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1. Dane kandydata

Imię i nazwisko: Wojciech Górny

Afiliacja 1: Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki

Afiliacja 2: Uniwersytet Wiedeński, Wydział Matematyki

2. Posiadane dyplomy i stopnie naukowe

2024 Habilitacja, Uniwersytet Wiedeński (Austria). Habilitacje austriackie nie są aktualnie uzna-

wane za równoważne polskiemu stopniowi doktora habilitowanego. Tytuł rozprawy: Geometric

problems involving minimisation of total variation. Recenzenci: prof. Giovanni Bellettini

(Università degli Studi di Siena), recenzja; prof. Peter Sternberg (Indiana University),

recenzja; oraz prof. Elvira Zappale (Sapienza Università di Roma), recenzja.

2020 Doktorat (matematyka), dyplom z wyróżnieniem, Uniwersytet Warszawski, Wydział

Matematyki, Informatyki i Mechaniki. Tytuł rozprawy: Anisotropic least gradient problems.

Promotor: prof. dr hab. Piotr Rybka. Recenzenci: prof. Salvador Moll (University of València),

recenzja; oraz prof. Matteo Novaga (University of Pisa), recenzja.

2016 Magister (matematyka), dyplom z wyróżnieniem, Uniwersytet Warszawski, Wydział

Matematyki, Informatyki i Mechaniki. Tytuł pracy: Zagadnienia najmniejszego gradientu.

Promotor: prof. dr hab. Piotr Rybka.

2015 Licencjat (fizyka), Uniwersytet Warszawski, Wydział Fizyki. Tytuł pracy: Zastosowa-

nie struktur Diraca: obwody RLC jako przykład układów z więzami nieholonomicznymi.

Promotor: dr hab. Katarzyna Grabowska.

2014 Licencjat (matematyka), Uniwersytet Warszawski, Wydział Matematyki, Informatyki i

Mechaniki. Tytuł pracy: Klasyfikacja meromorficznych liniowych równań różniczkowych.

Zjawisko Stokesa. Promotor: dr hab. Marcin Bobieński.

3. Zatrudnienie

2022-teraz Senior postdoc, Uniwersytet Wiedeński (Austria), Wydział Matematyki

2021-2022 Postdoc, Uniwersytet Wiedeński (Austria), Wydział Matematyki

2021 University assistant, Uniwersytet Wiedeński (Austria), Wydział Matematyki

2020-2021 Postdoc, Uniwersytet Wiedeński (Austria), Wydział Matematyki

2022-teraz Status badacza afiliowanego, Uniwersytet Warszawski, Wydział Matematyki, Informatyki

i Mechaniki

2020-2022 Asystent (urlop bezpłatny), Uniwersytet Warszawski, Wydział Matematyki, Informatyki i

Mechaniki
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4. Omówienie osiągnięcia naukowego

Przedstawionym tu osiągnięciem naukowym jest cykl 6 publikacji z dziedziny rachunku wariacyjnego oraz

równań różniczkowych cząstkowych opublikowanych w latach 2022-2024. Ich tematem przewodnim jest

badanie tego typu zagadnień dla funkcjonałów o liniowym wzroście, przede wszystkim (anizotropowego)

całkowitego wahania, i ich analiza pod kątem wpływu geometrii przestrzeni na istnienie i właściwości

rozwiązań. Są to następujące publikacje:

[A] W. Górny, J.M. Mazón, On the p-Laplacian evolution equation in metric measure spaces, J. Funct. Anal.

283 (2022), 109621, doi.org/10.1016/j.jfa.2022.109621.

[B] W. Górny, J.M. Mazón, The Anzellotti-Gauss-Green formula and least gradient functions in metric measure

spaces, Commun. Contemp. Math. 26 (2024), no. 6, 2350027, doi.org/10.1142/S021919972350027X.

[C] W. Górny, J.M. Mazón, The Neumann and Dirichlet problems for the total variation flow in metric

measure spaces, Adv. Calc. Var. 17 (2024), 131–164, doi.org/10.1515/acv-2021-0107.

[D] W. Górny, Applications of optimal transport methods in the least gradient problem, Ann. Sc. Norm.

Super. Pisa Cl. Sci. (5) 24 (2023), pp. 1817–1851, doi.org/10.2422/2036-2145.202105 049.

[E] S. Dweik, W. Górny, Optimal transport approach to Sobolev regularity of solutions to the weighted least

gradient problem, SIAM J. Math. Anal. 55 (2023), no. 3, 1916–1948, doi.org/10.1137/21M1468358.

[F] W. Górny, The trace space of anisotropic least gradient functions depends on the anisotropy, Math. Ann.

387 (2023), 1343–1365, doi.org/10.1007/s00208-022-02488-4.

Publikacje [A]-[F] to odpowiednio pozycje [36], [37], [38], [32], [24] oraz [33] w bibliografii na końcu

tego dokumentu. Publikacje [A]-[C] powstały we współpracy z prof. José M. Mazónem (Universitat

de València); praca [E] powstała we współpracy z dr Samerem Dweikiem (Qatar University, w czasie

powstawania pracy Université Paris-Saclay); artykuły [D] i [F] są wyłącznie mojego autorstwa. W przypadku

prac współautorskich, w każdym przypadku obaj autorzy uczestniczyli po równo we wszystkich zadaniach

(koncepcja pracy, dowodzenie wyników, ich spisywanie i korekta). Poniżej pokrótce opiszę zasadnicze wyniki

powyższych publikacji; wśród nich można wyróżnić następujące dwa główne cele.

Mówimy, że funkcjonał F ma liniowy wzrost, jeśli jego wiodący człon jest typu

F(u) =
∫
Ω
F (x, u(x), Du(x)) dx,

gdzie funkcja F (x, u, ξ) jest wypukła w ξ i ma liniowy wzrost w ξ, tzn.

m|ξ| ¬ F (x, u, ξ) ¬M(1 + |ξ|).

Zagadnienia zawierające funkcjonały tego typu zostały po raz pierwszy opisane w jednolity sposób przez

Giaquintę, Modicę oraz Součeka w [27]; najbardziej klasyczny przykład to funkcjonał powierzchni. Z uwagi

na fakt że F ma liniowy wzrost, naturalną przestrzenią dla istnienia rozwiązań jest przestrzeń BV funkcji

o ograniczonym wahaniu [2] (a nie przestrzenie typu Sobolewa). Z uwagi na to, używane metody są

zdecydowanie inne niż w przypadku wzrostu wielomianowego z p > 1. Dla przykładu, przestrzeń BV nie jest
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refleksywna, więc podczas analizy zagadnień minimalizacyjnych otrzymany dzięki metodzie bezpośredniej

rachunku wariacyjnego ciąg minimalizujący niekoniecznie jest słabo zbieżny. Otrzymujemy jedynie zbieżność

w L1, co powoduje utratę zwartości dla warunków brzegowych Dirichleta, jako że operator śladu zdefiniowany

na BV nie jest ciągły względem zbieżności w L1. Cykl [A]-[F] poświęcony jest dwóm zagadnieniom tego

typu, w których częścią rozważanego funkcjonału jest (anizotropowe) całkowite wahanie.

Pierwszym z nich jest analiza potoków gradientowych w przestrzeniach metrycznych przy użyciu teorii

półgrup w przestrzeniach Banacha bądź Hilberta oraz zrozumienie wpływu geometrii przestrzeni metrycznej

na sformułowanie problemu i właściwości rozwiązań. Współczesne podejście do potoków gradientowych

wypukłych funkcjonałów, które są modelowym przykładem zagadnień ewolucyjnych z rozpraszaniem energii,

ma korzenie w pracach Kōmury [50], Crandalla-Pazy’ego [23] oraz Brezisa [16]. Opisane tam podejście

prowadzi do pojęcia półgrupy rozwiązań dla zagadnień ewolucyjnych w przestrzeniach Hilberta (por. [17]).

Najbardziej znanym zagadnieniem tego typu jest równanie ciepła, które przy użyciu tych metod było rozważane

w przestrzeniach metrycznych przez Ambrosio, Gigliego i Savaré [4] przy założeniu że przestrzeń ma lokalnie

strukturę hilbertowską (ang. infinitesimally Hilbertian space) oraz jej krzywizna Ricciego (w uogólnionym

sensie zadanym przez prace Sturma [71] czy Lotta-Villaniego [54]) jest ograniczona z dołu. Przy takich

założeniach, odpowiadające równaniu ciepła operator Laplace’a oraz półgrupa rozwiązań są liniowe; nie jest

to w ogólności prawdą. Zauważmy ponadto, że w pracy [4] oraz w pracach [3] i [1] dotyczących odpowiednio

potoku p-ciepła dla 1 < p <∞ oraz potoku całkowitego wahania, użyta definicja rozwiązania zakłada, że

pochodna czasowa rozwiązania leży w minus podróżniczce odpowiedniego funkcjonału. Przez podróżniczkę

rozumiemy zbiór

∂F =
{
(x, x∗) ∈ E × E∗ : F(y)−F(x) ­ ⟨y − x, x∗⟩E,E∗ ∀ y ∈ E

}
.

Podróżniczka ta nie jest natomiast opisana w punktowy sposób. Dla przykładu, w przestrzeni euklidesowej

równanie p-ciepła, tzn. potok gradientowy funkcjonału F(u) = 1p
∫
RN |∇u|p dx, ma postać


ut = div(|∇u|p−2∇u) w RN × (0, T );

u(0) = u0.

Naszym celem jest uzyskanie analogicznego opisu w przestrzeniach metrycznych, zarówno dla p > 1 jak i w

przypadku liniowego wzrostu, uogólniając potok całkowitego wahania


ut = div

(
Du

|Du|

)
w RN × (0, T );

u(0) = u0.

Potok całkowitego wahania pojawia się przede wszystkim w kontekście modelu przetwarzania obrazów

zaproponowanego przez Rudina, Oshera i Fatemiego w ich przełomowym artykule [65] (ang. total variation

regularization). Jego współczesne ujęcie można znaleźć w [21]. Operator po prawej stronie to 1-Laplasjan; to

równanie różniczkowe jest silnie zdegenerowane, i a priori nie jest jasne w jaki sposób rozumieć wyrażenie Du|Du|
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(jako pochodna Radona-Nikodyma, jest ona dobrze zdefiniowana tylko |Du|-p.w., a niekoniecznie LN -p.w.).

Rozwiązanie tego problemu pochodzi od Andreu, Ballester, Casellesa i Mazóna, którzy w [6, 7] użyli w

celu charakteryzacji rozwiązań teorii sparowań między polem wektorowym o całkowalnej dywergencji oraz

funkcją o skończonym wahaniu pochodzącą od Anzellottiego [9] w celu zastąpienia obiektu Du|Du| za pomocą

odpowiedniego pola wektorowego (por. [8]).

W pracach [A]-[C] przyjmujemy łagodniejsze założenia niż te stosowane dotychczas w literaturze i wprowadza-

my nowe pojęcia rozwiązania dla potoków gradientowych w przestrzeniach metrycznych przy użyciu struktury

różniczkowej pochodzącej od Gigliego [29]. Dzięki temu podejściu uzyskaliśmy nowe właściwości rozwiązań

ewolucji zadanej przez p-Laplasjan oraz, w przypadku liniowego wzrostu, dla potoku całkowitego wahania.

Między innymi, otrzymaliśmy ulepszone oszacowania dotyczące odległości dwóch rozwiązań, dokładną

asymptotykę, oraz wprowadziliśmy pierwszą definicję (entropijnego) rozwiązania dla danych początkowych

w L1. Dodatkowo przeprowadzamy szczegółową analizę, badając które właściwości przestrzeni metrycznej są

niezbędne dla uzyskania tych wyników oraz, w przypadku gdy struktura przestrzeni to umożliwia, znajdujemy

punktowy warunek pozwalający zweryfikować czy dana funkcja jest rozwiązaniem. Ponadto, uogólniamy na

przypadek metryczny wzór na całkowanie przez części pochodzący od Anzellottiego [9] — jest to kluczowy

techniczny element niezbędny do charakteryzacji podróżniczki całkowitego wahania.

Drugi typ zagadnienia zawierającego funkcjonał o liniowym wzroście w cyklu [A]-[F] to zagadnienie naj-

mniejszego gradientu (ang. least gradient problem). Jego celem jest minimalizacja całkowitego wahania

funkcji spełniającej zadane dane brzegowe Dirichleta. Jeśli Ω ⊂ RN jest zbiorem otwartym ograniczonym z

lipschitzowskim brzegiem, to dla danych brzegowych f ∈ L1(∂Ω) jest to następujący problem:

min
{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = f

}
. (1)

Jego najwcześniejsza wersja pojawiła się w pracy Mirandy [58] w 1967. Miranda rozważał funkcje najmniej-

szego gradientu, tzn. funkcje które tylko lokalnie minimalizują całkowite wahanie pod nieobecność danych

brzegowych, i udowodnił że ta własność jest zachowana w granicy przy zbieżności w L1loc(Ω). Ten wynik

został użyty przez Bombieriego, De Giorgiego oraz Giustiego [14] w 1969 do udowodnienia, że nadpoziomice

funkcji najmniejszego gradientu minimalizują powierzchnię, co pozwoliło na rozwiązanie problemu Bernsteina

(tzn. pokazanie, że w wymiarach 8 oraz wyżej istnieją stożki minimalne które nie są półpłaszczyznami, a w

wymiarach 9 oraz wyżej istnieją powierzchnie minimalne, które nie są półpłaszczyznami, ale są wykresami

funkcji). Zagadnienie najmniejszego gradientu oraz jego warianty są badane od niemal 50 lat także w kon-

tekście potencjalnych zastosowań, w takich obszarach jak metody numeryczne dla powierzchni minimalnych

[62] (a także [63, 64]), optymalne projektowanie (ang. optimal design) w modelowaniu materiałów [49], czy

problemy odwrotne w obrazowaniu medycznym [45, 61].

Zagadnienie najmniejszego gradientu w postaci (1) zostało wprowadzone przez Sternberga, Williamsa i

Ziemera w 1992 w pracy [70]. Ich główny wkład w istniejącą teorię to użycie metod geometrycznej teorii

miary w celu zbadania tego zagadnienia bez dodatkowych członów albo więzów. Autorzy udowodnili, że

jeśli ograniczona dziedzina lipschitzowska Ω jest ściśle wypukła, to dla ciągłych danych brzegowych istnieje
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rozwiązanie zagadnienia (1) i jest ono ciągłe aż do brzegu. W szczególności, spełnia ono warunek brzegowy

rozumiany jako ślad funkcji BV na ∂Ω. Przy słabszych założeniach dotyczących dziedziny i regularności

danych brzegowych, nawet samo pojęcie rozwiązania nie jest oczywiste; najbardziej powszechnie stosowana

definicja, oparta na pojęciu sparowania Anzellottiego, pochodzi z pracy Mazóna, Rossiego i Segury de Leóna

[57] i nawiązuje do znanej uprzednio definicji słabego rozwiązania dla potoku całkowitego wahania [8]. Autorzy

pracy [57] udowodnili istnienie rozwiązań w tym sensie dla dowolnej ograniczonej dziedziny lipschitzowskiej

Ω oraz danych brzegowych f ∈ L1(∂Ω). Kosztem tego podejścia jest to, że to osłabione pojęcie rozwiązania

może nie spełniać warunku brzegowego w sensie śladu. Charakteryzacja przestrzeni możliwych śladów jest

ważnym problemem otwartym w tej teorii — nie jest to rozstrzygnięte nawet gdy Ω jest kulą jednostkową,

zaś najbardziej znany kontrprzykład pochodzi z pracy Spradlina i Tamasana [69].

W ciągu ostatnich dwudziestu lat w literaturze rozważano także wiele wariantów zagadnienia najmniejszego

gradientu. Z naszego punktu widzenia najbardziej znaczące są adaptacja tego problemu na przypadek

przestrzeni metrycznych, opisana w sekcji 4.1[B], oraz anizotropowe zagadnienie najmniejszego gradientu

min
{∫
Ω
φ(x,Du) : u ∈ BV (Ω), u|∂Ω = f

}
, (2)

gdzie φ(x, ·) to norma równoważna euklidesowej (jednostajnie w zmiennej przestrzennej x). Zostało ono

wprowadzone przez Jerrarda, Moradifama i Nachmana w pracy [46]. Badali oni problem (2) dla ciągłych

danych brzegowych i szerokiej klasy funkcji φ. Zakładając dodatkowo że Ω spełnia warunek bariery, który

jest adaptacją ścisłej wypukłości na przypadek anizotropowy, udowodnili że zagadnienie (2) ma rozwiązanie

dla każdej f ∈ C(∂Ω). Jest ono jednoznaczne przy ostrzejszych założeniach dotyczących regularności

i jednostajnej wypukłości φ. W szczególnym przypadku φ(x, ξ) := a(x)|ξ|, zagadnienie (2) redukuje się

do zagadnienia najmniejszego gradientu z wagą wprowadzonego w kontekście obrazowania medycznego w [61]

min
{∫
Ω
a(x)|Du| : u ∈ BV (Ω), u|∂Ω = f

}
. (3)

Szczegółowe informacje na temat zagadnienia najmniejszego gradientu i jego wariantów można znaleźć w

mojej współautorskiej książce [39] opisanej w sekcji 7.2.

W pracach [D]-[F] badamy istnienie oraz właściwości rozwiązań dla dwuwymiarowego zagadnienia najmniej-

szego gradientu. W pracach [D] oraz [E] wykorzystujemy w tym celu równoważność między zagadnieniem

najmniejszego gradientu, problemem Beckmanna oraz zagadnieniem optymalnego transportu (szczegóły w

sekcji 4.2). Równoważność ta po raz pierwszy została zaobserwowana w pracach [40] oraz [25]. Uogólniamy

ją oraz badamy jej konsekwencje dla regularności oraz stabilności rozwiązań, także w przypadku gdy na

dziedzinie Ω jest zadana struktura riemannowska. Natomiast celem pracy [F] jest zbadanie zależności prze-

strzeni śladów anizotropowych funkcji najmniejszego gradientu od anizotropii, tzn. zbioru dopuszczalnych

danych brzegowych dla których istnieje co najmniej jedno rozwiązanie zagadnienia (2) w sensie śladu.

Na modelowym przykładzie, gdy dziedzina jest dyskiem oraz anizotropie to normy na R2, pokazujemy że

przestrzenie śladów dla różnych (dostatecznie regularnych) anizotropii są różne.
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4.1. Słabe rozwiązania dla potoków gradientowych w przestrzeniach metrycznych

Jako pierwsze przedstawię wyniki z prac [A]-[C] dotyczące konstrukcji słabych rozwiązań dla potoków

gradientowych w przestrzeniach metrycznych. W tych pracach, napisanych wspólnie z José M. Mazónem,

wprowadzamy to pojęcie na modelowym przykładzie ewolucji zadanej przez p-Laplasjan (ang. p-Laplacian

evolution equation) dla 1 < p < ∞. W myśl definicji wprowadzonej w [3], jest to potok gradientowy

p-energii Cheegera (ang. p-Cheeger energy); dla przestrzeni metrycznej (X, d) wyposażonej w borelowską

miarę dodatnią ν, jest to funkcjonał Chp : L2(X, ν)→ [0,+∞] zadany wzorem

Chp(u) =


1
p

∫
X
|Du|p dν dla u ∈W 1,p(X, d, ν) ∩ L2(X, ν);

+∞ dla u ∈ L2(X, ν) \W 1,p(X, d, ν),
(4)

gdzie |Du| oznacza minimalny p-słaby górny gradient (ang. minimal p-weak upper gradient) funkcji u

(por. [12]; samo pojęcie górnego gradientu jest starsze [41, 43, 68]). Osobno rozważamy także przypadek

p = 1, który odpowiada potokowi całkowitego wahania (ang. total variation flow), tzn. potokowi gradiento-

wemu 1-energii Cheegera Ch1 : L2(X, ν)→ [0,+∞] zdefiniowany jako

Chp(u) =


∫
X
|Du|ν dla u ∈ BV (X, d, ν) ∩ L2(X, ν);

+∞ dla u ∈ L2(X, ν) \BV (X, d, ν),
(5)

wprowadzonej przez Ambrosio oraz Di Marino w [1]. We wzorze 5, |Du|ν oznacza miarę całkowitego

wahania (ang. total variation measure) funkcji u [59]. Wprowadzamy również odpowiednie metody (takie

jak sparowania typu Anzellottiego oraz wzór Gaussa-Greena) które pozwalają na analizę tego zagadnienia. W

całej sekcji 4.1 zakładamy, że (X, d) jest zupełną i ośrodkową przestrzenią metryczną oraz ν jest borelowską

miarą dodatnią która przyjmuje skończone wartości na zbiorach ograniczonych.

Głównym celem tej sekcji jest przedstawienie wyników dotyczących istnienia oraz właściwości rozwiązań

problemu Cauchy’ego 
u′(t) + ∂Chp(u(t)) ∋ 0 dla t ∈ [0, T ];

u(0) = u0 ∈ L2(X, ν).
(6)

W tym celu opieramy się na teorii potoków gradientowych w przestrzeniach Hilberta oraz na pokazanej w

pracy [D] (tzn. [36]) charakteryzacji (wielowartościowego) operatora ∂Chp, co pozwoli na wprowadzenie

pojęcia słabego rozwiązania. Ambrosio, Gigli oraz Savaré w pracy [3] udowodnili, że funkcjonał Chp jest

wypukły oraz półciągły z dołu. Jako że jego dziedzina jest gęstym podzbiorem L2(X, ν), ponieważ zawiera

ona wszystkie funkcje lipschitzowskie o zwartym nośniku, z twierdzenia Brezisa-Kōmury (por. [17] lub [50])

wynika, że dla każdego u0 ∈ L2(X, ν) istnieje dokładnie jedno silne rozwiązanie problemu Cauchy’ego (6).

Innymi słowy, istnieje lokalnie absolutnie ciągłe odwzorowanie t 7→ u(t) z (0,∞) do L2(X, ν), które spełnia

u(t)→ u0 gdy t→ 0 oraz

u′(t) ∈ −∂Chp(u(t)).
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We wszystkich wyżej wymienionych pracach, potok gradientowy w L2(X, ν) jest opisany używając po-

dejścia półgrupowego na przestrzeniach Hilberta (por. [17]), a odpowiadający im operator p-Laplace’a

(dla p ∈ [1,∞)) jest zdefiniowany jako element (minus) podróżniczki energii p-Cheegera o najmniejszej

normie. Celem prac [A]-[C] było wprowadzenie pojęcia słabego rozwiązania, co pozwala ulepszyć powyższą

definicję rozwiązania i wprowadzić lokalny (oraz weryfikowalny punktowo) warunek umożliwiający sprawdze-

nie czy zadana funkcja jest rozwiązaniem. Najważniejszym elementem powyższego planu jest charakteryzacja

podróżniczki funkcjonału Chp za pomocą struktury różniczkowej na przestrzeniach metrycznych wprowadzo-

nej przez Gigliego w [29]. Zaznaczmy, że główne trudności związane z pracą w przestrzeniach metrycznych

to brak pojęcia funkcji gładkiej (zamiast nich używa się funkcji lipschitzowskich), brak pojęcia pochodnej

kierunkowej oraz brak pojęcia pochodnej dystrybucyjnej.

Na koniec przedstawię leksykon najważniejszych pojęć dotyczących analizy na przestrzeniach metrycznych,

które są używane w tej sekcji. Jest to wersja minimum pozwalająca odczytać i zrozumieć wyniki opisane

poniżej. Podanie pełnych definicji tych obiektów znacząco wydłużyłoby autoreferat — zamiast tego do

dokładnych sformułowań odsyłam do sekcji „Preliminaries” w pracach [A], [B] bądź [C].

• |Du|: minimalny p-słaby górny gradient (ang. minimal p-weak upper gradient) funkcji u. Jest to obiekt

który uogólnia moduł gradientu |∇u| z przestrzeni euklidesowej. Samo zdefiniowanie gradientu nie jest

łatwe i opiera się na definicji |Du| (patrz niżej), natomiast zdefiniowanie |Du| jest prostsze, możliwe dla

każdej funkcji ν-mierzalnej. Dodatkowa trudność: |Du| może zależeć od wykładnika p.

• W 1,p(X, d, ν): przestrzeń Sobolewa (lub Newtona-Sobolewa), tzn. zbiór funkcji takich że u ∈ Lp(X, ν)

oraz |Du| ∈ Lp(X, ν). Dodatkowa trudność: istnieje kilka (równoważnych) definicji takich przestrzeni [5].

• |Du|ν : miara całkowitego wahania funkcji u. Jest to obiekt, który uogólnia miarę całkowitego wahania

|Du| dla u ∈ BV (Ω) w przypadku euklidesowym.

• BV (X, d, ν): przestrzeń funkcji o wahaniu ograniczonym, tzn. zbiór funkcji takich że u ∈ L1(X, ν) oraz

|Du|ν(X) <∞. Dodatkowa trudność: istnieje kilka (niemal równoważnych) definicji przestrzeni typu BV.

• Struktura różniczkowa Gigliego: formalizm pozwalający na wprowadzenie pojęcia różniczki i gradientu

funkcji z W 1,p(X, d, ν), który pojawił się po raz pierwszy w pracy [29]. Jest to dość abstrakcyjna

konstrukcja z uwagi na wspomniane wyżej główne przeszkody, ponieważ uniemożliwiają one podejście

znane z przypadku euklidesowego; otrzymane obiekty są w ogólności nielokalne i otrzymane za pomocą

teorii Lp-unormowanych modułów. Niemniej, w wielu szczególnych przypadkach znany jest jej punktowy

opis. Inne przykłady takich struktur można znaleźć w pracach [22, 28].

• Lp(T ∗X): p-moduł kostyczny (ang. p-cotangent module). Obiekt ten uogólnia przestrzeń Lp(T ∗M)

dla rozmaitości riemannowskiej M , z tą różnicą, że sama przestrzeń kostyczna T ∗X nie jest dobrze

zdefiniowana - istnieje wyłącznie p-moduł kostyczny i w ogólności jest on zdefiniowany nielokalnie oraz

zależy od p. | · |∗: „długość” kowektora.

• d :W 1,p(X, d, ν)→ Lp(T ∗X): operator różniczki. Jest to operator liniowy oraz ciągły (o normie 1).

• Lq(TX): q-moduł styczny (ang. q-tangent module). Obiekt ten uogólnia przestrzeń Lq(TM) i jest

zdefiniowany poprzez dualność z przestrzenią Lp(T ∗X). Występują podobne trudności, tzn. sama przestrzeń

styczna TX nie jest dobrze zdefiniowana. Dodatkowo, pojęcie gradientu jest nieco słabsze niż różniczki
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— gradienty są zdefiniowane wyłącznie poprzez dualność i definicja ta nie jest w ogólności jednoznaczna

(tzn. może istnieć wiele gradientów danej funkcji). | · |: „długość” wektora.

• div: operator dywergencji zdefiniowany na podzbiorze Lq(TX) poprzez dualność z operatorem różniczki.

• Dq,r(X): przestrzeń pól wektorowych X ∈ Lq(TX) takich, że div(X) ∈ Lr(X, ν) — oznaczenie wprowa-

dzone w pracy [A].

• Lp(T ∗Ω), Lq(TΩ), div0, Dq,r0 (Ω): odpowiedniki poprzednich pojęć na zbiorze otwartym ograniczonym Ω

— pojęcia wprowadzone w pracy [B].

• TΩ: operator śladu na odpowiednio regularnym zbiorze otwartym ograniczonym Ω. Prowadzi on z

przestrzeni BV (Ω, d, ν) na L1(∂Ω, |DχΩ|ν) i jest liniowy oraz ciągły.

[A] Potok gradientowy p-energii Cheegera

Ta sekcja jest poświęcona opisowi głównych wyników pracy [A], tzn. [36]. W pierwszej kolejności opiszę

wyniki sekcji 3, 6 oraz 7 pracy [A]. Niech q ∈ (1,∞) będzie takie, że 1p +
1
q = 1. W celu opisu podróżniczki

funkcjonału Chp zdefiniowanego w (4) wprowadzamy następujący pomocniczy (wielowartościowy) operator.

Definicja 1. Mówimy, że (u, v) ∈ Ap wtedy i tylko wtedy, gdy u, v ∈ L2(X, ν), u ∈ W 1,p(X, d, ν) oraz

istnieje pole wektorowe X ∈ Dq,2(X) takie, że następujące warunki są spełnione:

−div(X) = v w X;

du(X) = |du|p∗ = |X|q ν-p.w. w X.

Okazuje się, że Ap pokrywa się z podróżniczką funkcjonału Chp. Dowód tego faktu opiera się na metodach

analizy wypukłej, w szczególności dualizacji, której możemy użyć dzięki temu że struktura różniczkowa

pochodząca od Gigliego [29] jest liniowa. Warto zaznaczyć, że jest to zupełnie inny dowód niż dotychczasowo

znane w przypadku euklidesowym, ponieważ opierały się one na przybliżaniu funkcji oraz pól wektorowych

za pomocą gładkich obiektów; w tym przypadku jest to niemożliwe, ponieważ struktura różniczkowa

Gigliego (przynajmniej a priori) nie jest zdefiniowana lokalnie i nie jest jasne w jaki sposób można przybliżać

pole wektorowe z całkowalną dywergencją za pomocą bardziej regularnych pól wektorowych (przy braku

dodatkowych założeń na (X, d, ν) nawet wymiar pola wektorowego może zależeć od punktu).

Twierdzenie 2. Dla każdego p > 1 mamy Ap = ∂Chp. Ponadto operator Ap jest zupełnie akrecyjny (ang.

completely accretive [11]) oraz dziedzina Ap jest gęstym podzbiorem L2(X, ν).

Dla równania ciepła, tzn. dla p = 2, taka charakteryzacja została pokazana już przez Gigliego [29] (z innym

dowodem), niemniej dla p ̸= 2 jest ona nowa. Zupełna akrecyjność operatora ∂Chp była już znana (np. [4]

dla p = 2 czy [47] dla dowolnego 1 < p <∞), ale technika wprowadzona w naszej pracy jest prostsza dzięki

bezpośredniemu użyciu struktury podróżniczki i dzięki temu dobrze uogólnia się na inne przypadki, np. te

opisane w tej sekcji oraz w mojej późniejszej pracy [35]. Jako konsekwencja twierdzenia 2, naturalne jest

wprowadzenie następującego pojęcia rozwiązania potoku gradientowego energii Cheegera Chp.

Definicja 3. Na przestrzeni L2(X, ν) definiujemy (wielowartościowy) operator ∆p,ν w następujący sposób:

(u, v) ∈ ∆p,ν wtedy i tylko wtedy gdy −v ∈ ∂Chp(u).
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Z twierdzenia 2 wynika, że zdefiniowany w abstrakcyjny sposób problem Cauchy’ego (6) odpowiada

zagadnieniu Cauchy’ego dla p-Laplasjanu


d
dtu(t) ∈ ∆p,ν(u(t)), t ∈ [0, T ];

u(0) = u0,
(7)

którego rozwiązania są zdefiniowane w następujący sposób.

Definicja 4. Niech u0 ∈ L2(X, ν). Mówimy, że u jest słabym rozwiązaniem zagadnienia Cauchy’ego (7),

jeśli u ∈ C([0, T ];L2(X, ν))∩W 1,2loc (0, T ;L2(X, ν)), u(0, ·) = u0, i ut(t, ·) ∈ ∆p,νu(t, ·) dla p.w. t ∈ (0, T ).

Równoważnie, dla p.w. t ∈ (0, T ) mamy u(t) ∈W 1,p(X, d, ν) oraz istnieją pola wektorowe X(t) ∈ Dq,2(X)

takie, że:

div(X(t)) = ut(t, ·) w X;

|X(t)|q = du(t)(X(t)) = |du(t)|p∗ ν-p.w. w X.

Dwa ostatnie warunki można skrótowo określić w następujący sposób: równanie jest spełnione w słabym

sensie; i dla p.w. t ∈ (0, T ) mamy warunek zgodności między polem wektorowym X a funkcją u. Z

ogólnej teorii potoków gradientowych w przestrzeniach Hilberta, przede wszystkim przy użyciu twierdzeniu

Brezisa-Kōmury i zupełnej akrecyjności operatora ∂Chp wynika następujący rezultat.

Twierdzenie 5. Dla każdego u0 ∈ L2(X, ν) oraz T > 0 istnieje dokładnie jedno słabe rozwiązanie u(t)

problemu Cauchy’ego (7). Ponadto dla każdego r ∈ [1,∞], jeśli u1, u2 to słabe rozwiązania dla danych

początkowych u1,0, u2,0 ∈ L2(X, ν) ∩ Lr(X, ν) odpowiednio, wówczas

∥(u1(t)− u2(t))+∥r ¬ ∥(u1,0 − u2,0)+∥r.

Dzięki otrzymanej charakteryzacji rozwiązań, przy użyciu wyników dotyczących asymptotyki operatorów

jednorodnych w przestrzeniach Hilberta [20], otrzymujemy także oszacowania tempa zaniku rozwiązań za-

gadnienia Cauchy’ego (7). Poniżej podany jest wyłącznie wynik dotyczący czasu po jakim zanika rozwiązanie;

szczegółowe oszacowania są podane w sekcji 6 pracy [A].

Twierdzenie 6. Załóżmy, że ν(X) <∞ i spełniona jest następująca nierówność typu Poincaré

∥w − w∥pL2(X,ν) ¬M Chp(w) ∀w ∈W
1,p(X, d, ν) ∩ L2(X, ν),

dla pewnego M > 0, gdzie w oznacza wartość średnią funkcji w ∈ L2(X, ν). Niech u(t) będzie słabym

rozwiązaniem zagadnienia Cauchy’ego (7) dla u0 ∈ L2(X, ν). Wówczas:

(i) (Skończony czas zaniku) Dla 1 < p < 2, mamy

Tex(u0) ¬
∥u0 − u0∥2−pL2(X,ν)
(2− p)λ1(Chp)

, gdzie Tex(u0) := inf{T > 0 : u(t) = u0 ∀ t ­ T}.

(ii) (Nieskończony czas zaniku) Dla p ­ 2, mamy Tex(u0) = +∞.
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Analogiczny wynik jest prawdziwy w przypadku ν(X) = +∞ pod warunkiem, że zachodzi następująca

nierówność typu Sobolewa

∥w∥pL2(X,ν) ¬M Chp(w) ∀w ∈ L
2(X, ν).

Podane powyżej ogólne wyniki dostarczają nowych informacji również w wielu istotnych szczególnych

przypadkach, kiedy tylko możliwa jest dokładniejsza charakteryzacja modułu stycznego oraz kostycznego.

Dwa takie przypadki to przestrzeń euklidesowa (RN , dEucl) wyposażona w miarę (dodatnią) Radona, gdzie

nasze wyniki są nowe nawet gdy ν ≪ LN ; oraz rozmaitości finslerowskie, gdzie znane dotychczas wyniki

dotyczyły wyłącznie przypadku p = 2. Szczegółowy opis jest przedstawiony w sekcji 7 pracy [A].

Drugim celem artykułu [A] jest analiza potoku całkowitego wahania na przestrzeniach metrycznych, tzn.

potoku gradientowego 1-energii Cheegera Ch1 (zdefiniowanej w (5)). Ta część odpowiada wynikom z sekcji

4 i 5 artykułu [A]. Głównym wynikiem jest charakteryzacja podróżniczki funkcjonału Ch1; w tym celu

wprowadzimy najpierw pojęcie sparowania Anzellottiego (wprowadzonego w przypadku euklidesowym w [9])

na przestrzeniach metrycznych. Jest to konieczne, ponieważ aby funkcjonał Ch1 był dobrze zdefiniowany

i półciągły z dołu, musi być zdefiniowany na przestrzeni funkcji o wahaniu ograniczonym BV (X, d, ν), a

nie na przestrzeni Sobolewa W 1,1(X, d, ν). Musimy zatem rozszerzyć pewne elementy konstrukcji liniowej

struktury różniczkowej Gigliego na przestrzenie BV, tzn. wprowadzić sparowania Anzellottiego i użyć ich w

celu zastąpienia znanych wzorów na całkowanie przez części przez uogólniony wzór Gaussa-Greena.

Do końca sekcji 4.1 zakładamy, że przestrzeń (X, d) jest zupełna, ośrodkowa, wyposażona w miarę podwaja-

jącą ν (ang. doubling measure), oraz spełnia słabą nierówność Poincaré typu (1, 1) (ang. weak (1, 1)-Poincaré

inequality). Szczegółowe definicje tych pojęć oraz ich konsekwencja są opisane m.in. w [12, 44]. Podobnie

jak w klasycznym przypadku [9], sparowanie Anzellottiego między polem wektorowym X ∈ L∞(TX) oraz

funkcją u ∈ BV (X, d, ν) jest dobrze zdefiniowane przy założeniu, że następujący łączny warunek dotyczący

ich regularności jest spełniony: dla p ∈ [1,∞) mamy

div(X) ∈ Lp(X, ν), u ∈ BV (X, d, ν) ∩ Lq(X, ν), 1
p
+
1
q
= 1. (8)

Innymi słowy, X ∈ D∞,p(X) oraz u ∈ BV (X, d, ν) ∩ Lq(X, ν).

Definicja 7. Załóżmy, że para (X,u) spełnia warunek (8). Dla funkcji lipschitzowskiej f ∈ Lip(X) o zwartym

nośniku definiujemy

⟨(X,Du), f⟩ := −
∫
X
u div(fX) dν = −

∫
X
u df(X) dν −

∫
X
ufdiv(X) dν.

Mimo że (X,Du) jest a priori zdefiniowane jako funkcjonał liniowy na funkcjach lipschitzowskich, okazuje

się ono być miarą Radona, która jest absolutnie ciągła względem |Du|ν : dla każdego zbioru borelowskiego

∫
A
|(X,Du)| ¬ ∥X∥∞

∫
A
|Du|ν .

Jeśli u jest funkcją lipschitzowską, to (X,Du) ≪ ν i pokrywa się ono z działaniem różniczki du na X.
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Poniższe dwa wyniki są głównym celem konstrukcji sparowań Anzellottiego i umożliwiają badanie równań

różniczkowych cząstkowych o liniowym wzroście w przestrzeniach metrycznych. Są to odpowiednio wzór

Gaussa-Greena, który uogólnia wzór na całkowanie przez części zadany przez definicję dywergencji na

przypadek funkcji o wahaniu ograniczonym, oraz wzór na całkowanie po włóknach dla sparowania (X,Du).

Twierdzenie 8. Załóżmy, że para (X,u) spełnia warunek (8). Wówczas

∫
X
udiv(X) dν +

∫
X
(X,Du) = 0.

Twierdzenie 9. Załóżmy, że para (X,u) spełnia warunek (8). Oznaczmy Eu,t = {x ∈ X : u(x) > t}.

Wówczas, dla każdego zbioru borelowskiego B ⊂ X

∫
B
(X,Du) =

∫ ∞
−∞

(∫
B
(X,DχEu,t)

)
dt.

Naszym następnym celem jest zbadanie zagadnienia Cauchy’ego dla potoku całkowitego wahania, tzn.

potoku gradientowego 1-energii Cheegera Ch1 : L2(X, ν) → [0,+∞] (zdefiniowanej w (5)). W pracy

[1] Ambrosio oraz Di Marino udowodnili, że funkcja Ch1 jest wypukła oraz półciągła z dołu względem

zbieżności w L2(X, ν). Poniższe wyniki dotyczą charakteryzacji podróżniczki Ch1, wprowadzają pojęcie

słabego rozwiązania na podstawie tej charakteryzacji, oraz opisują podstawowe właściwości rozwiązań.

Zaczynamy od następującego pomocniczego (wielowartościowego) operatora.

Definicja 10. (u, v) ∈ A1 wtedy i tylko wtedy, gdy u, v ∈ L2(X, ν), u ∈ BV (X, d, ν) oraz istnieje pole

wektorowe X ∈ D∞,2(X) spełniające ∥X∥∞ ¬ 1 takie, że następujące warunki są spełnione:

−div(X) = v w X;

(X,Du) = |Du|ν jako miary na X.

Twierdzenie 11. Zachodzi A1 = ∂Ch1. Ponadto operator A1 jest zupełnie akrecyjny oraz dziedzina A1
jest gęstym podzbiorem L2(X, ν).

Dzięki powyższej charakteryzacji możliwe jest wprowadzenie następującego pojęcia rozwiązania dla potoku

całkowitego wahania w przestrzeniach metrycznych.

Definicja 12. Niech u0 ∈ L2(X, ν). Mówimy, że u jest słabym rozwiązaniem zagadnienia Cauchy’ego

dla potoku całkowitego wahania, jeśli u ∈ C([0, T ];L2(X, ν)) ∩W 1,2loc (0, T ;L2(X, ν)), mamy u(0, ·) = u0,

i dla p.w. t ∈ (0, T ) zachodzi u(t) ∈ BV (X, d, ν) oraz istnieją pola wektorowe X(t) ∈ D∞,2(X) takie, że

∥X(t)∥∞ ¬ 1 i zachodzą następujące warunki:

div(X(t)) = ut(t, ·) w X;

(X(t), Du(t)) = |Du(t)|ν jako miary na X.
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Jak poprzednio, dzięki twierdzeniu Brezisa-Kōmury i twierdzeniu 11 natychmiast otrzymujemy następujący

wynik o istnieniu i jednoznaczności rozwiązań. Zasada porównawcza wynika z zupełnej akrecyjności operatora

∂Ch1, a nierówność (9) z faktu, że ∂Ch1 jest homogeniczny z wykładnikiem równym zeru.

Twierdzenie 13. Dla każdego u0 ∈ L2(X, ν) i T > 0 istnieje dokładnie jedno słabe rozwiązanie u(t)

problemu Cauchy’ego dla potoku całkowitego wahania z danymi początkowymi u(0) = u0. Ponadto zachodzi

następująca zasada porównawcza: dla każdego r ∈ [1,∞], jeśli u1, u2 to słabe rozwiązania dla danych

początkowych u1,0, u2,0 ∈ L2(X, ν) ∩ Lr(X, ν) odpowiednio, wówczas

∥(u1(t)− u2(t))+∥r ¬ ∥(u1,0 − u2,0)+∥r.

Zachodzi także następujące oszacowanie

∥∥∥∥ ddtu(t)
∥∥∥∥
L2(X,ν)

¬
∥u0∥L2(X,ν)

t
dla każdego t > 0. (9)

Powyższy wynik jest spójny z tymi z pracy Ambrosio i Di Marino [1], ale nasz wynik jest bardziej szczegółowy i

dostarcza więcej informacji o rozwiązaniu dzięki charakteryzacji podróżniczki całkowitego wahania. Podobnie

jak w przypadku p > 1 otrzymujemy także wyniki dotyczące asymptotyki słabych rozwiązań, np. czasu

zaniku (podany poniżej) bądź tempa zaniku rozwiązania.

Twierdzenie 14. Załóżmy, że ν(X) <∞ i spełniona jest następująca nierówność typu Poincaré

∥w − w∥L2(X,ν) ¬M Ch1(w) ∀w ∈ BV (X, d, ν) ∩ L2(X, ν)

dla pewnegoM > 0. Niech u(t) będzie słabym rozwiązaniem zagadnienia Cauchy’ego dla potoku całkowitego

wahania dla u0 ∈ L2(X, ν). Wówczas

Tex(u0) ¬
∥u0 − u0∥L2(X,ν)

λ1(Ch1)
, gdzie Tex(u0) := inf{T > 0 : u(t) = u0 ∀ t ­ T}.

Analogiczny wynik jest prawdziwy w przypadku ν(X) = +∞ pod warunkiem, że zachodzi następująca

nierówność typu Sobolewa

∥w∥L2(X,ν) ¬M Ch1(w) ∀w ∈ L2(X, ν).

[B] Wzór Gaussa-Greena w przestrzeniach metrycznych

W tej sekcji opisujemy główne wyniki pracy [B], tzn. [37]. Głównym celem w tym artykule było rozszerzenie

konstrukcji uogólnionych sparowań Anzellottiego wprowadzonej w poprzedniej pracy na przypadek zbioru

ograniczonego Ω ⊂ X o wystarczająco regularnym brzegu i udowodnienie odpowiedniego wzoru Gaussa-

Greena, który we właściwy sposób uwzględnia efekty wynikające z obecności brzegu dziedziny. W tym celu

rozszerzamy konstrukcję struktury różniczkowej Gigliego na przypadek wystarczająco regularnych zbiorów

otwartych. Ponieważ wymaga ona zupełności przestrzeni, wpierw wprowadzamy strukturę różniczkową na

Ω, a następnie za pomocą odpowiednich rozszerzeń funkcji Sobolewa bądź BV z Ω na jej domknięcie

identyfikujemy odpowiednie obiekty na Ω i Ω.

Wojciech Górny - autoreferat 13/40



Do końca sekcji 4.1 zakładamy dodatkowo, że Ω ⊂ X jest zbiorem otwartym ograniczonym o ograniczonym

obwodzie, ν(∂Ω) = 0, Ω spełnia słabą nierówność Poincaré typu (1, 1), funkcje z przestrzeni BV (Ω, d, ν)

posiadają ślady i rozszerzenia [55], oraz że Ω jest regularna (ang. regular domain) [19, 56], tzn. |DχΩ|ν(X) =

lim supt→0
ν(Ω\Ωt)
t dla Ωt = {x ∈ Ω : dist(x,Ωc) ­ t}. Na potrzeby tego tekstu określamy powyższe

założenia skrótowo pisząc że Ω jest wystarczająco regularna.

Pierwszym krokiem jest udowodnienie wzoru Gaussa-Greena dla funkcji lipschitzowskich w przestrzeniach

metrycznych podobnego do wzorów znanych z [19] i [56]. Różnica jest taka, że tutaj mamy X ∈ L∞(TΩ)

zamiast X ∈ L∞(TX). Z tego powodu, musimy także użyć innej definicji dywergencji, tzn. div0 zamiast div

(która ma nieco inną klasę funkcji testowych). Ponieważ obiekty w L∞(TΩ) nie są (a priori) zdefiniowane

lokalnie, ale wyłącznie poprzez dualność i rozszerzenia, nie jest oczywiste w jaki sposób rozszerzyć je do

L∞(TX). Przez to, nie możemy użyć wyniku z [19] i pokazujemy poniższe twierdzenie bezpośrednio.

Twierdzenie 15. Załóżmy, że X ∈ L∞(TΩ) spełnia div0(X) ∈ L1(Ω, ν). Wówczas istnieje funkcja

(X · νΩ)− ∈ L∞(∂Ω, |DχΩ|ν) taka, że

∫
Ω
f div0(X) dν +

∫
Ω
df(X) dν = −

∫
∂Ω
f(X · νΩ)− d|DχΩ|ν

dla każdej f ∈ Lip(Ω). Ponadto zachodzi następujące oszacowanie:

∥(X · νΩ)−∥L∞(∂Ω,|DχΩ|ν) ¬ ∥X∥∞.

Funkcja (X · νΩ)− skonstruowana w dowodzie twierdzenia 15 to wewnętrzny ślad części normalnej (ang.

interior normal trace) pola wektorowego X na ∂Ω. W literaturze dotyczącej przypadku euklidesowego na

ogół używa się zewnętrznego wektora normalnego w konstrukcji śladu — czego chcemy uniknąć tutaj aby

konstrukcja (X · νΩ)− zależała wyłącznie od geometrii Ω, a nie od geometrii X \ Ω — przez co wyniki

otrzymane w tej (i kolejnej) sekcji różnią się znakiem w członie na ∂Ω od znanych wyników euklidesowych.

Sparowania Anzellottiego na obszarach ograniczonych definiujemy w podobny sposób jak poprzednio,

zastępując dywergencję div poprzez div0. Ściślej, zakładając że X ∈ L∞(TΩ), u ∈ BV (Ω, d, ν) oraz że

zachodzi łączny warunek regularnościowy na u i X

div0(X) ∈ Lp(Ω, ν), u ∈ BV (Ω, d, ν) ∩ Lq(Ω, ν), 1
p
+
1
q
= 1. (10)

dla p ∈ [1,∞), poniższe sparowanie jest dobrze zdefiniowane.

Definicja 16. Załóżmy, że para (X,u) spełnia warunek (10). Dla funkcji lipschitzowskiej f ∈ Lip(Ω)

o zwartym nośniku definiujemy

⟨(X,Du), f⟩ := −
∫
Ω
udiv0(fX) dν = −

∫
Ω
u df(X) dν −

∫
Ω
ufdiv0(X) dν.

Ponownie, sparowanie (X,Du) jest miarą Radona oraz (X,Du)≪ |Du|ν . Ponadto, wzór Gaussa-Greena

przedstawiony w twierdzeniu 15 uogólnia się na przypadek funkcji BV (w miejsce lipschitzowskich).
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Twierdzenie 17. Załóżmy, że para (X,u) spełnia warunek (10). Wówczas

∫
Ω
udiv0(X) dν +

∫
Ω
(X,Du) = −

∫
∂Ω
TΩu (X · νΩ)− d|DχΩ |ν .

Naszym następnym celem jest użycie powyższych narzędzi w celu analizy zagadnienia najmniejszego gradientu

w przestrzeniach metrycznych; skrótowy opis tego zagadnienia w przypadku euklidesowym jest przedstawiony

na początku sekcji 4. Jest to modelowy przykład zagadnienia wariacyjnego dla funkcjonałów o liniowym

wzroście; ponieważ wiele narzędzi dostępnych w przypadku euklidesowym nie miało swoich metrycznych

odpowiedników, analiza zagadnienia najmniejszego gradientu znacząco przyczyniła się do rozwoju teorii

funkcji BV w przestrzeniach metrycznych, np. konstrukcji operatora śladu [52, 55], reguły Leibniza [42],

i obwodu wewnętrznego (ang. inner perimeter) [51]. Dzięki użyciu wzoru Gaussa-Greena otrzymujemy lokalną

charakteryzację rozwiązań tego zagadnienia, uogólniając wynik z pracy [57] w przypadku euklidesowym.

Definicja 18. Mówimy, że u ∈ BV (Ω, d, ν) jest funkcją najmniejszego gradientu w Ω, jeśli

∫
Ω
|Du|ν ¬

∫
Ω
|Dv|ν

dla wszystkich v ∈ BV (Ω, d, ν) takich, że TΩu = TΩv.

Zagadnienie najmniejszego gradientu, tj. zagadnienie Dirichleta dla funkcji najmniejszego gradientu, było

rozważane w przypadku metrycznym po raz pierwszy w pracy [42]. W przypadku metrycznym możliwe są

nierównoważne definicje; w pracy [42] jest to definicja typu (B), tzn.

min
{
|Du|ν(Ω) : u ∈ BV (X, d, ν), u = f na X \ Ω

}
(B)

dla f ∈ BV (X, d, ν). Inna możliwość, nazywana definicją typu (T), została wprowadzona w pracy [51]:

min
{
|Du|ν(Ω) +

∫
∂Ω
|TΩ(u)− f |(x) dP+(Ω, x)

}
(T)

dla f ∈ L1(∂Ω, P+(Ω, ·)). W tej definicji, P+(Ω, ·) oznacza wewnętrzny obwód zbioru Ω (jest to miara

na X, która w przypadku euklidesowym odpowiada HN−1|∂Ω). W przypadku euklidesowym, gdy Ω jest

dziedziną z brzegiem lipschitzowskim, powyższe definicje pokrywają się; w przypadku metrycznym wymaga to

dodatkowych założeń na (X, d, ν) oraz Ω. Definicja (B) jest prostsza i wymaga słabszych założeń dotyczących

przestrzeni, natomiast definicja (T) bierze pod uwagę wyłącznie strukturę przestrzeni wewnątrz Ω.

Poniżej przedstawiamy równoważną do (T) lokalną charakteryzację rozwiązań otrzymaną poprzez strukturę

różniczkową Gigliego oraz nowo otrzymane sparowanie Anzellottiego (X,Du). Dla danych brzegowych

f ∈ L1(∂Ω, |DχΩ |ν), definiujemy funkcjonał Tf : L
1(Ω, ν)→ [0,+∞] jako

Tf (u) :=


|Du|ν(Ω) +

∫
∂Ω
|TΩ(u)− f | d|DχΩ|ν dla u ∈ BV (Ω, d, ν);

+∞ dla u /∈ BV (Ω, d, ν).
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Pokazujemy, że dla regularnych dziedzin obwody |DχΩ|ν i P+ pokrywają się, zatem u rozwiązuje zagadnienie

najmniejszego gradientu w sensie (T) dla danych brzegowych f wtedy i tylko wtedy gdy u minimalizuje

funkcjonał Tf , co jest równoważne

0 ∈ ∂Tf (u),

tzn. równaniu Eulera-Lagrange’a dla mimimalizacji Tf . Istnienie funkcji minimalizujących Tf wynika z

metody bezpośredniej rachunku wariacyjnego; ich charakteryzacja jest zawarta w następującym wyniku.

Twierdzenie 19. Niech f ∈ L1(∂Ω, |DχΩ |ν). Dla u ∈ BV (Ω, d, ν), następujące warunki są równoważne:

(i) 0 ∈ ∂Tf (u);

(ii) Istnieje pole wektorowe X ∈ D∞0 (Ω) takie, że ∥X∥∞ ¬ 1 i następujące warunki są spełnione:

−div0(X) = 0 w Ω;

(X,Du) = |Du|ν jako miary;

(X · νΩ)− ∈ sign(TΩu− f) |DχΩ |ν − p.w. na ∂Ω.

Powyżej sign oznacza wielowartościowy znak, tzn. jest to podróżniczka funkcji moduł: sign(x) = ∂|x|.

Otrzymaliśmy także wynik dotyczący relacji między funkcjami najmniejszego gradientu a powierzchniami

minimalnymi. W przypadku euklidesowym, w pracy [14] udowodniono, że brzegi nadpoziomic funkcji najmniej-

szego gradientu (globalnie) minimalizują powierzchnię, natomiast w [70] pokazano że przeciwna implikacja

również zachodzi. Pokazujemy, że ta równoważność zachodzi w obie strony również w przypadku metrycznym.

[C] Potok całkowitego wahania na zbiorach ograniczonych

Poniższa sekcja jest poświęcona opisowi głównych wyników pracy [C], tzn. [38]. Dotyczą one potoku całko-

witego wahania na zbiorach ograniczonych w przestrzeniach metrycznych; badamy zagadnienia z warunkami

brzegowymi Neumanna lub Dirichleta. Używając metod wypracowanych w poprzedniej sekcji, możemy

wprowadzić pojęcie słabego rozwiązania. W związku z tym, przez całą niniejszą sekcję pracujemy przy tych

samych założeniach co w sekcji 4.1[B].

Zagadnienie Neumanna dla potoku całkowitego wahania


ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
w (0, T )× Ω;

∂u
∂ν (t, x) = 0 na (0, T )× ∂Ω;

u(0, x) = u0(x) w Ω

(11)

dla danych początkowych u0 ∈ L2(Ω, ν) rozumiemy jako potok gradientowy w L2(Ω, ν) funkcjonału

T VN : L2(Ω, ν)→ [0,+∞] zadanego przez

T VN (u) :=



∫
Ω
|Du|ν dla u ∈ BV (Ω, d, ν) ∩ L2(Ω, ν);

+∞ dla u ∈ L2(Ω, ν) \BV (Ω, d, ν).
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Funkcjonał T VN jest wypukły i półciągły z dołu względem zbieżności w L2(Ω, ν), więc z twierdzenia

Brezisa-Kōmury wynika istnienie jedynego silnego rozwiązania abstrakcyjnego zagadnienia Cauchy’ego


u′(t) + ∂T VN (u(t)) ∋ 0 dla t ∈ [0, T ];

u(0) = u0.

W celu charakteryzacji podróżniczki T VN definiujemy następujący pomocniczy (wielowartościowy) operator.

Definicja 20. (u, v) ∈ AN wtedy i tylko wtedy, gdy u, v ∈ L2(Ω, ν), u ∈ BV (Ω, d, ν) oraz istnieje pole

wektorowe X ∈ D∞,20 (Ω) spełniające ∥X∥∞ ¬ 1 takie, że następujące warunki są spełnione:

−div0(X) = v w Ω;

(X,Du) = |Du|ν jako miary;

(X · νΩ)− = 0 |DχΩ |ν − p.w. na ∂Ω.

Prawdziwa jest także następująca równoważność: (u, v) ∈ AN wtedy i tylko wtedy, gdy u, v ∈ L2(Ω, ν),

u ∈ BV (Ω, d, ν) oraz istnieje pole wektorowe X ∈ D∞,20 (Ω) spełniające ∥X∥∞ ¬ 1 takie, że −div0(X) = v

w Ω oraz dla każdego w ∈ BV (Ω, d, ν) ∩ L2(Ω, ν)

∫
Ω
v(w − u) dν ¬

∫
Ω
(X,Dw)−

∫
Ω
|Du|ν . (12)

Później użyjemy osłabionej wersji warunku 12 w celu wprowadzenia rozwiązań entropijnych (ang. entropy

solutions) dla danych początkowych w L1(Ω, ν).

Pierwszym celem pracy [38] jest pokazanie, że AN = ∂T VN , i zbadanie konsekwencji tego faktu. Naszym

głównym narzędziem ponownie są metody dualnościowe w analizie wypukłej. Ponieważ struktura różniczkowa

Gigliego jest liniowa oraz dziedzina Ω jest wystarczająco regularna (dzięki czemu operator śladu istnieje, jest

liniowy i ciągły), używając podobnej strategii jak w dowodzie twierdzenia 11 otrzymujemy, że AN = ∂T VN ,

D(AN ) jest gęstym podzbiorem L2(Ω, ν), oraz AN jest zupełnie akrecyjny. Dzięki temu możemy wprowadzić

następujące pojęcia rozwiązania zagadnienia (11).

Definicja 21. Niech u0 ∈ L2(Ω, ν). Mówimy, że u jest słabym rozwiązaniem zagadnienia Neumanna

(11), jeśli u ∈ C([0, T ];L2(Ω, ν)) ∩ W 1,2loc (0, T ;L2(Ω, ν)), u(0, ·) = u0, i dla p.w. t ∈ (0, T ) zachodzi

u(t) ∈ BV (Ω, d, ν) oraz istnieją pola wektorowe X(t) ∈ D∞,20 (Ω) takie, że ∥X(t)∥∞ ¬ 1 i zachodzą

następujące warunki:

div0(X(t)) = ut(t, ·) w Ω;

(X(t), Du(t)) = |Du(t)|ν jako miary;

(X(t) · νΩ)− = 0 |DχΩ |ν − p.w. na ∂Ω.

Dzięki charakteryzacji AN = ∂T VN , z twierdzenia Brezisa-Kōmury wynika następujący wynik (zasada

porównawcza (13) wynika z zupełnej akrecyjności operatora AN ).

Wojciech Górny - autoreferat 17/40



Twierdzenie 22. Dla każdego u0 ∈ L2(Ω, ν) oraz T > 0 istnieje dokładnie jedno słabe rozwiązanie u(t)

zagadnienia Neumanna (11). Ponadto dla każdego q ∈ [1,∞], jeśli u1, u2 to słabe rozwiązania dla danych

początkowych u1,0, u2,0 ∈ L2(Ω, ν) ∩ Lq(Ω, ν) odpowiednio, wówczas

∥(u1(t)− u2(t))+∥q ¬ ∥(u1,0 − u2,0)+∥q. (13)

Otrzymujemy także oszacowania asymptotyczne analogiczne do twierdzenia 14. Powyższa konstrukcja

rozwiązań uogólnia się na przypadek danych początkowych u0 ∈ L1(Ω, ν), co prowadzi do rozwiązań

entropijnych (ang. entropy solutions) wprowadzonych w [10] (a w kontekście liniowego wzrostu w [8]).

W tym przypadku, dopuszczamy możliwość że rozwiązania będą miały nieskończoną energię (tj. całkowite

wahanie miary |Du|ν) i wymagamy jedynie żeby zachodziła słabsza nierówność wariacyjna typu (12).

Oznaczmy

Tk(s) =

s jeśli |s| ¬ k;

k · sign(s) jeśli |s| > k.

Następnie definiujemy następujący (wielowartościowy) operator w L1(Ω, ν).

Definicja 23. (u, v) ∈ BN wtedy i tylko wtedy, gdy u, v ∈ L1(Ω, ν), Tk(u) ∈ BV (Ω, d, ν) dla każdego

k > 0, oraz istnieje pole wektorowe X ∈ D∞,10 (Ω) takie, że ∥X∥∞ ¬ 1, −div0(X) = v w Ω oraz∫
Ω
(w − Tk(u)) v dν ¬

∫
Ω
(X,Dw)−

∫
Ω
|DTk(u)|ν

dla każdego w ∈ BV (Ω, d, ν) ∩ L∞(Ω, ν) i k > 0.

Operator BN jest zupełnie akrecyjny w L1(Ω, ν), maksymalny w sensie inkluzji i 0-jednorodny. Ponadto

BN ∩ (L2(Ω, ν)× L2(Ω, ν)) = AN , (14)

dzięki czemu D(BN ) jest gęstym podzbiorem L1(Ω, ν). Ponadto, uzyskujemy następującą równoważną

charakteryzację operatora BN : dla u, v ∈ L1(Ω, ν), (u, v) ∈ BN wtedy i tylko wtedy gdy Tk(u) ∈ BV (Ω, d, ν)

dla każdego k > 0 oraz istnieje pole wektorowe X ∈ D∞,10 (Ω) spełniające ∥X∥∞ ¬ 1 takie, że

−div0(X) = v w Ω;

(X,DTk(u)) = |DTk(u)|ν jako miary ∀ k > 0;

(X · νΩ)− = 0 |DχΩ |ν − p.w. na ∂Ω.

Dzięki tej charakteryzacji możemy zdefiniować rozwiązania entropijne w następujący sposób.

Definicja 24. Niech u0 ∈ L1(Ω, ν). Mówimy, że u(t) jest rozwiązaniem entropijnym zagadnienia Neumanna

(11), jeśli u ∈ C([0, T ];L1(Ω, ν)) ∩W 1,1loc (0, T ;L1(Ω, ν)), mamy u(0, ·) = u0 oraz dla p.w. t ∈ (0, T )

zachodzi Tku(t) ∈ BV (Ω, d, ν) dla każdego k > 0 oraz istnieją pola wektorowe X(t) ∈ D∞,10 (Ω) takie, że

∥X(t)∥∞ ¬ 1 i następujące warunki są spełnione:
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div0(X(t)) = ut(t, ·) w Ω;

(X(t), DTku(t)) = |DTku(t)|ν jako miary ∀k > 0;

(X(t) · νΩ)− = 0 |DχΩ |ν − p.w. na ∂Ω.

Dzięki maksymalności w sensie inkluzji oraz zupełnej akrecyjności BN otrzymujemy następujący wynik.

Twierdzenie 25. Dla każdego u0 ∈ L1(Ω, ν) oraz T > 0 istnieje dokładnie jedno rozwiązanie entropijne

u(t) zagadnienia Neumanna (11). Ponadto dla każdego r ∈ [1,∞], jeśli u1, u2 to rozwiązania entropijne dla

danych początkowych u1,0, u2,0 ∈ Lr(Ω, ν) odpowiednio, wówczas

∥(u1(t)− u2(t))+∥r ¬ ∥(u1,0 − u2,0)+∥r.

Ponadto, dzięki 0-jednorodności operatora BN , mamy∥∥∥∥du(t)dt

∥∥∥∥
L1(Ω,ν)

¬
∥u0∥L1(Ω,ν)

t
dla każdego t > 0.

Analogiczna konstrukcja działa także dla zagadnienia Cauchy’ego na całej przestrzeni pod warunkiem,

że jej miara ν(X) jest skończona. Ponadto, dzięki własności (14) dla danych początkowych w L2(Ω, ν)

rozwiązania entropijne pokrywają się ze słabymi rozwiązaniami.

Powyższe podejście działa także dla potoku całkowitego wahania z warunkami brzegowymi typu Dirichleta

(gdzie dodatkowe trudności wynikają z pojawienia się dodatkowych członów na brzegu dziedziny). Formalnie,

rozważamy wówczas następujące równanie paraboliczne


ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
w (0, T )× Ω;

u(t, x) = f(x) na (0, T )× ∂Ω;

u(0, x) = u0(x) w Ω

(15)

dla u0 ∈ L2(Ω, ν) oraz f ∈ L1(∂Ω, |DχΩ |ν). Rozumiemy je jako potok gradientowy w L
2(Ω, ν) wypukłego

i półciągłego z dołu funkcjonału T Vf : L2(Ω, ν)→ [0,+∞] zadanego przez

T Vf (u) :=


∫
Ω
|Du|ν +

∫
∂Ω
|TΩ(u)− f | d|DχΩ|ν dla u ∈ BV (Ω, d, ν) ∩ L2(Ω, ν);

+∞ dla u ∈ L2(Ω, ν) \BV (Ω, d, ν).

Otrzymujemy analogiczne pojęcie rozwiązania dla zagadnienia Dirichleta (15), jego istnienie i jednoznaczność,

zupełną akrecyjność powiązanego operatora (co pociąga za sobą zasadę porównawczą), oraz oszacowania

asymptotyczne w przypadku f = 0. Ponadto pokazujemy, że nasze pojęcie słabego rozwiązania jest

zgodne z rozwiązaniami wariacyjnymi (ang. variational solution), por. [13] lub [53] dla powiązanej idei

pseudorozwiązania (ang. pseudosolution) wprowadzonymi dla potoku całkowitego wahania w [18].
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4.2. Geometryczne spojrzenie na dwuwymiarowe zagadnienie najmniejszego gradientu

Ta sekcja jest poświęcona analizie zagadnienia najmniejszego gradientu

min
{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = f

}
(16)

w dwóch wymiarach, ze szczególnym uzwględnieniem geometrii obszaru oraz przy użyciu metod optymalnego

transportu oraz geometrycznej teorii miary (w odróżnieniu od podejścia przedstawionego w sekcji 4.1,

w szczególności 4.1[B], które było bardziej abstrakcyjne i używało technik analizy funkcjonalnej). Pierwszy

poruszany temat dotyczy relacji między zagadnieniem najmniejszego gradientu a zagadnieniem optymalnego

transportu. Najwcześniejszy wynik tego typu pochodzi z pracy [40], gdzie Górny, Rybka i Sabra pokazali,

że na wypukłych dziedzinach w dwóch wymiarach zagadnienie najmniejszego gradientu jest równoważne

zagadnieniu Beckmanna

min
{∫
Ω
|w| : w ∈M(Ω,R2), divw = g

}
, (17)

gdzie g = ∂τf to pochodna f w kierunku stycznym (patrz także [25]). Formalnie równoważność ta jest zadana

poprzez w = R−π2Du, gdzie Rα to obrót o kąt α względem początku układu współrzędnych. Ponadto, na

zbiorach wypukłych zagadnienie Beckmanna jest równoważne zagadnieniu Monge’a-Kantorowicza [67, 72]

min
{∫
Ω×Ω
|x− y|dγ : γ ∈M+(Ω× Ω), (Πx)#γ = g+ and (Πy)#γ = g−

}
, (18)

gdzie g+ i g− to odpowiednio dodatnia i ujemna część miary g. W tym przypadku miary źródłowa

g+ i docelowa g− są skoncentrowane na brzegu dziedziny. Związek między tymi trzema zagadnieniami

(16), (17) i (18) został po raz pierwszy wykorzystany w pracy [25] do uzyskania następującego wyniku:

jeśli dziedzina Ω jest jednostajnie wypukła, to dla p ¬ 2 regularność danych brzegowych typu W 1,p(∂Ω)

implikuje, że (jedyne) rozwiązanie leży w W 1,p(Ω). Sercem dowodu jest obserwacja, że regularność W 1,p

danych brzegowych w (16) odpowiada regularności Lp danych brzegowych w (18), oraz regularność W 1,p

rozwiązania zagadnienia (16) odpowiada regularności Lp gęstości transportu σγ (ang. transport density)

powiązanej z planem transportowym γ. tzn. między rozwiązaniami (16), (17) i (18) odpowiednio zachodzi

|Du| = |w| = |σγ |. Wystarczy zatem zbadać regularność gęstości transportu σγ , do czego możemy użyć

znacznie bogatszego zestawu narzędzi. Sekcje 4.2[D,E] są poświęcone rozbudowaniu tej równoważności i jej

wykorzystaniu w celu odpowiedzi na pytania dotyczące regularności, struktury, oraz stabilności rozwiązań

zagadnienia najmniejszego gradientu i jego anizotropowego wariantu

min
{∫
Ω
φ(x,Du) : u ∈ BV (Ω), u|∂Ω = f

}
,

gdzie anizotropia φ : Ω× RN → R jest taka, że dla każdego x ∈ Ω funkcja φ(x, ·) jest normą równoważną

normie euklidesowej (jednostajnie względem x). Najbardziej istotne przykłady z punktu widzenia zastosowań

to gdy φ jest ustaloną normą oraz gdy φ(x,Du) = a(x)|Du|. Ponadto szczegółowo uzasadniamy hipotezę, że

poziomice rozwiązań zagadnienia najmniejszego gradientu (16) mają interpretację promieni transportowych

w zagadnieniu Monge’a-Kantorowicza (18).
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Drugi poruszany temat dotyczy przestrzeni śladów funkcji najmniejszego gradientu (ang. least gradient

functions), tzn. funkcji u ∈ BV (Ω) spełniających

∫
Ω
|Du| ¬

∫
Ω
|Dv|

dla wszystkich v ∈ BV (Ω) takich, że u|∂Ω = v|∂Ω. Równoważnie, pytamy dla jakich danych brzegowych

f ∈ L1(∂Ω) istnieje rozwiązanie zagadnienia najmniejszego gradientu (16), które spełnia warunek brzegowy

punktowo w sensie śladu. Nawet w najprostszym przypadku, kiedy dziedzina Ω jest dwuwymiarowym dyskiem,

jest to problem otwarty. Znane wyniki mówią, że przestrzeń śladów funkcji najmniejszego gradientu zawiera

funkcje ciągłe [70] oraz funkcje o wahaniu ograniczonym [30], ale nie zawiera L∞(∂Ω) [69], a nawet nie jest

przestrzenią liniową [48]. To sugeruje, że istnienie rozwiązań nie jest bezpośrednio powiązane z regularnością

danych brzegowych oraz, ograniczając możliwe dane brzegowe do funkcji charakterystycznych zbiorów na

brzegu, jest ono silnie związane z geometrią tychże zbiorów. W sekcji 4.2[F] pokazujemy, że jest to prawda.

Dokładniej, jeśli zmienimy geometrię przestrzeni poprzez wprowadzenie anizotropii φ, to przestrzeń śladów

(anizotropowych) funkcji najmniejszego gradientu istotnie zmienia się wraz z normą anizotropową. Dowód

tego faktu opiera się na konstrukcji odpowiedniego zbioru na ∂Ω, który jest homeomorficzny ze zbiorem Can-

tora (podobnie jak w znanych kontrprzykładach do istnienia rozwiązań w przypadku euklidesowym [30, 69]),

oraz na własności geometrycznej zależnej od φ która jest spełniona dla dokładnie jednej z tych anizotropii.

Jako efekt uboczny tego dowodu otrzymujemy, że istnienie rozwiązań nie jest bezpośrednio powiązane z

regularnością danych brzegowych. Ten fenomen jest ściśle związany z faktem, że minimalizowany funkcjonał

ma liniowy wzrost, i nie występuje w podobnych zagadnieniach dla wzrostu potęgowego w przypadku p > 1.

Podobnie jak w sekcji 4.1, poniżej przedstawiam leksykon najważniejszych pojęć i oznaczeń w skróconej

wersji, zaś do dokładnych sformułowań odsyłam do sekcji „Preliminaries” w pracach [D], [E] i [F].

• Ω: zbiór otwarty ograniczony w R2 z lipschitzowskim brzegiem;

• φ: anizotropia, tzn. funkcja φ : Ω × RN → R taka, że dla każdego x ∈ Ω funkcja φ(x, ·) jest normą

równoważną normie euklidesowej (jednostajnie względem x);

• (z, Du): sparowanie Anzellottiego uogólniające z · ∇u na mniej regularne pola wektorowe i funkcje. Dla

u ∈ BV (Ω) ∩ Lq(Ω) oraz z ∈ L∞(Ω,RN ), jeśli div(z) ∈ Lp(Ω) dla 1p +
1
q = 1, definiujemy

⟨(z, Du), ϕ⟩ = −
∫
Ω
u z · ∇ϕdx−

∫
Ω
uϕdiv(z) dx.

Wówczas (z, Du) jest miarą Radona oraz (z, Du)≪ |Du| (patrz także sekcje 4.1[A,B]).

• [z, νΩ]: ślad w kierunku normalnym pola wektorowego z ∈ L∞(Ω,RN ) z całkowalną dywergencją.

Dla z ∈ C1(Ω), mamy [z, νΩ] = z · νΩ, zaś dla mniej regularnych z jest ono zadane poprzez całkowanie

przez części (równoważnie: uśrednianie z · νΩ po odpowiednich stożkach w otoczeniu ∂Ω).

• γ: optymalny plan transportowy. Jest to miara dodatnia na Ω × Ω. Powiązana z nią jest gęstość

transportu σγ , miara dodatnia na Ω, zadana dla dowolnego zbioru borelowskiego A ⊂ Ω wzorem

σγ(A) :=
∫
Ω×Ω
H1([x, y] ∩A) dγ(x, y).
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[D] Metody optymalnego transportu w zagadnieniu najmniejszego gradientu

W następnej kolejności opiszemy główne wyniki pracy [D], tzn. [32]. Pierwszy z nich stanowi uzupełnienie

wyników dotyczący równoważności między zagadnieniem najmniejszego gradientu (16) a zagadnieniem

optymalnego transportu (18), tzn. rozszerza tę równoważności na ich zagadnienia dualne. Dokładniej,

badamy związek między zagadnieniem maksymalizacyjnym (19) wprowadzonym w [60]

max
{∫
∂Ω
[z, νΩ] g dH1 : z ∈ Z

}
, (19)

gdzie g ∈ BV (∂Ω) oraz

Z =
{
z ∈ L∞(Ω;R2) : div(z) = 0, ∥z∥∞ ¬ 1 p.w. w Ω

}
,

a zagadnieniem maksymalizacyjnym

max
{∫
Ω
φ d(f+ − f−) : φ ∈ Lip1(Ω)

}
(20)

którego rozwiązania są znane jako potencjały Kantorowicza [67, 72]. Używamy tutaj oznaczeń jak w

pracy [32], tzn. dane brzegowe w zagadnieniu najmniejszego gradienty są oznaczone literą g; mamy f = ∂τg,

gdzie ∂τ oznacza pochodną w kierunku stycznym; wreszcie f± ∈ M(∂Ω) oznaczają dodatnią i ujemną

część miary f . Używając klasycznych technik analizy wypukłej łatwo otrzymać istnienie rozwiązań obu

zagadnień — dla (19) zostało to pokazane w [60], zaś dla (20) przykładowo w [67, 72]. Mamy wówczas

następującą równoważność między zagadnieniami (19) a (20).

Twierdzenie 26. Załóżmy, że Ω ⊂ R2 jest wypukły. Wówczas, zagadnienia (19) oraz (20) są równoważne

w następującym sensie:

(1) Zachodzi max (19) = max (20);

(2) Jeśli φ ∈ Lip1(Ω) jest rozwiązaniem zagadnienia (20), to istnieje z ∈ L∞(Ω;R2) takie, że z = Rπ2∇φ

w Ω i jest ono rozwiązaniem zagadnienia (19);

(3) Jeśli z ∈ L∞(Ω;R2) jest rozwiązaniem zagadnienia (19), to istnieje φ ∈ Lip1(Ω) takie, że z = Rπ2∇φ

w Ω i jest ono rozwiązaniem zagadnienia (20).

Rozwiązania zagadnień (19) i (20) w ogólności nie są jednoznaczne. W związku z tym ważne jest, że

dowolne rozwiązanie zagadnienia (20) determinuje kształt układu promieni transportowych dla wszystkich

rozwiązań zagadnienia Monge’a-Kantorowicza. Podobnie, dowolne rozwiązanie zagadnienia (19) determinuje

kształt układu poziomic wszystkich rozwiązań zagadnienia najmniejszego gradientu w następującym sensie:

pole wektorowe z = −z spełnia równanie Eulera-Lagrange’a dla zagadnienia najmniejszego gradientu

wprowadzone w [57], w szczególności jest bezdywergentne oraz

(z, Du) = |Du| jako miary w Ω.

Zatem, jeśli φ to potencjał Kantorowicza, to z = R−π2∇φ. Uzasadnia to nieformalną obserwację spotykaną
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w literaturze, że poziomice rozwiązań zagadnienia najmniejszego gradientu odpowiadają promieniom

transportowym w odpowiadającym mu zagadnieniu optymalnego transportu.

Kolejne wyniki w pracy [32] dotyczą regularności rozwiązań zagadnienia najmniejszego gradientu w przypadku,

gdy dane brzegowe są mniej regularne niż dotychczas spotykane w literaturze [25, 70]. Poniżej przytaczamy

tylko jeden wynik, w przypadku gdy zbiór Ω jest ściśle wypukły oraz dane brzegowe leżą w SBV (∂Ω);

wówczas, każde rozwiązanie leży w SBV (Ω). W tym przypadku, dane brzegowe mają ograniczone wahania,

ale nie muszą być ciągłe, zatem rozwiązania istnieją [30], ale nie muszą być jednoznaczne. W odpowiadającym

mu zagadnieniu Monge’a-Kantorowicza optymalny plan transportowy może nie być jednoznaczny i nie musi

istnieć optymalne odwzorowanie transportowe (tzn. optymalny plan transportowy nie musi być indukowany

przez funkcję T : ∂Ω→ ∂Ω taką, że T#f+ = f−). Niemniej, poniższy wynik dotyczy każdego rozwiązania.

Twierdzenie 27. Załóżmy, że Ω ⊂ R2 jest ściśle wypukły. Niech g ∈ SBV (∂Ω). Wówczas, jeśli u ∈ BV (Ω)

to rozwiązanie zagadnienia (16) dla danych brzegowych g, to u ∈ SBV (Ω).

Podobna analiza jak w dowodzie twierdzenia 27 pozwala na zbadanie lokalnej regularności rozwiązań.

Wyniki te otrzymujemy w następujący sposób: wpierw pokazujemy oszacowania regularnościowe na gęstość

transportu σγ bądź badamy jej strukturę, a następnie wykorzystujemy równoważność między zagadnieniem

optymalnego transportu a zagadnieniem najmniejszego gradientu w celu „przetłumaczenia ich” na wyniki

regularnościowe w tym przypadku. Otrzymujemy m.in., że rozwiązanie zagadnienia najmniejszego gradientu

jest lipschtzowskie w otoczeniu generycznego punktu, oraz że lipschitzowskość danych brzegowych implikuje

lokalną lipschitzowskość rozwiązania. Oba te wyniki są optymalne, na co wskazują klasyczne przykłady

z pracy [70].

W [32] badaliśmy także stabilność rozwiązań zagadnienia najmniejszego gradientu, tzn. zbadaliśmy, czy

niewielkie zaburzenia danych brzegowych przekładają się na niewielkie zaburzenia rozwiązania (i w jakich

topologiach). Dzięki zastosowaniu metod transportowych możliwe jest uzyskanie kilku ogólnych wyników.

Jest to o tyle znaczące, że strategia dowodzenia istnienia rozwiązań polegająca na przybliżaniu danych

brzegowych i użyciu twierdzenia Mirandy [58] o tym, że granica funkcji najmniejszego gradientu w L1loc(Ω)

jest funkcją najmniejszego gradientu, jest skutecznie używana w literaturze w wielu przypadkach [30, 31, 40],

natomiast dotychczasowe wyniki tego typu zakładały szczególną postać ciągu przybliżeń, dostosowaną

do aktualnie badanej wersji zagadnienia najmniejszego gradientu. W pracy [32] przedstawiono pierwsze

wyniki dotyczące stabilności rozwiązań, które nie wymagają konkretnej postaci ciągu przybliżeń. Są one

optymalne w tym sensie, że osłabienie założeń regularnościowych na ciąg gn bądź zastąpienie ścisłej topologii

zbieżnością w L1(∂Ω) sprawia, że poniższe twierdzenie jest nieprawdziwe.

Twierdzenie 28. Załóżmy, że Ω ⊂ R2 jest ściśle wypukły. Niech g, gn ∈ BV (∂Ω) oraz gn → g ściśle w

BV (∂Ω). Załóżmy, że un ∈ BV (Ω) to rozwiązania zagadnienia (16) dla danych brzegowych gn. Wówczas

istnieje u ∈ BV (Ω), rozwiązanie zagadnienia (16), takie że (po ewentualnym przejściu do podciągu) mamy

un → u ściśle w BV (Ω).

Konieczność użycia ścisłej zbieżności wynika z faktu, że operator śladu nie jest ciągły względem zbieżności

w L1(Ω), i w ogólności zbieżność gn → g w L1(∂Ω) nie pociąga za sobą zbieżności rozwiązań (16) dla gn.
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Na tej obserwacji opiera się kontrprzykład pokazujący nieistnienie rozwiązań dla pewnych ograniczonych

danych brzegowych podany w [69]. Ponieważ jednak używamy metod transportowych, dane brzegowe muszą

leżeć w BV (∂Ω), i w szczególności kontrprzykład podany w [69] się nie stosuje. Kluczowym elementem

dowodu jest następujące oszacowanie na energię rozwiązania (z optymalną stałą) dostępne w przypadku,

gdy dane brzegowe mają wahanie ograniczone:

|Du|(Ω) ¬ diam(Ω)
2
|Dg|(∂Ω),

gdzie u ∈ BV (Ω) to rozwiązanie (16) dla danych brzegowych g ∈ BV (∂Ω).

Podobny wynik o stabilności rozwiązań otrzymujemy także w przypadku, gdy przybliżamy (w metryce

Hausdorffa) wypukłą dziedzinę Ω za pomocą zstępującego ciągu ściśle wypukłych zbiorów Ωn — taki ciąg

przybliżeń to podstawa techniki dowodzenia istnienia rozwiązań na zbiorach wypukłych [40, 66]. Pokażemy,

że wówczas ciąg rozwiązań przybliżonych zagadnień najmniejszego gradientu zbiega (po ograniczeniu do

Ω) do rozwiązania oryginalnego problemu. Ponownie, jest to pierwszy wynik tego typu który nie wymaga

konkretnej postaci ciągu przybliżeń Ωn i pozwala on na dowolne dane brzegowe g ∈ BV (∂Ω).

Wprowadźmy następujące oznaczenia: dla wypukłej dziedziny Ω oraz ściśle wypukłej dziedziny Ω′ takiej,

że Ω ⊂ Ω′, oznaczamy przez π : ∂Ω′ → ∂Ω (jednoznaczny) rzut ortogonalny na (domknięty i wypukły)

zbiór Ω. Ponieważ Ω ⊂ Ω′, obraz tego odwzorowania jest równy ∂Ω. Ponadto, dzięki ścisłej wypukłości Ω′,

dla x, y ∈ ∂Ω oraz dowolnych punktów x′ ∈ π−1(x) i y′ ∈ π−1(y) odcinki [x, x′] i [y, y′] mogą mieć punkt

wspólny wyłącznie gdy x = y. Dla ścisłego reprezentanta funkcji g ∈ BV (∂Ω), definiujemy g′ ∈ BV (∂Ω′)

za pomocą wzoru

g′(x) = g(π(x)).

Załóżmy, że Ωn jest ciągiem zstępującym zbiorów ściśle wypukłych oraz distH(∂Ωn, ∂Ω)→ 0, tzn. odległość

Hausdorffa między Ωn a Ω zbiega do zera. Wówczas, przez πn : ∂Ωn → ∂Ω oznaczamy rzut na domknięty

wypukły zbiór Ω i oznaczamy gn(x) = g(πn(x)) dla dowolnego x ∈ ∂Ωn. Skoro g ∈ BV (∂Ω), oczywiście

mamy gn ∈ BV (∂Ωn); otrzymujemy m.in. następujący wynik.

Twierdzenie 29. Załóżmy, że Ω ⊂ R2 jest ściśle wypukła oraz niech g ∈ BV (∂Ω), Ωn oraz gn będą

skonstruowane jak wyżej. Wówczas, jeśli un ∈ BV (Ωn) to rozwiązania zagadnienia (16) na Ωn dla danych

brzegowych gn, to na podciągu mamy un|Ω → u ściśle w BV (Ω). Ponadto, u to rozwiązanie zagadnienia (16)

na Ω dla danych brzegowych g.

Oczywiście w razie potrzeby można połączyć twierdzenia 28 i 29 w celu skonstruowania ciągu przybliżeń

o silniejszej regularności niż g ◦ πn. Ponadto, jako wniosek z twierdzenia 29 uzyskujemy częściowe wyniki

dotyczące istnienia rozwiązań w przypadku, gdy dziedzina Ω jest wypukła, ale nie jest ściśle wypukła.

W tym przypadku już w pracy [70] wskazano kontrprzykład dla ciągłych danych brzegowych. W literaturze

spotyka się różne warunki dopuszczalności [40, 66] na dane brzegowe w przypadku gdy Ω jest wielokątem

— dzięki twierdzeniu 29 możliwe jest uogólnienie niektórych z tych wyników na przypadek dowolnego

zbioru wypukłego.
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[E] Riemannowski optymalny transport a zagadnienie najmniejszego gradientu z wagą

W poniższej sekcji opisujemy główne wyniki artykułu [E], tzn. [24]. W tej pracy, napisanej wspólnie z Samerem

Dweikiem, najpierw opisujemy związek między anizotropowym zagadnieniem najmniejszego gradientu

inf
{∫
Ω
φ(x,Du) : u ∈ BV (Ω), u|∂Ω = g

}
(21)

a anizotropowym zagadnieniem Beckmanna

min
{∫
Ω
φ⊥(x, v) : v ∈M(Ω,R2), div v = f

}
, (22)

gdzie φ⊥ oznacza funkcję φ obróconą o π2 w drugiej zmiennej. Używamy tutaj oznaczeń jak w pracy [24],

tzn. dane brzegowe w zagadnieniu najmniejszego gradientu są ponownie oznaczone literą g oraz oznaczamy

f = ∂τg. Kluczowe geometryczne założenie dotyczące dziedziny jest takie, że zbiór Ω jest ściągalny. Jest

to istotnie słabsze założenie niż w [40] (w przypadku izotropowym), gdzie wymagana była wypukłość

dziedziny. Uogólniamy wyniki pracy [40] na dwa sposoby: roszerzając je na przypadek anizotropowy oraz na

szerszą klasę dopuszczalnych dziedzin. Osłabienie założenia wypukłości jest szczególnie ważne w przypadku

anizotropowym, gdzie istotna będzie wypukłość dziedziny względem odpowiedniej struktury riemannowskiej,

co niekoniecznie jest związane z euklidesową wypukłością.

Sercem argumentu o równoważności zagadnień (21) i (22) jest lemat pokazujący, że jeśli Ω jest zbiorem

ściągalnym, to każde pole wektorowe v ∈M(Ω,R2) spełniające div(v) = 0 w sensie dystrybucyjnym oraz

|v|(∂Ω) = 0 ma potencjał skalarny, tzn. istnieje u ∈ BV (Ω) takie, że v = R−π2Du. W szczególności, jeśli

[v, νΩ] = f oraz u|∂Ω = g, wówczas zachodzi f = ∂τg. Główny wynik dotyczący równoważności zagadnień

(21) i (22) jest przedstawiony poniżej; jego założenie na Ω jest optymalne w tym sensie, że jeśli dziedzina

nie jest ściągalna, nie jest on prawdziwy nawet w przypadku euklidesowym.

Twierdzenie 30. Załóżmy, że Ω jest zbiorem ściągalnym. Wówczas, zagadnienia (21) i (22) są równoważne

w następującym sensie:

(1) Zachodzi inf (21) = min (22);

(2) Jeśli u ∈ BV (Ω) jest rozwiązaniem zagadnienia (21), to istnieje v ∈ M(Ω,R2) takie, że v = R−π2Du

i jest ono rozwiązaniem zagadnienia (22);

(3) Jeśli v ∈M(Ω,R2) jest rozwiązaniem zagadnienia (22) spełniającym |v|(∂Ω) = 0, to istnieje u ∈ BV (Ω)

takie, że v = R−π2Du i jest ono rozwiązaniem zagadnienia (21).

Odnotujmy, że notacja dotycząca kierunku obrotu w pracy [E] jest odwrotna do notacji w powyższym wyniku

(oraz w pracy [D]; w całej tej sekcji stosujemy oznaczenia z pracy [D]). Niech k ∈ C1,1(R2) będzie funkcją

dodatnią. Poniżej przedstawiamy związek między zagadnieniem najmniejszego gradientu z wagą [46, 73]

inf
{∫
Ω
k(x)|Du| : u ∈ BV (Ω), u|∂Ω = g

}
(23)

Wojciech Górny - autoreferat 25/40



a zagadnieniem Monge’a-Kantorowicza względem metryki riemannowskiej indukowanej przez k, tzn.

dk(x, y) := min
{∫ 1
0
k(γ(t)) |γ′(t)| dt : γ ∈ Lip([0, 1],R2), γ(0) = x oraz γ(1) = y

}
.

Załóżmy, że Ω to geodezyjnie wypukła (ang. geodesically convex) dziedzina w R2, tzn. dla każdej pary

x, y ∈ Ω istnieje dokładnie jedna geodezyjna γ łącząca te punkty i jest ona zawarta w Ω. Niech f+ i f−

będą dwoma miarami dodatnimi Radona na Ω takimi, że f+(Ω) = f−(Ω). Wówczas, rozważmy następujące

zagadnienie Monge’a-Kantorowicza:

min
{∫
Ω×Ω

dk(x, y) dΛ(x, y) : Λ ∈M+(Ω× Ω), (Πx)#Λ = f+ oraz (Πy)#Λ = f−
}
, (24)

które jest relaksacją zagadnienie Monge’a z kosztem zadanym przez metrykę riemannowską [26]

min
{∫
Ω
dk(x, T (x)) df+(x) : T#f+ = f−

}
. (25)

W pracy [E] udowadniamy, że równoważność między zagadnieniem najmniejszego gradientu a zagadnieniem

Monge’a-Kantorowicza uogólnia się na przypadek riemannowski. Kluczową obserwacją w tej analizie jest

fakt, że dwa różne promienie transportowe nie mogą się przecinać we wnętrzu któregokolwiek z nich

(dzięki regularności C1,1 metryki riemannowskiej). Równoważność między ich zagadnieniami dualnymi

przedstawiona w sekcji 4.2[D] również się uogólnia na przypadek riemannowski. Dokładniej, zagadnienie

Monge’a-Kantorowicza (24) ma następujące dualne sformułowanie [67, 72]

sup
{∫
Ω
ψ d(f+ − f−) : |ψ(x)− ψ(y)| ¬ dk(x, y), ∀x, y ∈ Ω

}
, (26)

które dla g ∈ BV (∂Ω) jest równoważne dualnemu sformułowaniu dla zagadnienia najmniejszego gradientu

z wagą (23) przedstawionemu w pracy [60]

sup
{∫
∂Ω
[z, νΩ] g dH1 : z ∈ L∞(Ω,R2), div z = 0, |z(x)| ¬ k(x) dla p.w. x ∈ Ω

}
, (27)

gdzie Z = {z ∈ L∞(Ω;R2) : div(z) = 0, |z(x)| ¬ k(x) p.w. w Ω}, tzn. zachodzi następujący rezultat.

Twierdzenie 31. Załóżmy, że Ω jest geodezyjnie wypukła. Wówczas, zagadnienia (26) oraz (27) są

równoważne w następującym sensie:

(1) Zachodzi sup (26) = sup (27);

(2) Jeśli ψ ∈ Lip(Ω) jest rozwiązaniem zagadnienia (26), to istnieje z ∈ L∞(Ω,R2) takie, że z = Rπ
2
∇ψ

w Ω i jest ono rozwiązaniem zagadnienia (27);

(3) Jeśli z ∈ L∞(Ω,R2) jest rozwiązaniem zagadnienia (27), to istnieje ψ ∈ Lip(Ω) takie, że z = Rπ
2
∇ψ

w Ω i jest ono rozwiązaniem zagadnienia (26).

Odnotujmy, że oba zagadnienia mają rozwiązania, patrz [60] dla zagadnienia (27) oraz [67, 72] dla zagadnienia

(26), zatem powyższy wynik ma następującą interpretację: układ poziomic w zagadnieniu najmniejszego

gradientu z wagą, który jest kodowany przez rozwiązanie zagadnienia dualnego (27), odpowiada strukturze
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promieni transportowych kodowanych przez potencjały Kantorowicza w zagadnieniu (26). W ogólności nie

spodziewamy się aby rozwiązania tych problemów były jednoznaczne.

Głównym celem pracy [E] jest uzyskanie regularności rozwiązań dla zagadnienia najmniejszego gradientu z

wagą. Warto podkreślić, że jedyny znany wcześniej wynik dotyczy ciągłości rozwiązań dla ciągłych danych

brzegowych [73]. W tym celu wykorzystamy otrzymaną powyżej równoważność z riemannowskim zagadnie-

niem optymalnego transportu. Na początek odnotujmy, że przy założeniu że Ω jest ściśle geodezyjnie wypukła

(ang. strictly geodesically convex), tzn. jest geodezyjnie wypukła i każda krzywa geodezyjna w Ω przecina

∂Ω co najwyżej na swych końcach, otrzymujemy istnienie i jednoznaczność optymalnego odzworowania

transportowego T , tzn. rozwiązania (25), przy założeniu że miara źródłowa f+ jest bezatomowa. Wynik ten

odpowiada istnieniu rozwiązań zagadnienia najmniejszego gradientu z wagą dla ciągłych danych brzegowych.

Dla zagadnienia optymalnego transportu, klasycznym narzędziem do opisu struktury i regularności optymal-

nego planu transportowego Λ jest gęstość transportu (ang. transport density) [67], dodatnia miara σΛ na

Ω która reprezentuje intensywność transportu na różnych podzbiorach Ω. W przypadku riemannowskim

definiujemy ją poprzez dualność z funkcjami ciągłymi, tzn. dla φ ∈ C(Ω) jest ona zadana wzorem

⟨σΛ, φ⟩ :=
∫
Ω×Ω

∫ 1
0
φ(γx,y(t)) k(γx,y(t)) |γ′x,y(t)|dtdΛ(x, y),

gdzie γx,y to geodezyjna łącząca x z y. Miara σΛ jest dobrze zdefiniowana gdy Ω jest geodezyjnie wypukła.

W celu uzyskania wyników dotyczących regularności rozwiązań zagadnienia najmniejszego gradientu z

wagą, pokazujemy oszacowania w Lp gęstości transportu σΛ pomiędzy f+ a f− przy założeniu, że Ω jest

geodezyjnie ściśle wypukła oraz miara źródłowa f+ leży w Lp(∂Ω). Wówczas, gęstość transportu σΛ jest

dobrze zdefiniowana i jednoznaczna. Dowód opiera się na przybliżeniu miary docelowej f− za pomocą

skończonej sumy delt Diraca, znalezieniu w tym przypadku jawnego wzoru na gęstość transportu, oszacowania

jej normy w Lp i pokazanie, że oszacowanie to jest zachowane w granicy. Przy nieco silniejszym założeniu

geometrycznym na Ω, które uogólnia na przypadek riemannowski jednostajną wypukłość (geodezyjna

jednostajna wypukłość), pokazujemy kilka wyników dotyczących regularności i struktury σΛ. Następnie,

dzięki równoważności riemannowskiego zagadnienia optymalnego transportu z zagadnieniem najmniejszego

gradientu z wagą, otrzymujemy odpowiadające im wyniki dotyczące regularności zagadnienia (3). Poniżej

przedstawiamy podsumowanie wyników regularnościowych dla zagadnienia najmniejszego gradientu z wagą

z pracy [24]; w sprawie odpowiednich sformułowań dla gęstości transportu odsyłamy do [24].

Twierdzenie 32. Załóżmy, że Ω jest geodezyjnie ściśle wypukły. Wówczas, dla każdych danych brzegowych

g ∈ BV (∂Ω) zagadnienie najmniejszego gradientu z wagą (3) ma rozwiązanie u ∈ BV (Ω). Ponadto:

(a) Jeśli g ∈ BV (∂Ω) ∩ C(∂Ω), to rozwiązanie jest jednoznaczne;

(b) Jeśli g ∈W 1,1(∂Ω), to u ∈W 1,1(Ω);

(c) Jeśli g ∈ SBV (∂Ω), to u ∈ SBV (Ω).

Jeśli natomiast Ω jest geodezyjnie jednostajnie wypukła, to mamy dodatkowo:

(d) Jeśli g ∈W 1,p(∂Ω) dla p ∈ [1, 2], to u ∈W 1,p(Ω);

(e) Jeśli g ∈ C1,α(∂Ω) dla α ∈ (0, 1], to u ∈W 1,p(Ω) dla p = 2/(1− α).
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[F] Przestrzeń śladów anizotropowych funkcji najmniejszego gradientu

Ta sekcja jest poświęcona opisowi głównych wyników pracy [F], tzn. [33]. Zasadniczym celem tej pracy było

zbadanie następującego zjawiska. Dla uproszczenia, niech Ω będzie dwuwymiarowym dyskiem. Wówczas, z

pracy [31] wynika, że dla dowolnej normy φ anizotropowe zagadnienie najmniejszego gradientu

inf
{∫
Ω
φ(x,Du) : u ∈ BV (Ω), u|∂Ω = f

}
(28)

ma rozwiązanie w sensie śladu dla każdego f ∈ L1(∂Ω), które jest ciągłe H1-p.w. Z drugiej strony,

kontrprzykład podany w [69] pokazuje, że nawet w przypadku izotropowym istnieją dane brzegowe w

L∞(∂Ω) dla których nie ma rozwiązań (jest to funkcja charakterystyczna odpowiednio dobranego zbioru

typu Cantora). W związku z tym zadajemy następujące pytanie: czy przestrzeń śladów funkcji φ-najmniejszego

gradientu, tzn. zbiór danych brzegowych dla których zagadnienie (28) ma rozwiązanie, jest zależna od

anizotropii?

Odpowiedź na to pytanie jest twierdząca nawet w opisanym wyżej modelowym przypadku. Mimo że znane

wyniki dotyczące istnienia rozwiązań nie zależą od φ, sama przestrzeń śladów funkcji φ-najmniejszego

gradientu zmienia się wraz z anizotropową normą. Dokładniej, pokazujemy, że dla dostatecznie regularnych

φ1 oraz φ2 ich przestrzenie śladów się pokrywają wtedy i tylko wtedy gdy φ1 = cφ2. Argument opiera się na

następującej obserwacji: w przypadku gdy dane brzegowe są funkcją charakterystyczną pewnego zbioru, jeśli

istnieje choć jedno rozwiązanie, to istnieje też rozwiązanie będące funkcją charakterystyczną. Dzięki temu

możemy zredukować zagadnienie wariacyjne do odpowiedniego problemu geometrycznego. Konstrukcja funkcji

leżących w dokładnie jednej przestrzeni śladów dla φ1 i φ2 może być skrótowo opisana w następujący sposób.

Znajdujemy odpowiedni zbiór na ∂Ω o dodatniej jednowymiarowej mierze Hausdorffa, homeomorficzny

ze zbiorem Cantora, z parametrami konstrukcji dobranymi tak aby pewna funkcja pomocnicza hφ (której

definicja z [33] jest pominięta w tym podsumowaniu) spełniała odpowiednią nierówność na każdym etapie

konstrukcji.

Poniżej przedstawiona jest bardzo uproszczona wersja konstrukcji zbioru F∞ o żądanych własnościach,

zaś pełna konstrukcja jest przedstawiona w [33]. Niech Ω = B(0, 1) ⊂ R2. Rozważmy standardowe

przybliżenie zbioru Cantora F∞ ⊂ ∂Ω za pomocą zbiorów domkniętych Fn ⊂ ∂Ω które są sumą 2n łuków

na ∂Ω. Dla każdego zbioru Fn, oznaczamy krańce tych łuków za pomocą rodziny kątów α(m1,...,mn−1),

gdzie (m1, ...,mn−1) ∈ {0, 1}(n−1). W zależności od wyboru parametrów α(m1,...,mn−1), zbiór graniczny

F∞ może mieć zerową bądź dodatnią miarę Hausdorffa H1. Następnie wprowadzamy funkcję pomocniczą

hφ : {0, 1}n → R, która opisuje minimalizację obwodu wśród podzbiorów Ω, których brzeg na ∂Ω jest równy

Fn. Rozważamy dwa przypadki opisane za pomocą tej funkcji pomocniczej: albo

dla każdego n ∈ N oraz (m1, ...,mn−1) ∈ {0, 1}(n−1) mamy hφ(m1, ...,mn−1) > 0; (29)

albo

dla każdego n ∈ N oraz (m1, ...,mn−1) ∈ {0, 1}(n−1) mamy hφ(m1, ...,mn−1) = 0. (30)
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Pokazujemy, że obie możliwości są możliwe do zrealizowania w zaproponowanej konstrukcji. Poniżej

przedstawiony jest jej końcowy efekt w zależności od rozważanego przypadku. Od teraz, zakładamy że φ

jest ściśle wypukła (tzn. jej kula jednostkowa jest ściśle wypukła).

Twierdzenie 33. Zachodzą następujące stwierdzenia:

(i) Załóżmy, że zachodzi warunek (29). Wówczas, dla każdego n ∈ N istnieje dokładnie jedno rozwiązanie

un ∈ BV (Ω) zagadnienia (28) dla danych brzegowych fn = χFn . Jest ono postaci un = χEn , gdzie

L2(En)→ 0 gdy n→∞. Ponadto, o ile H1(F∞) > 0, zagadnienie (28) dla danych brzegowych f = χF∞
nie ma rozwiązań.

(ii) Załóżmy, że zachodzi warunek (30). Wówczas H1(F∞) > 0 oraz dla każdego n ∈ N istnieje (niekoniecznie

jedyne) rozwiązanie un = χE′n zagadnienia (28) dla danych brzegowych fn = χFn , gdzie L
2(E′n) ­ c > 0.

Ponadto, zagadnienie (28) dla danych brzegowych f = χF∞ ma rozwiązanie.

Ten wynik, w połączeniu z konstrukcją odpowiedniej rodziny kątów {α(m1,...,mn−1)}∞n=2 która spełnia

warunek (29) dla φ2 oraz warunek (30) dla φ1, pokazuje że przestrzeń śladów funkcji φ-najmniejszego

gradientu zależy od anizotropii.

Twierdzenie 34. Niech φ1 oraz φ2 będą dwoma ściśle wypukłymi normami klasy C2 (poza początkiem

układu współrzędnych). Jeśli φ1 oraz φ2 nie są proporcjonalne, to istnieje funkcja f ∈ L∞(∂Ω) taka, że

istnieje rozwiązanie zagadnienia (28) dla φ1, ale nie istnieje rozwiązanie zagadnienia (28) dla φ2.

Innymi słowy, przestrzenie śladów anizotropowych funkcji najmniejszego gradientu dla dostatecznie regular-

nych φ1 i φ2 pokrywają się wtedy i tylko wtedy gdy φ1 = cφ2 dla pewnej c > 0. Ten fenomen jest ściśle

związany z faktem że minimalizowany funkcjonał ma liniowy wzrost i nie pojawia się on np. w anizotropowym

równaniu p-Laplace’a, gdzie istnienie rozwiązań zależy wyłącznie od regularności danych brzegowych. W na-

szym przypadku nie jest to prawdą, ponieważ funkcje, które leżą w dokładnie jednej przestrzeni śladów, są

otrzymane za pomocą różnych wariantów tej samej konstrukcji. W pracy [F] twierdzenie 34 jest uzupełnione

przez dyskusję na temat nieściśle wypukłych norm oraz słabszy wynik dla norm które nie są klasy C2.

Dokładniej, dla ściśle wypukłej normy φ1 możemy znaleźć normę φ2 dowolnie blisko φ1 w normie supremum

(ograniczonej do sfery jednostkowej) w taki sposób, że przestrzenie śladów dla φ1 i φ2 się nie pokrywają.

5. Aktywność naukowa

5.1. Granty

1. Kierownik projektu w grancie ESP 88 ESPRIT-Programm, Austriacki Fundusz Nauki, tytuł: „Inhomogeneous-

growth problems including a linear-growth term”, 2022-2025.

2. Kierownik projektu w grancie 2017/27/N/ST1/02418 (PRELUDIUM), Narodowe Centrum Nauki, Poland,

title: „Anisotropic least gradient problem”, 2018-2022.

3. Wykonawca w międzynarodowym grancie OeAD-WTZ CZ 01/2021 (część austriacka: I5149), tytuł:

„Scales and Shapes in Continuum Thermomechanics”, 2021-2025.

4. Wykonawca w międzynarodowym grancie DFG-FWF FR 4083/3-1/I4354 (część austriacka: I4354),

tytuł: „Variational Modeling of Molecular Geometries”, 2020-2022.
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5. Wykonawca w grancie SFB 65 (project part 11), Austriacki Fundusz Nauki, tytuł: „Taming complexity in

partial differential equations”, 2020.

5.2. Prezentacje na konferencjach

W mojej dotychczasowej karierze naukowej wygłosiłem 16 zaproszonych referatów na konferencjach na-

ukowych, 5 innych wystąpień na konferencjach naukowych, oraz wygłosiłem 16 referatów seminaryjnych.

Poniżej przedstawiam listę 10 najważniejszych wystąpień.

1. Characterisation of weak solutions to gradient flows of general linear growth functionals na konferencji

„Degenerate and Singular PDEs”, Vienna, 24-28 lutego 2025.

2. Evolution equations on two overlapping random walk structures na konferencji „Recent Progress in

PDEs”, Rome, 20-21 lutego 2025.

3. Optimal transport techniques in geometric problems na konferencji „VIII Symposium on Nonlinear

Analysis”, Toruń, 17-21 czerwca 2024.

4. Duality methods for gradient flows of linear growth functionals na konferencji „10th International Congress

on Industrial and Applied Mathematics” (ICIAM 2023), minisympozjum „Frontiers of gradient flows:

well-posedness, asymptotics, singular limits”, Tokyo, 20-25 sierpnia 2023.

5. A new notion of solutions to gradient flows in metric measure spaces na konferencji „Nonuniformly elliptic

problems”, Centrum Banacha, Warszawa, 5-9 września 2022.

6. Weak solutions to gradient flows in metric measure spaces na konferencji „92nd Annual Meeting of

the International Association of Applied Mathematics and Mechanics” (GAMM Annual Meeting 2022),

minisympozjum „Evolution equations with gradient flow structure”, Aachen, 15-19 sierpnia 2022.

7. Weak solutions to the total variation flow in metric measure spaces na konferencji „XXVII Congress of

differential equations and applications / XVI Congress of applied mathematics” (XXVII CEDYA/XVII

CMA), minisympozjum „New trends on the 1-Laplacian”, Zaragoza, 18-22 lipca 2022.

8. Geometric aspects of the 1-Laplacian na konferencji „XII Forum of Partial Differential Equations”,

Centrum Banacha, Będlewo, 19-25 września 2021.

9. The least gradient problem with respect to a non-smooth or non-strictly convex norm na konferencji „9th

International Congress on Industrial and Applied Mathematics” (ICIAM 2019), minisympozjum „A broad

view of the least gradient problems”, València, 15-19 lipca 2019.

10. Hölder regularity of anisotropic least gradient functions na konferencji „Variational Problems in Optical

Engineering and Free Material Design”, Centrum Banacha, Warszawa, 7-9 czerwca 2018.

5.3. Staże naukowe

1. 10-dniowy staż na Universitat de València (Departamento de Análisis Matemático), 05.2022, na zaproszenie

prof. José M. Mazóna.

2. 4-tygodniowy staż w Scuola Normale Superiore di Pisa, 01-02.2020, na zaproszenie prof. Luigi Ambrosio.

3. 5-tygodniowy staż na Universitat de València (Departamento de Análisis Matemático), 04-05.2019, na

zaproszenie prof. José M. Mazóna.
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6. Osiągnięcia dydaktyczne, organizacyjne oraz popularyzacyjne

6.1. Osiągnięcia dydaktyczne

1. Cykl wykładów pt. „Functions of bounded variation and their applications” dla Vienna School of Mathe-

matics (szkoła doktorska), 5 wykładów, rok akademicki 2023/24.

Ćwiczenia do następujących wykładów na Uniwersytecie Wiedeńskim:

2. Wstęp do Matematyki (2023/24);

3. Równania Różniczkowe Cząstkowe (2021/22).

Ćwiczenia do następujących wykładów na Uniwersytecie Warszawskim:

4. Analiza I (2018/19);

5. Równania Różniczkowe Zwyczajne (2017/18);

6. Teoria Miary (2017/18);

7. Teoria Miary (2016/17).

Kształcenie kadry naukowej:

8. Wypromowane licencjaty: 2.

9. Opieka nad doktorantami: W styczniu 2024 skontaktował się ze mną Alexandros Matsoukas, wówczas

i obecnie doktorant w National Technical University of Athens (promotor: Nikos Yannakakis). Nasze pierw-

sze rozmowy dotyczyły mojego cyklu wykładów dla doktorantów (punkt 1 w tej kategorii). W lutym 2024

zaproponowałem mu współpracę, która następnie w czerwcu 2024 została rozszerzona o dr Michała

Łasicę (Instytut Matematyki PAN). A. Matsoukas nie jest formalnie moim doktorantem, natomiast nasza

współpraca trwa już ponad rok i nasza relacja w pewnym zakresie przypomina relację promotor-doktorant.

Celem współpracy jest dokładne opisanie całkowitego wahania względem struktury o niejednorodnym

wzroście. Efektem naszej pracy jest preprint [34], zaś kolejna praca jest w przygotowaniu. Będą one

stanowić fragment rozprawy doktorskiej A. Matsoukasa, która dotyczy zagadnień wariacyjnych i równań

różniczkowych cząstkowych, w których występuje zarówno liniowy wzrost jak i niejednorodny wzrost.

Planowo powinna ona zostać złożona w tym roku akademickim.

6.2. Osiągnięcia organizacyjne

1. Członek komitetu organizacyjnego konferencji „Variational Problems in Optical Engineering and Free

Material Design”, Centrum Banacha, Instytut Matematyki PAN, Warszawa, 6-9 czerwca 2018.

2. Członek komitetu organizacyjnego konferencji „Pushing Frontiers of Analysis and PDE’s, the Legacy of

Marek Burnat”, Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego, Warszawa,

6-7 maja 2016.

6.3. Osiągnięcia popularyzacyjne

1. Kilka cykli wykładów dla Krajowego Funduszu na rzecz Dzieci: z geometrii klasycznej, geometrii rzutowej

oraz teorii grup skończonych (2012-2014).

2. Pomoc w organizacji obozów naukowych Krajowego Funduszu na rzecz Dzieci (2011-2014).
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3. Pomoc w organizacji Olimpiady Matematycznej (2016, 2018).

4. Zajęcia dodatkowe z geometrii klasycznej dla XIV Liceum Ogólnokształcącym im. Stanisława Staszica

w Warszawie (2017).

7. Inne istotne informacje

7.1. Otrzymane nagrody i wyróżnienia

1. Nagroda im. Kazimierza Kuratowskiego, 2021.

2. Nagroda Polskiego Towarzystwa Matematycznego dla młodych matematyków, 2020.

3. Wyróżnienie w konkursie o nagrodę im. Juliusza Schaudera dla młodych matematyków, 2022.

4. Wyróżnienie w konkursie o Międzynarodową Nagrodę im. Stefana Banacha, 2021.

5. Drugie wyróżnienie w konkursie o nagrodę im. Juliusza Schaudera dla młodych matematyków, 2020.

6. Pierwsze miejsce w konkursie „Krok w przyszłość” (najlepsza praca studencka z matematyki, organizowany

przez Fundację mBanku), 2016.

7.2. Monografia „Functions of Least Gradient”

W roku 2024 opublikowana została monografia [39] (w wykazie osiągnięć, sekcja II.8: A) dotycząca funkcji

najmniejszego gradientu napisana wspólnie z prof. José M. Mazónem z Universitat de València. Jest to

pierwsza książka zawierająca całościowe ujęcie zagadnienia najmniejszego gradientu. Jej głównym celem było

uporządkowanie istniejącej teorii oraz przedstawienie jej w jednolity sposób używając nowoczesnego języka.

Pierwsze prace dotyczące funkcji najmniejszego gradientu pochodzą z lat 60. Szereg prac dotyczących ich

zastosowania w metodach numerycznych pochodzi z lat 80., a samo sformułowanie zagadnienia najmniejszego

gradientu pochodzi z lat 90., natomiast większość nowoczesnej teorii (w tym nasze prace) powstała po roku

2010. Skutkiem tego, znane wyniki używają wielu (niekoniecznie równoważnych) definicji rozwiązań oraz

innego języka do ich opisu. W monografii [39] przedstawiliśmy rys historyczny i podstawy teorii w jednolity

sposób oraz ujednoliciliśmy koncepcję rozwiązania (w przedmowie i rozdziale 1).

Pozostałe rozdziały dotyczą współczesnych wyników, w większości autorstwa bądź współautorstwa co

najmniej jednego z nas. Rozdziały 2, 3 i 4 dotyczą koncepcji słabego rozwiązania, definiowanego przy

użyciu sparowań Anzellottiego podobnie jak w sekcji 4.1; dalsze rozdziały dotyczą silniejszej koncepcji

rozwiązania, która minimalizuje całkowite wahania dla zadanych danych brzegowych które są przyjmowane

w sensie śladu. Rozdział 5 dotyczy istnienia rozwiązań dla dostatecznie regularnych danych brzegowych oraz

odpowiednich warunków geometrycznych na dziedzinę, a rozdziały 6 i 7 dotyczą jednoznaczności, struktury

i regularności rozwiązań. W rozdziale 8 rozważamy przypadek osłabionych założeń dotyczących geometrii

dziedziny. W rozdziałach 9 i 10 jest przedstawiona równoważność między zagadnieniem najmniejszego

gradientu a zagadnieniem optymalnego transportu i jej konsekwencje (są to wyniki wcześniejsze niż te

przedstawione w sekcji 4.2[E]). Rozdział 11 dotyczy nielokalnego zagadnienia najmniejszego gradientu i jego

powiązania ze standardowym sformułowaniem. Wreszcie rozdział 12 dotyczy znanych wyników z przypadku

metrycznego (wcześniejszych niż te przedstawione w sekcji 4.1[B]).
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Monografia [39] została zaplanowana w taki sposób, aby mogła służyć jako pomoc naukowa nie tylko dla

matematyków mających doświadczenie w podobnych dziedzinach, ale także dla doktorantów i innych badaczy

na początku swojej ścieżki kariery naukowej. Aby była ona bardziej przystępna, wszystkie wyniki są napisane

przy użyciu jednolitych definicji i jednolitego języka. Ponadto, zidentyfikowaliśmy i poprawiliśmy istniejące

błędy bądź niedokładności w literaturze. Dodaliśmy wiele przykładów, uprościliśmy niektóre dowody oraz

znaleźliśmy kilka natychmiastowych uogólnień znanych wyników. Na końcu monografii znajduje się także

pięć dodatków ułatwiających korzystanie z książki, które dotyczą funkcji o wahaniu ograniczonym, geome-

trycznej teorii miary, analizy wypukłej, optymalnego transportu oraz analizy w przestrzeniach metrycznych.

Dodatkowo, na końcu każdego rozdziału znajduje się osobna sekcja, w której omawiamy inne powiązane

wyniki znane w literaturze, omawiamy możliwe kierunki rozwoju oraz stawiamy problemy otwarte mające

związek z tematami poruszanymi w danym rozdziale.

7.3. Rozprawa doktorska

Celem mojej rozprawy doktorskiej (por. sekcja 2) było zbadanie wpływu geometrii obszaru na istnienie,

jednoznaczność i regularność rozwiązań w anizotropowym zagadnieniu najmniejszego gradientu, tzn.

inf
{∫
Ω
φ(x,Du) : u ∈ BV (Ω), u|∂Ω = f

}

dla dziedziny lipschitzowskiej Ω ⊂ RN , danych brzegowych f ∈ L1(∂Ω), oraz funkcji zadającej anizotropię

φ : Ω × RN → [0,+∞). Wymagamy, aby φ(x, ·) była normą w drugiej zmiennej oraz aby zachodziło

jednostajne oszacowanie

c|ξ| ¬ φ(x, ξ) ¬ C|ξ| ∀x ∈ Ω.

Aby uniknąć niepotrzebnego rozrostu bibliografii, poniżej [WX] oznacza pracę o numerze X z wykazu

osiągnięć; w tej notacji, moja rozprawa doktorska odpowiada pracom [W3], [W4], [W5], [W7] oraz [W10].

W pracy doktorskiej poruszane były przede wszystkim następujące trzy różne typy zagadnień.

W pierwszym przypadku funkcja φ zadająca anizotropię jest normą. Wówczas pokazujemy istnienie rozwiązań

anizotropowego zagadnienia najmniejszego gradientu w przypadku, gdy obszar Ω jest ściśle wypukły oraz

dane brzegowe f ∈ L1(∂Ω) są ciągłe prawie wszędzie (względem miary Hausdorffa kowymiaru jeden).

Szczególnie interesuje nas przypadek, gdy φ nie jest ściśle wypukła; wtedy brak zależności φ od położenia

gra szczególną rolę. W dwóch wymiarach otrzymujemy także wyniki regularnościowe dla danych brzegowych

ciągłych oraz hölderowsko ciągłych odpowiadające wynikom znanym z przypadku izotropowego (z całkowicie

nowym dowodem jako że znany euklidesowy argument nie działa). Okazuje się, że wspomniane wyżej wyniki

nie zależą od regularności φ i ich dowody są ściśle geometryczne.

Drugi przypadek dotyczy sytuacji, gdy φ jest wystarczająco regularna, tak że dostępne są narzędzia

równań różniczkowych cząstkowych. Dokładniej, lokalnie we współrzędnych możliwe jest zapisanie poziomic

rozwiązania jako rozwiązań pewnego eliptycznego równania różniczkowego i skorzystanie z zasady maksimum

bądź zasady porównawczej. Przykładowo, φ może zależeć także od położenia, jednak zakładamy wysoką

regularność oraz jednostajną wypukłość φ. Wówczas, w celu uzyskania wyników podobnych do wspomnianych
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w poprzednim akapicie zamiast argumentów ściśle geometrycznych używamy m.in. zasady porównawczej dla

anizotropowych powierzchni minimalnych. Ponadto, w przypadku izotropowym, kiedy mamy dostępną m.in.

zasadę maksimum dla powierzchni minimalnych, otrzymujemy także lokalną ograniczoność rozwiązań oraz

pokazujemy, że dla ustalonych danych brzegowych rozwiązania niekoniecznie są jednoznaczne, ale wszystkie

rozwiązania mają identyczną strukturę poziomic.

Wyniki opisane w poprzednich akapitach silnie zależą od geometrii dziedziny Ω. Większość z nich, nawet w

przypadku izotropowym, wymaga ograniczoności oraz ścisłej wypukłości (bądź jednostajnej wypukłości) Ω;

w przypadku anizotropowym stosowane są analogiczne założenia. Trzeci przypadek rozważany w rozprawie

doktorskiej dotyczy sytuacji, gdy dziedzina Ω nie spełnia tych standardowych założeń. Dla uproszczenia,

ograniczamy się do przypadku izotropowego i jedynie w kilku miejscach komentujemy przypadek anizotropowy.

Rozważamy dwie sytuacje: kiedy Ω jest zbiorem ściśle wypukłym, ale nieograniczonym; oraz kiedy Ω jest

pierścieniem na płaszczyźnie (w szczególności nie jest wypukła i ma niespójny brzeg), co umożliwia stosowanie

metod pochodzących z zagadnienia optymalnego transportu.

7.4. Pozostałe publikacje

Poniżej pokrótce opiszę główne kierunki badań poruszane w artykułach naukowych niebędących częścią

rozprawy doktorskiej ani cyklu prac przedstawionego w sekcji 4. Ponownie, aby uniknąć niepotrzebnego

rozrostu bibliografii, poniżej [WX] oznacza pracę o numerze X z wykazu osiągnięć. Dla przypomnienia, moja

rozprawa doktorska odpowiada pracom [W3], [W4], [W5], [W7] oraz [W10], zaś cykl prac przedstawiony

w sekcji 4 to artykuły [W11-W16].

Dwie publikacje powstały jeszcze przed doktoratem — są to prace [W1] oraz [W2] (tzn. [40] oraz [30]

odpowiednio). Dotyczą one dwuwymiarowego zagadnienia najmniejszego gradientu. W pracy [W1] pokazana

jest równoważność między zagadnieniem najmniejszego gradientu a zagadnieniem Beckmanna, która jest

podstawą do zastosowania metod transportowych w zagadnieniu najmniejszego gradientu oraz dwa warianty

tego zagadnienia: gdy dane brzegowe są zadane jedynie na kawałku brzegu dziedziny; oraz kiedy dziedzina

nie jest ściśle wypukła przy pewnych warunkach dopuszczalności na dane brzegowe. Praca [W2] zawiera

pierwszy w literaturze wynik dotyczący istnienia rozwiązań dla nieciągłych danych brzegowych (w tym

przypadku: klasy BV na brzegu dziedziny) oraz wyniki dotyczące struktury rozwiązań. Kwestie istnienia

rozwiązań dla nieciągłych danych brzegowych, struktury rozwiązań, oraz danych brzegowych na fragmencie

brzegu są dalej badane w pracy [W18] w przypadku wielowymiarowym.

Drugi poruszany temat dotyczy analizy na przestrzeniach metrycznych ze szczególnym uzwględnieniem

zagadnień nielokalnych i odpowiada pracom [W6], [W8], oraz [W9]. Praca [W6] dotyczy nielokalnego

wariantu zagadnienia najmniejszego gradientu. Opisane w niej wyniki są sformułowane w dużej ogólności,

dla przestrzeni metrycznych wyposażonych w błądzenie losowe, i obejmują m.in. przypadki zagadnień na

kratach, grafach nieskierowanych, oraz dla interakcji zadanej przez symetryczne jądro całkowe w przestrzeni

euklidesowej. Praca ta dotyczy charakteryzacji rozwiązań, ich podstawowych własności, oraz identyfikacji

minimalnych założeń na przestrzeń i błądzenie losowe dla istnienia rozwiązań. Ten temat jest kontynuowany

w pracy [W9], gdzie badane jest przejście graniczne z zagadnienia nielokalnego do zagadnienia lokalnego
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dla pewnej klasy błądzeń losowych. Wreszcie w pracy [W8] udowodniona jest charakteryzacja przestrzeni

Sobolewa na przestrzeniach metrycznych za pomocą rodziny nielokalnych funkcjonałów analogicznych do tych

wprowadzonych w przełomowej pracy Bourgaina, Brezisa i Mironescu „Another look at Sobolev spaces” [15];

jest to pierwszy tego typu wynik w przestrzeniach metrycznych z wskazaniem dokładnej stałej. Wprowadzona

w tej pracy technika stała się standardem w literaturze dotyczącej tego typu zagadnień.

Trzeci kierunek badań dotyczy zagadnienia podwójnej bańki (ang. double bubble problem), tzn. minimalizacji

łącznej powierzchni bańki mydlanej o zadanych objętościach dwóch części. Jest to klasyczny problem

rachunku wariacyjnego i poświęcone są mu prace [W17] i [W19]. Praca [W17] stanowi pierwsze w literaturze

sformułowanie dyskretnej wersji tego zagadnienia na kracie Z2. Badamy strukturę rozwiązań oraz pokazujemy,

że podobnie jak w przypadku zagadnienia izoperymetrycznego, w przypadku równych objętości rozwiązania

spełniają zasadę N3/4 (ang. N3/4-law), tzn. moc różnicy symetrycznej dwóch rozwiązań tego zagadnienia dla

N atomów (po ewentualnym zastosowaniu pewnej izometrii) jest rzędu N3/4. W pracy [W19] badamy model

kontinuum tego zagadnienia w granicy gdy liczba atomów dąży do nieskończoności dla ustalonego stosunku

objętości, co odpowiada liczeniu powierzchni względem metryki ℓ1. Otrzymaliśmy klasyfikację wszystkich

rozwiązań tego zagadnienia w pełnej ogólności dla zbiorów o skończonym obwodzie oraz dla różnych

poziomów interakcji między zbiorami.

Czwarty temat jest kontynuacją badań przedstawionych w cyklu prac [W11-W16] będących podstawą wniosku

habilitacyjnego i jest on przedmiotem artykułów [W20], [W21] oraz [W22]. Dotyczą one charakteryzacji

rozwiązań dla potoków gradientowych w przestrzeniach Hilberta w następujących dwóch sytuacjach. W pracy

[W20] badamy potoki gradientowe w przestrzeni euklidesowej dla bardzo szerokiej klasy funkcjonałów

z liniowym wzrostem, zakładając jedynie liniowy wzrost oraz ciągłość funkcji recesji modelującej zachowanie

w nieskończoności. Praca [W21] kontynuuje cykl prac dotyczących zagadnień ewolucyjnych w przestrzeniach

metrycznych i rozszerza wyniki znane z pracy [36] dotyczące p-Laplasjanu na szeroką klasę funkcjonałów

z niejednorodnym wzrostem, natomiast praca [W22] poświęcona jest analizie analogicznego zagadnienia

w przypadku nielokalnym, tzn. dla przestrzeni metrycznych wyposażonych w błądzenie losowe.
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[10] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L1-theory

of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scu. Norm.

Sup. Pisa, Cl. Sci. (4), 22 (1995), no. 2, pp. 241–273.

[11] Ph. Bénilan and M. G. Crandall, Completely Accretive Operators. In Semigroups Theory

and Evolution Equations (Delft, 1989), Ph. Clement et al. editors, volume 135 of Lecture

Notes in Pure and Appl. Math., Marcel Dekker, New York, 1991, pp. 41–75.

[12] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts in

Mathematics, vol. 17, European Mathematical Society, Zürich, 2011.
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[42] H. Hakkarainen, R. Korte, P. Lahti and N. Shanmugalingam, Stability and continuity of

functions of least gradient, Anal. Geom. Metr. Spaces 3 (2015), 123–139.

[43] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry,

Acta Math. 181 (1998), 1–61.

[44] J. Heinonen, P. Koskela, N. Shanmugalingam and J. Tyson, Sobolev Spaces on Metric

Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs,

vol. 27, Cambridge University Press, 2015, i–xi+448.

[45] N. Hoell, A. Moradifam and A.I. Nachman, Current density impedance imaging of an

anisotropic conductivity in a known conformal class, SIAM J. Math. Anal. 46 (2014),

1820–1842.

[46] R.L. Jerrard, A. Moradifam and A.I. Nachman, Existence and uniqueness of minimizers of

general least gradient problems, J. Reine Angew. Math. 734 (2018), 71–97.

[47] M. Kell, q-Heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space,

J. Funct. Anal. 271 (2016), 2045–2089.

[48] J. Kline, Non-locality, non-linearity, and existence of solutions to the Dirichlet problem for

least gradient functions in metric measure spaces, Rev. Mat. Iberoam. 39 (2023), no. 4,

1567–1598.

[49] R. V. Kohn and G. Strang, The constrained least gradient problem, In: R. Rnops and A.

Lacy (eds.), Non-classical Continuum Mechanics, Cambridge Univ. Press, 1987, pp. 226-243.
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