set
A \ (U1 ∩ · · · ∩ Un) is finite.

shallow if there exist non-empty open sets U1, . . . ,Un ⊆ X
such that A ∩ (U1 ∩ · · · ∩ Un) = ∅.

Fact 1: For any deep (shallow) set A in a topological space X and
any homeomorphism h : X → X the set h(A) is deep (shallow).
Fact 2: Any infinite set in a second-countable space contains an
infinite subset which is either deep or shallow.
Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of QP∞)

Let A,B be two closed discrete subsets of QP∞. If the sets A,B
are either both deep or both shallow, then any bijection f : A→ B
extends to a homeomorphism h of QP∞ such that h(A) = B.

T.Banakh Rational projective space 19 / 34



Deep and shallow subsets

A subset A of a topological space X is called

deep if for any non-empty open sets U1, . . . ,Un ⊆ X the set
A \ (U1 ∩ · · · ∩ Un) is finite.

shallow if there exist non-empty open sets U1, . . . ,Un ⊆ X
such that A ∩ (U1 ∩ · · · ∩ Un) = ∅.

Fact 1: For any deep (shallow) set A in a topological space X and
any homeomorphism h : X → X the set h(A) is deep (shallow).
Fact 2: Any infinite set in a second-countable space contains an
infinite subset which is either deep or shallow.
Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of QP∞)

Let A,B be two closed discrete subsets of QP∞. If the sets A,B
are either both deep or both shallow, then any bijection f : A→ B
extends to a homeomorphism h of QP∞ such that h(A) = B.

T.Banakh Rational projective space 19 / 34



Deep and shallow subsets

A subset A of a topological space X is called

deep if for any non-empty open sets U1, . . . ,Un ⊆ X the set
A \ (U1 ∩ · · · ∩ Un) is finite.

shallow if there exist non-empty open sets U1, . . . ,Un ⊆ X
such that A ∩ (U1 ∩ · · · ∩ Un) = ∅.

Fact 1: For any deep (shallow) set A in a topological space X and
any homeomorphism h : X → X the set h(A) is deep (shallow).
Fact 2: Any infinite set in a second-countable space contains an
infinite subset which is either deep or shallow.
Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of QP∞)

Let A,B be two closed discrete subsets of QP∞. If the sets A,B
are either both deep or both shallow, then any bijection f : A→ B
extends to a homeomorphism h of QP∞ such that h(A) = B.

T.Banakh Rational projective space 19 / 34



Deep and shallow subsets

A subset A of a topological space X is called

deep if for any non-empty open sets U1, . . . ,Un ⊆ X the set
A \ (U1 ∩ · · · ∩ Un) is finite.

shallow if there exist non-empty open sets U1, . . . ,Un ⊆ X
such that A ∩ (U1 ∩ · · · ∩ Un) = ∅.

Fact 1: For any deep (shallow) set A in a topological space X and
any homeomorphism h : X → X the set h(A) is deep (shallow).
Fact 2: Any infinite set in a second-countable space contains an
infinite subset which is either deep or shallow.
Fact 3: Any finite set in a Hausdorff space is shallow.

Theorem (Dychotomic Homogeneity of QP∞)

Let A,B be two closed discrete subsets of QP∞. If the sets A,B
are either both deep or both shallow, then any bijection f : A→ B
extends to a homeomorphism h of QP∞ such that h(A) = B.

T.Banakh Rational projective space 19 / 34



Finite homogeneity of QP∞

Since finite subsets are shallow, we have

Corollary (Finite homogeneity of QP∞)

Any bijection h : A→ B between finite subsets of QP∞ extends to
a homeomorphism of QP∞.

Theorem (Discrete homogeneity of Q)

Any bijection h : A→ B between closed discrete subspaces
A,B ⊂ Q extends to a homeomorphism of Q.

How about QP∞?

Example

QP∞ contains two closed discrete subsets A,B (one shallow and
other deep) such that no homeomorphism of QP∞ sends A onto B.
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Topological copies of QP∞ is “nature”

The space QP∞ is an orbit space of the action of the multiplicative
group Q∗ on Q<ω \ {0}, so it is natural to look for topological
copies of the space QP∞ among orbit spaces of group actions.

By a group act we understand a topological space X endowed with
an action α : G × X → X a group G . The action α satisfies the
following axioms:

for every g ∈ G the map α(g , ·) : X → X ,
α(g , ·) : x 7→ gx := α(g , x), is a homeomorphism of X ;

for the identity 1G of the group G and every x ∈ X we have
1Gx = x ;

(gh)x = g(hx) for all g , h ∈ G and x ∈ X .

In this case we also say that X is a G -space.
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Some properties of G -spaces

We say that a G -space X has closed orbits if for any point x ∈ X
its orbit Gx = {gx : g ∈ G} is a closed subset of X .

A subset A ⊆ X is called G -invariant if it coincides with its
G -saturation GA =

⋃
x∈A Gx .

The action of G on X induces the equivalence relation

E = {(x , gx) : x ∈ X , g ∈ G}.

The quotient space X/E by this equivalence relation is called the
orbit space of the G -space and is denoted by X/G .

T.Banakh Rational projective space 22 / 34



Some properties of G -spaces

We say that a G -space X has closed orbits if for any point x ∈ X
its orbit Gx = {gx : g ∈ G} is a closed subset of X .

A subset A ⊆ X is called G -invariant if it coincides with its
G -saturation GA =

⋃
x∈A Gx .

The action of G on X induces the equivalence relation

E = {(x , gx) : x ∈ X , g ∈ G}.

The quotient space X/E by this equivalence relation is called the
orbit space of the G -space and is denoted by X/G .

T.Banakh Rational projective space 22 / 34



Some properties of G -spaces

We say that a G -space X has closed orbits if for any point x ∈ X
its orbit Gx = {gx : g ∈ G} is a closed subset of X .

A subset A ⊆ X is called G -invariant if it coincides with its
G -saturation GA =

⋃
x∈A Gx .

The action of G on X induces the equivalence relation

E = {(x , gx) : x ∈ X , g ∈ G}.

The quotient space X/E by this equivalence relation is called the
orbit space of the G -space and is denoted by X/G .

T.Banakh Rational projective space 22 / 34



Some properties of G -spaces

We say that a G -space X has closed orbits if for any point x ∈ X
its orbit Gx = {gx : g ∈ G} is a closed subset of X .

A subset A ⊆ X is called G -invariant if it coincides with its
G -saturation GA =

⋃
x∈A Gx .

The action of G on X induces the equivalence relation

E = {(x , gx) : x ∈ X , g ∈ G}.

The quotient space X/E by this equivalence relation is called the
orbit space of the G -space and is denoted by X/G .

T.Banakh Rational projective space 22 / 34



Copies of QP∞ among orbit spaces

Theorem

Let X be a G -space with closed G -orbits, possessing a vanishing
sequence (Xn)n∈ω of nonempty G -invariant closed subsets such
that

1 for any n ∈ ω and nonempty open G -invariant set U ⊆ Xn,
the closure U contains some set Xm;

2 for any n ∈ ω, point x ∈ X \ Xn, and open G -invariant
neighborhood U ⊆ X of x ∈ U, there exists an open
G -invariant neighborhood V ⊆ X of x such that V ⊆ U ∪ Xn.

Then the orbit space X/G has a superskeleton.
If X is first-countable and X/G is countable, then the space X/G
is homeomorphic to QP∞.
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Singular G -spaces

Definition

A topological space X endowed with a continuous action
α : G × X → X of a Hausdorff topological group G is called
singular if it has the following properties:

(i) the topological space X is regular and infinite;

(ii) the set FixG (X ) = {x ∈ X : Gx = {x}} is a singleton;

(iii) for every x ∈ X \ FixG (X ) the map αx : G → X ,
αx : g 7→ gx = α(g , x), is injective and open;

(iv) the orbit Gx of every point x ∈ X \ FixG (X ) contains the
singleton FixG (X ) in its closure Gx ;

(v) for any points x ∈ X \ FixG (X ) and y ∈ X , there exists a
neighborhood U ⊆ X of y such that for any neighborhood
W ⊆ X of the singleton FixG (X ), there exists a
neighborhood V ⊆ X of FixG (X ) such that
αu(α−1x (V )) ⊆W for every u ∈ U.
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(v) for any points x ∈ X \ FixG (X ) and y ∈ X , there exists a
neighborhood U ⊆ X of y such that for any neighborhood
W ⊆ X of the singleton 0 = FixG (X ), there exists a
neighborhood V ⊆ X of FixG (X ) such that
αu(α−1x (V )) ⊆W for every u ∈ U.
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Examples of singular G -spaces:

1 The complex plane C endowed with the action of the
multiplicative group C∗ of non-zero complex numbers.

2 Any subfield F ⊆ C endowed with the action of the
multiplicative group F∗ = F \ {0}.

3 The real line R endowed with the action of the multiplicative
group R+ of positive real numbers.

4 The closed half-line R+ = [0,∞) endowed with the action of
the multiplicative group R+.

5 The space Q of rationals, endowed with the action of the
multiplicative group Q+ of positive rational numbers.

6 The one-point compactification Z = Z ∪ {+∞} of the
discrete space Z endowed with the natural action of the
additive group Z of integer numbers.

7 The one-point compactification of any non-compact locally
compact topological group G , endowed with the natural
action of the topological group G .
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Projective spaces of singular G -spaces

Given a singular G -space X , consider the G -space Xω endowed
with the Tychonoff product topology and the coordinatewise action
of the group G .

Let s be the unique point of the singleton Fix(X ;G ).

Consider the subspaces of Xω:

X<ω := {x ∈ Xω : |{n ∈ ω : x(n) 6= s}| < ω} and X<ω
◦ := X<ω\{s}ω.

The orbit space X<ω
◦ /G is called the infinite projective space of

the singular G -space X and is denoted by XP∞.

If X = F is a non-discrete topological field endowed with the action
of its multiplicative group F∗, then F<ω is a topological vector
space over the field F and FP∞ is the projective space of F<ω in
the standard sense. In particular, QP∞ is the projective space of
the tvp Q<ω over the topological field Q of rational numbers.
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Copies of QP∞ among projective spaces

Theorem

The infinite projective space XP∞ of any singular G -space X
possesses a canonical superskeleton.
If the singular G space X is countable and metrizable, then its
infinite projective space XP∞ is homeomorphic to the space QP∞.
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Some projective geometry

Let F be a topological field. Three elements F∗x ,F∗y ,F∗z of the
projective space FP∞ are called collinear if the union
F∗x ∪ F∗y ∪ F∗z is contained in some 2-dimensional vector
subspace of F<ω.
For two topological fileds F1,F2 a map f : F1P∞ → F2P∞ is called
affine if for any collinear elements F∗1x ,F∗1y ,F∗1z ∈ F1P∞, the
elements f (F∗1x), f (F∗1y), f (F∗1z) are collinear in the projective
space F∗2P∞.
A bijective map f : F1P∞ → F2P∞ is called an affine isomorphism
if both maps f and f −1 are affine.
If an affine isomorphism f : F1P∞ → F2P∞ is also a
homeomorphism, then f is called an affine topological isomorphism.
The projective spaces F1P∞,F2P∞ are called affinely isomorphic
(resp. affinely homeomorphic) if there exists an affine topological
ismorphism f : F1P∞ → F2P∞.

T.Banakh Rational projective space 29 / 34



Some projective geometry

Let F be a topological field. Three elements F∗x ,F∗y ,F∗z of the
projective space FP∞ are called collinear if the union
F∗x ∪ F∗y ∪ F∗z is contained in some 2-dimensional vector
subspace of F<ω.
For two topological fileds F1,F2 a map f : F1P∞ → F2P∞ is called
affine if for any collinear elements F∗1x ,F∗1y ,F∗1z ∈ F1P∞, the
elements f (F∗1x), f (F∗1y), f (F∗1z) are collinear in the projective
space F∗2P∞.
A bijective map f : F1P∞ → F2P∞ is called an affine isomorphism
if both maps f and f −1 are affine.
If an affine isomorphism f : F1P∞ → F2P∞ is also a
homeomorphism, then f is called an affine topological isomorphism.
The projective spaces F1P∞,F2P∞ are called affinely isomorphic
(resp. affinely homeomorphic) if there exists an affine topological
ismorphism f : F1P∞ → F2P∞.

T.Banakh Rational projective space 29 / 34



Some projective geometry

Let F be a topological field. Three elements F∗x ,F∗y ,F∗z of the
projective space FP∞ are called collinear if the union
F∗x ∪ F∗y ∪ F∗z is contained in some 2-dimensional vector
subspace of F<ω.
For two topological fileds F1,F2 a map f : F1P∞ → F2P∞ is called
affine if for any collinear elements F∗1x ,F∗1y ,F∗1z ∈ F1P∞, the
elements f (F∗1x), f (F∗1y), f (F∗1z) are collinear in the projective
space F∗2P∞.
A bijective map f : F1P∞ → F2P∞ is called an affine isomorphism
if both maps f and f −1 are affine.
If an affine isomorphism f : F1P∞ → F2P∞ is also a
homeomorphism, then f is called an affine topological isomorphism.
The projective spaces F1P∞,F2P∞ are called affinely isomorphic
(resp. affinely homeomorphic) if there exists an affine topological
ismorphism f : F1P∞ → F2P∞.

T.Banakh Rational projective space 29 / 34



Some projective geometry

Let F be a topological field. Three elements F∗x ,F∗y ,F∗z of the
projective space FP∞ are called collinear if the union
F∗x ∪ F∗y ∪ F∗z is contained in some 2-dimensional vector
subspace of F<ω.
For two topological fileds F1,F2 a map f : F1P∞ → F2P∞ is called
affine if for any collinear elements F∗1x ,F∗1y ,F∗1z ∈ F1P∞, the
elements f (F∗1x), f (F∗1y), f (F∗1z) are collinear in the projective
space F∗2P∞.
A bijective map f : F1P∞ → F2P∞ is called an affine isomorphism
if both maps f and f −1 are affine.
If an affine isomorphism f : F1P∞ → F2P∞ is also a
homeomorphism, then f is called an affine topological isomorphism.
The projective spaces F1P∞,F2P∞ are called affinely isomorphic
(resp. affinely homeomorphic) if there exists an affine topological
ismorphism f : F1P∞ → F2P∞.

T.Banakh Rational projective space 29 / 34



Some projective geometry

Let F be a topological field. Three elements F∗x ,F∗y ,F∗z of the
projective space FP∞ are called collinear if the union
F∗x ∪ F∗y ∪ F∗z is contained in some 2-dimensional vector
subspace of F<ω.
For two topological fileds F1,F2 a map f : F1P∞ → F2P∞ is called
affine if for any collinear elements F∗1x ,F∗1y ,F∗1z ∈ F1P∞, the
elements f (F∗1x), f (F∗1y), f (F∗1z) are collinear in the projective
space F∗2P∞.
A bijective map f : F1P∞ → F2P∞ is called an affine isomorphism
if both maps f and f −1 are affine.
If an affine isomorphism f : F1P∞ → F2P∞ is also a
homeomorphism, then f is called an affine topological isomorphism.
The projective spaces F1P∞,F2P∞ are called affinely isomorphic
(resp. affinely homeomorphic) if there exists an affine topological
ismorphism f : F1P∞ → F2P∞.

T.Banakh Rational projective space 29 / 34



Projective rigidity theorem

In spite of the fact that for any countable subfields F1,F2 ⊆ C, the
infinite projective spaces F1P∞ and F2P∞ are homeomorphic (to
QP∞), we have the following rigidity result for affine isomorphisms
between infinite projective spaces.

Theorem

Two (topological) fields F1,F2 are (topologically) isomorphic iff
their infinite projective spaces F1P∞, F2P∞ are affinely isomorphic
(affinely homeomorphic).
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Infinite-dimensional projective spaces CP∞, RP∞, R+P∞

The spaces C, R, R̄+ endowed with suitable group actions are
singular G -spaces.

By a preceding theorem, the infinite projective spaces CP∞, RP∞,
R+P∞ possess (canonical) superskeleta.

Each of these spaces has a countable base of the topology
consisting of sets, homeomorphic to the space R<ω, so is a
(non-metrizable) R<ω-manifold.

It can be shown that the R<ω-manifolds CP∞, RP∞, R+P∞ are
pairwise non-homeomorphic (because of different homotopical
properties of complements Y0 \ Yn of their canonical skeleta).

The distinguishing topological property of the space R+P∞ is
possessing a superskeleton (Yn)n∈ω such that for every n < m in ω
the complement Yn \ Ym is contractible.
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Characterization of R+P∞?

Fact: The space R+P∞ has a superskeleton (Yn)n∈ω such that for
every n < m in ω the complement Yn \ Ym is contractible.

This fact and the topological characterization of QP∞ suggests the
following topological characterization of the space R+P∞.

Conjecture

A Hausdorff topological space X is homeomorphic to R+P∞ iff
X has a superskeleton (Xn)n∈ω such that for every n the set Xn+1

is a Z -set in Xn and the space Xn \ Xm is homeomorphic to R<ω.

A closed subset A of a topological space X is called a Z -set in X if
the set C ([0, 1]ω,X \ A) is dense in the function space
C ([0, 1]ω,X ), endowed with the compact-open topology.

Remark: It can be shown that the spaces RP∞, CP∞, R+P∞

contain dense subspaces, homeomorphic to QP∞.
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Thank you!
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