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2. Posiadane dyplomy i stopnie naukowe

Habilitacja, Uniwersytet Wiedenski (Austria). Habilitacje austriackie nie s3 aktualnie uzna-
wane za réwnowazne polskiemu stopniowi doktora habilitowanego. Tytut rozprawy: Geometric
problems involving minimisation of total variation. Recenzenci: prof. Giovanni Bellettini
(Universita degli Studi di Siena), recenzja; prof. Peter Sternberg (Indiana University),

recenzja; oraz prof. Elvira Zappale (Sapienza Universita di Roma), recenzja.

Doktorat (matematyka), dyplom z wyréznieniem, Uniwersytet Warszawski, Wydziat
Matematyki, Informatyki i Mechaniki. Tytut rozprawy: Anisotropic least gradient problems.
Promotor: prof. dr hab. Piotr Rybka. Recenzenci: prof. Salvador Moll (University of Valencia),
recenzja; oraz prof. Matteo Novaga (University of Pisa), recenzja.

Magister (matematyka), dyplom z wyrdznieniem, Uniwersytet Warszawski, Wydziat
Matematyki, Informatyki i Mechaniki. Tytut pracy: Zagadnienia najmniejszego gradientu.
Promotor: prof. dr hab. Piotr Rybka.

Licencjat (fizyka), Uniwersytet Warszawski, Wydziat Fizyki. Tytut pracy: Zastosowa-
nie struktur Diraca: obwody RLC jako przykfad uktaddéw z wiezami nieholonomicznymi.
Promotor: dr hab. Katarzyna Grabowska.

Licencjat (matematyka), Uniwersytet Warszawski, Wydziat Matematyki, Informatyki i
Mechaniki. Tytut pracy: Klasyfikacja meromorficznych liniowych réwnan rézniczkowych.

Zjawisko Stokesa. Promotor: dr hab. Marcin Bobienski.

3. Zatrudnienie

Senior postdoc, Uniwersytet Wiedeniski (Austria), Wydziat Matematyki
Postdoc, Uniwersytet Wiederiski (Austria), Wydziat Matematyki

University assistant, Uniwersytet Wiedenski (Austria), Wydziat Matematyki
Postdoc, Uniwersytet Wiederiski (Austria), Wydziat Matematyki

Status badacza afiliowanego, Uniwersytet Warszawski, Wydziat Matematyki, Informatyki

i Mechaniki

Asystent (urlop bezptatny), Uniwersytet Warszawski, Wydziat Matematyki, Informatyki i
Mechaniki
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s 4. Omdwienie osiggniecia naukowego

Przedstawionym tu osiggnieciem naukowym jest cykl 6 publikacji z dziedziny rachunku wariacyjnego oraz
réwnan rézniczkowych czastkowych opublikowanych w latach 2022-2024. Ich tematem przewodnim jest
badanie tego typu zagadnien dla funkcjonatéw o liniowym wzroscie, przede wszystkim (anizotropowego)
catkowitego wahania, i ich analiza pod katem wptywu geometrii przestrzeni na istnienie i wtasciwosci

rozwigzah. S3 to nastepujace publikacje:

[A] W. Gérny, J.M. Mazén, On the p-Laplacian evolution equation in metric measure spaces, J. Funct. Anal.
283 (2022), 109621, doi.org/10.1016/].jfa.2022.109621.

[B] W. Gérny, J.M. Mazén, The Anzellotti-Gauss-Green formula and least gradient functions in metric measure
spaces, Commun. Contemp. Math. 26 (2024), no. 6, 2350027, doi.org/10.1142/5021919972350027X.

[C] W. Gérny, J.M. Mazén, The Neumann and Dirichlet problems for the total variation flow in metric
measure spaces, Adv. Calc. Var. 17 (2024), 131-164, doi.org/10.1515/acv-2021-0107.

[D] W. Gérny, Applications of optimal transport methods in the least gradient problem, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 24 (2023), pp. 18171851, doi.org/10.2422/2036-2145.202105_049.

[E] S. Dweik, W. Gérny, Optimal transport approach to Sobolev regularity of solutions to the weighted least
gradient problem, SIAM J. Math. Anal. 55 (2023), no. 3, 1916-1948, doi.org/10.1137/21M1468358.

[F] W. Gérny, The trace space of anisotropic least gradient functions depends on the anisotropy, Math. Ann.

387 (2023), 1343-1365, doi.org/10.1007/s00208-022-02488-4,

Publikacje [A]-[F] to odpowiednio pozycje [36], [37], [38], [32], [24] oraz [33] w bibliografii na koncu
tego dokumentu. Publikacje [A]-[C] powstaty we wspdtpracy z prof. José M. Mazénem (Universitat
de Valeéncia); praca [E] powstata we wspétpracy z dr Samerem Dweikiem (Qatar University, w czasie
powstawania pracy Université Paris-Saclay); artykuty [D] i [F] sa wytacznie mojego autorstwa. W przypadku
prac wspoétautorskich, w kazdym przypadku obaj autorzy uczestniczyli po réwno we wszystkich zadaniach
(koncepcja pracy, dowodzenie wynikdw, ich spisywanie i korekta). Ponizej pokrétce opisze zasadnicze wyniki

powyzszych publikacji; wsréd nich mozna wyréznié nastepujace dwa gtdéwne cele.

Méwimy, ze funkcjonat F ma liniowy wzrost, jesli jego wiodacy czton jest typu
Flu) = /Q F(z,u(z), Du(z)) d,

gdzie funkcja F(z,u,§) jest wypukta w £ i ma liniowy wzrost w &, tzn.
ml§| < F(z,u,§) < M(1+[£]).

Zagadnienia zawierajace funkcjonaty tego typu zostaty po raz pierwszy opisane w jednolity sposéb przez
Giaquinte, Modice oraz Souteka w [27]; najbardziej klasyczny przyktfad to funkcjonat powierzchni. Z uwagi
na fakt ze F ma liniowy wzrost, naturalng przestrzenia dla istnienia rozwigzan jest przestrzen BV funkgji
o ograniczonym wahaniu [2] (a nie przestrzenie typu Sobolewa). Z uwagi na to, uzywane metody s3

zdecydowanie inne niz w przypadku wzrostu wielomianowego z p > 1. Dla przykfadu, przestrzen BV nie jest
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refleksywna, wiec podczas analizy zagadnien minimalizacyjnych otrzymany dzieki metodzie bezposrednie;j
rachunku wariacyjnego cigg minimalizujacy niekoniecznie jest stabo zbiezny. Otrzymujemy jedynie zbiezno$¢
w L', co powoduje utrate zwartosci dla warunkéw brzegowych Dirichleta, jako ze operator $ladu zdefiniowany
na BV nie jest ciagty wzgledem zbieznosci w L'. Cykl [A]-[F] poéwiecony jest dwém zagadnieniom tego

typu, w ktérych czescig rozwazanego funkcjonatu jest (anizotropowe) catkowite wahanie.

Pierwszym z nich jest analiza potokéw gradientowych w przestrzeniach metrycznych przy uzyciu teorii
potgrup w przestrzeniach Banacha badz Hilberta oraz zrozumienie wptywu geometrii przestrzeni metryczne;j
na sformutowanie problemu i wtasciwosci rozwigzan. Wspbtczesne podejscie do potokéw gradientowych
wypuktych funkcjonatéw, ktére s3 modelowym przyktadem zagadnien ewolucyjnych z rozpraszaniem energii,
ma korzenie w pracach Komury [50], Crandalla-Pazy'ego [23] oraz Brezisa [16]. Opisane tam podejscie

prowadzi do pojecia pdigrupy rozwigzan dla zagadnien ewolucyjnych w przestrzeniach Hilberta (por. [17]).

Najbardziej znanym zagadnieniem tego typu jest rownanie ciepta, ktére przy uzyciu tych metod byto rozwazane
w przestrzeniach metrycznych przez Ambrosio, Gigliego i Savaré [4] przy zatozeniu ze przestrzeh ma lokalnie
strukture hilbertowska (ang. infinitesimally Hilbertian space) oraz jej krzywizna Ricciego (w uogdlnionym
sensie zadanym przez prace Sturma [71] czy Lotta-Villaniego [54]) jest ograniczona z dotu. Przy takich
zafozeniach, odpowiadajace réwnaniu ciepta operator Laplace'a oraz pétgrupa rozwigzan s liniowe; nie jest
to w ogdlnosci prawda. Zauwazmy ponadto, ze w pracy [4] oraz w pracach [3] i [1] dotyczacych odpowiednio
potoku p-ciepta dla 1 < p < oo oraz potoku catkowitego wahania, uzyta definicja rozwiazania zaktada, ze
pochodna czasowa rozwigzania lezy w minus podrézniczce odpowiedniego funkcjonatu. Przez podrézniczke

rozumiemy zbiér
0F ={(2,5) € Ex E*s F(y) - F(2) > (y - 2,5} Vy € B},

Podrézniczka ta nie jest natomiast opisana w punktowy sposéb. Dla przyktadu, w przestrzeni euklidesowe]

rownanie p-ciepfa, tzn. potok gradientowy funkcjonatu F(u) = %fRN |Vul|P dz, ma postac

uy = div(|Vul[P72Vu)  w RN x (0,7);

u(0) = up.

Naszym celem jest uzyskanie analogicznego opisu w przestrzeniach metrycznych, zaréwno dla p > 1 jak i w

przypadku liniowego wzrostu, uogdlniajagc potok catkowitego wahania

D
U = div(’DZ|) w RY x (0,7);

u(0) = up.

Potok catkowitego wahania pojawia sie przede wszystkim w kontekécie modelu przetwarzania obrazéw
zaproponowanego przez Rudina, Oshera i Fatemiego w ich przefomowym artykule [65] (ang. total variation
regularization). Jego wspdtczesne ujecie mozna znalez¢é w [21]. Operator po prawej stronie to 1-Laplasjan; to

Du

réwnanie rézniczkowe jest silnie zdegenerowane, i a priori nie jest jasne w jaki sposéb rozumie¢ wyrazenie [Du]
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(jako pochodna Radona-Nikodyma, jest ona dobrze zdefiniowana tylko |Dul|-p.w., a niekoniecznie £N-p.w.).
Rozwiazanie tego problemu pochodzi od Andreu, Ballester, Casellesa i Mazéna, ktérzy w [6, 7] uzyli w
celu charakteryzacji rozwigzan teorii sparowan miedzy polem wektorowym o catkowalnej dywergencji oraz
funkcja o skoficzonym wahaniu pochodzaca od Anzellottiego [9] w celu zastapienia obiektu % za pomoca

odpowiedniego pola wektorowego (por. [8]).

W pracach [A]-[C] przyjmujemy tagodniejsze zatozenia niz te stosowane dotychczas w literaturze i wprowadza-
my nowe pojecia rozwigzania dla potokéw gradientowych w przestrzeniach metrycznych przy uzyciu struktury
rézniczkowej pochodzacej od Gigliego [29]. Dzieki temu podejséciu uzyskaliémy nowe wtasciwosci rozwigzan
ewolucji zadanej przez p-Laplasjan oraz, w przypadku liniowego wzrostu, dla potoku catkowitego wahania.
Miedzy innymi, otrzymaliémy ulepszone oszacowania dotyczace odlegtodci dwdch rozwigzan, doktadna
asymptotyke, oraz wprowadzilimy pierwszg definicje (entropijnego) rozwigzania dla danych poczatkowych
w L!'. Dodatkowo przeprowadzamy szczegétows analize, badajac ktére wiasciwosci przestrzeni metrycznej s3
niezbedne dla uzyskania tych wynikéw oraz, w przypadku gdy struktura przestrzeni to umozliwia, znajdujemy
punktowy warunek pozwalajacy zweryfikowac czy dana funkcja jest rozwigzaniem. Ponadto, uogdlniamy na
przypadek metryczny wzér na catkowanie przez czesci pochodzacy od Anzellottiego [9] — jest to kluczowy

techniczny element niezbedny do charakteryzacji podrézniczki catkowitego wahania.

Drugi typ zagadnienia zawierajacego funkcjonat o liniowym wzroscie w cyklu [A]-[F] to zagadnienie naj-
mniejszego gradientu (ang. least gradient problem). Jego celem jest minimalizacja catkowitego wahania
funkgji spetniajacej zadane dane brzegowe Dirichleta. Jedli © C RY jest zbiorem otwartym ograniczonym z

lipschitzowskim brzegiem, to dla danych brzegowych f € L'(9Q) jest to nastepujacy problem:

min{/QyDu\: we BV(Q), ulpo :f}. (1)

Jego najwczesniejsza wersja pojawita sie w pracy Mirandy [58] w 1967. Miranda rozwazat funkcje najmniej-
szego gradientu, tzn. funkcje ktére tylko lokalnie minimalizujg catkowite wahanie pod nieobecnos¢ danych
brzegowych, i udowodnit ze ta wiasno$¢ jest zachowana w granicy przy zbieznosci w Li (£2). Ten wynik
zostat uzyty przez Bombieriego, De Giorgiego oraz Giustiego [14] w 1969 do udowodnienia, ze nadpoziomice
funkcji najmniejszego gradientu minimalizuja powierzchnie, co pozwolito na rozwiazanie problemu Bernsteina
(tzn. pokazanie, ze w wymiarach 8 oraz wyzej istniejg stozki minimalne ktére nie s3 potptaszczyznami, a w
wymiarach 9 oraz wyzej istnieja powierzchnie minimalne, ktére nie s3 pdtptaszczyznami, ale s3 wykresami
funkcji). Zagadnienie najmniejszego gradientu oraz jego warianty s3 badane od niemal 50 lat takze w kon-
tekscie potencjalnych zastosowan, w takich obszarach jak metody numeryczne dla powierzchni minimalnych
[62] (a takze [63, 64]), optymalne projektowanie (ang. optimal design) w modelowaniu materiatéw [49], czy

problemy odwrotne w obrazowaniu medycznym [45, 61].

Zagadnienie najmniejszego gradientu w postaci (1) zostato wprowadzone przez Sternberga, Williamsa i
Ziemera w 1992 w pracy [70]. Ich gtéwny wktad w istniejaca teorie to uzycie metod geometrycznej teorii
miary w celu zbadania tego zagadnienia bez dodatkowych cztonéw albo wiezéw. Autorzy udowodnili, ze

jesli ograniczona dziedzina lipschitzowska €2 jest Scisle wypukta, to dla ciagtych danych brzegowych istnieje
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rozwiazanie zagadnienia (1) i jest ono ciagte az do brzegu. W szczegdlnosci, spetnia ono warunek brzegowy
rozumiany jako $lad funkcji BV na 0. Przy stabszych zatozeniach dotyczacych dziedziny i regularnoéci
danych brzegowych, nawet samo pojecie rozwigzania nie jest oczywiste; najbardziej powszechnie stosowana
definicja, oparta na pojeciu sparowania Anzellottiego, pochodzi z pracy Mazéna, Rossiego i Segury de Ledna
[57] i nawiazuje do znanej uprzednio definicji stabego rozwiazania dla potoku catkowitego wahania [8]. Autorzy
pracy [57] udowodnili istnienie rozwigzan w tym sensie dla dowolnej ograniczonej dziedziny lipschitzowskie;
) oraz danych brzegowych f € L'(09). Kosztem tego podejécia jest to, ze to ostabione pojecie rozwiazania
moze nie spetniaé warunku brzegowego w sensie $ladu. Charakteryzacja przestrzeni mozliwych $ladéw jest
waznym problemem otwartym w tej teorii — nie jest to rozstrzygniete nawet gdy € jest kulg jednostkows,

za$ najbardziej znany kontrprzyktad pochodzi z pracy Spradlina i Tamasana [69].

W ciggu ostatnich dwudziestu lat w literaturze rozwazano takze wiele wariantéw zagadnienia najmniejszego
gradientu. Z naszego punktu widzenia najbardziej znaczace s3 adaptacja tego problemu na przypadek

przestrzeni metrycznych, opisana w sekcji 4.1[B], oraz anizotropowe zagadnienie najmniejszego gradientu

min{/Q¢>(x,Du)  weBV(Q), ulpo = f}, (2)

gdzie ¢(x,-) to norma réwnowazna euklidesowej (jednostajnie w zmiennej przestrzennej ). Zostato ono
wprowadzone przez Jerrarda, Moradifama i Nachmana w pracy [46]. Badali oni problem (2) dla ciggtych
danych brzegowych i szerokiej klasy funkgcji ¢. Zaktadajac dodatkowo ze () spetnia warunek bariery, ktéry
jest adaptacja Scistej wypuktosci na przypadek anizotropowy, udowodnili ze zagadnienie (2) ma rozwiazanie
dla kazdej f € C(0f). Jest ono jednoznaczne przy ostrzejszych zatozeniach dotyczacych regularnosci
i jednostajnej wypukfosci ¢. W szczegblnym przypadku ¢(z,§) := a(z)||, zagadnienie (2) redukuje sie

do zagadnienia najmniejszego gradientu z waga wprowadzonego w kontekscie obrazowania medycznego w [61]

min{/Qa(ac)\Du] . uw€BV(Q), ulpa= f} (3)

Szczegbtowe informacje na temat zagadnienia najmniejszego gradientu i jego wariantéw mozna znalezé w

mojej wspdtautorskiej ksigzce [39] opisanej w sekcji 7.2.

W pracach [D]-[F] badamy istnienie oraz wtasciwosci rozwigzan dla dwuwymiarowego zagadnienia najmniej-
szego gradientu. W pracach [D] oraz [E] wykorzystujemy w tym celu réwnowazno$¢ miedzy zagadnieniem
najmniejszego gradientu, problemem Beckmanna oraz zagadnieniem optymalnego transportu (szczegdty w
sekcji 4.2). Réwnowazno$¢ ta po raz pierwszy zostata zaobserwowana w pracach [40] oraz [25]. Uogdlniamy
ja oraz badamy jej konsekwencje dla regularnosci oraz stabilnosci rozwigzan, takze w przypadku gdy na
dziedzinie ) jest zadana struktura riemannowska. Natomiast celem pracy [F| jest zbadanie zaleznosci prze-
strzeni $ladéw anizotropowych funkcji najmniejszego gradientu od anizotropii, tzn. zbioru dopuszczalnych
danych brzegowych dla ktérych istnieje co najmniej jedno rozwigzanie zagadnienia (2) w sensie $ladu.
Na modelowym przyktadzie, gdy dziedzina jest dyskiem oraz anizotropie to normy na R?, pokazujemy ze

przestrzenie $ladéw dla réznych (dostatecznie regularnych) anizotropii sa rézne.
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mmmmm 4 1. Stabe rozwigzania dla potokéw gradientowych w przestrzeniach metrycznych

Jako pierwsze przedstawie wyniki z prac [A]-[C] dotyczace konstrukcji stabych rozwiagzah dla potokéw
gradientowych w przestrzeniach metrycznych. W tych pracach, napisanych wspélnie z José M. Mazénem,
wprowadzamy to pojecie na modelowym przyktadzie ewolucji zadanej przez p-Laplasjan (ang. p-Laplacian
evolution equation) dla 1 < p < co. W mysl definicji wprowadzonej w [3], jest to potok gradientowy
p-energii Cheegera (ang. p-Cheeger energy); dla przestrzeni metrycznej (X, d) wyposazonej w borelowska

miare dodatnia v, jest to funkcjonat Ch, : L?(X,v) — [0, +00] zadany wzorem

1
p/ IDuPdv  diaue WY (X, d,v) N L2(X, );
X

Chy(u) = ®)

+o0 dla v e L2(X,v) \ WHP(X,d,v),

gdzie |Du| oznacza minimalny p-staby gérny gradient (ang. minimal p-weak upper gradient) funkcji u
(por. [12]; samo pojecie gdérnego gradientu jest starsze [41, 43, 68]). Osobno rozwazamy takze przypadek
p =1, ktéry odpowiada potokowi catkowitego wahania (ang. total variation flow), tzn. potokowi gradiento-

wemu 1-energii Cheegera Chy : L?(X,v) — [0, +00] zdefiniowany jako

/ Dul,  dlaue BV(X,d,v) N L3(X, v);
u) =} JX

Chy( (5)

+o0o dlau e L2(X,v)\ BV(X,d,v),

wprowadzonej przez Ambrosio oraz Di Marino w [1]. We wzorze 5, |Dul, oznacza miare catkowitego
wahania (ang. total variation measure) funkcji u [59]. Wprowadzamy réwniez odpowiednie metody (takie
jak sparowania typu Anzellottiego oraz wzér Gaussa-Greena) ktére pozwalaja na analize tego zagadnienia. W
catej sekcji 4.1 zaktadamy, ze (X, d) jest zupetna i oSrodkowa przestrzenia metryczng oraz v jest borelowska

miarg dodatniag ktéra przyjmuje skoficzone wartosci na zbiorach ograniczonych.

Giéwnym celem tej sekcji jest przedstawienie wynikéw dotyczacych istnienia oraz wtasciwosci rozwigzan

problemu Cauchy’ego

u/(t) + OChy(u(t)) 30 dla ¢ € [0, T]; (6)
u(0) = ug € L*(X, v).

W tym celu opieramy sie na teorii potokéw gradientowych w przestrzeniach Hilberta oraz na pokazanej w
pracy [D] (tzn. [36]) charakteryzacji (wielowartosciowego) operatora dCh,,, co pozwoli na wprowadzenie
pojecia stabego rozwigzania. Ambrosio, Gigli oraz Savaré w pracy [3] udowodnili, ze funkcjonat Ch,, jest
wypukty oraz péifciaglty z dotu. Jako ze jego dziedzina jest gestym podzbiorem L?(X,v), poniewaz zawiera
ona wszystkie funkcje lipschitzowskie o zwartym no$niku, z twierdzenia Brezisa-Komury (por. [17] lub [50])
wynika, ze dla kazdego ug € L?(X,v) istnieje dokfadnie jedno silne rozwiazanie problemu Cauchy'ego (6).
Innymi stowy, istnieje lokalnie absolutnie ciagte odwzorowanie ¢ — u(t) z (0,00) do L?*(X,v), ktére spetnia
u(t) — ug gdy t — 0 oraz
u'(t) € —0Chy(u(t)).
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We wszystkich wyzej wymienionych pracach, potok gradientowy w L?(X,v) jest opisany uzywajac po-
dejécia pdtgrupowego na przestrzeniach Hilberta (por. [17]), a odpowiadajacy im operator p-Laplace’a
(dla p € [1,00)) jest zdefiniowany jako element (minus) podrézniczki energii p-Cheegera o najmniejsze;
normie. Celem prac [A]-[C] byto wprowadzenie pojecia stabego rozwigzania, co pozwala ulepszy¢ powyzsza
definicje rozwigzania i wprowadzi¢ lokalny (oraz weryfikowalny punktowo) warunek umozliwiajacy sprawdze-
nie czy zadana funkcja jest rozwigzaniem. Najwazniejszym elementem powyzszego planu jest charakteryzacja
podrézniczki funkcjonatu Ch, za pomoca struktury rézniczkowej na przestrzeniach metrycznych wprowadzo-
nej przez Gigliego w [29]. Zaznaczmy, ze gtéwne trudnosci zwigzane z praca w przestrzeniach metrycznych
to brak pojecia funkgji gtadkiej (zamiast nich uzywa sie funkgji lipschitzowskich), brak pojecia pochodne;j

kierunkowej oraz brak pojecia pochodnej dystrybucyjnej.

Na koniec przedstawie leksykon najwazniejszych pojeé dotyczacych analizy na przestrzeniach metrycznych,
ktére sa uzywane w tej sekcji. Jest to wersja minimum pozwalajgca odczytad i zrozumieé wyniki opisane
ponizej. Podanie petnych definicji tych obiektéw znaczaco wydtuzytoby autoreferat — zamiast tego do

dokfadnych sformutowan odsytam do sekgji ,,Preliminaries” w pracach [A], [B] badz [C].

e |Du|: minimalny p-staby gérny gradient (ang. minimal p-weak upper gradient) funkcji u. Jest to obiekt
ktéry uogdlnia modut gradientu |Vul| z przestrzeni euklidesowej. Samo zdefiniowanie gradientu nie jest
tatwe i opiera sie na definicji | Dul| (patrz nizej), natomiast zdefiniowanie |Du| jest prostsze, mozliwe dla
kazdej funkgcji v-mierzalnej. Dodatkowa trudno$¢: |Du| moze zaleze¢ od wykfadnika p.

e W1P(X,d,v): przestrzen Sobolewa (lub Newtona-Sobolewa), tzn. zbiér funkcji takich ze u € LP(X,v)
oraz |Du| € LP(X,v). Dodatkowa trudno$¢: istnieje kilka (réwnowaznych) definicji takich przestrzeni [5].

e |Dul,: miara catkowitego wahania funkgcji u. Jest to obiekt, ktéry uogdlnia miare catkowitego wahania
|Du| dla w € BV (€2) w przypadku euklidesowym.

e BV(X,d,v): przestrzeh funkcji o wahaniu ograniczonym, tzn. zbiér funkcji takich ze u € L*(X,v) oraz
|Du|,(X) < co. Dodatkowa trudno$¢: istnieje kilka (niemal réwnowaznych) definicji przestrzeni typu BV.

e Struktura rézniczkowa Gigliego: formalizm pozwalajacy na wprowadzenie pojecia rézniczki i gradientu
funkcji z WHP(X,d,v), ktéry pojawit sie po raz pierwszy w pracy [29]. Jest to doéé abstrakcyjna
konstrukcja z uwagi na wspomniane wyzej gtéwne przeszkody, poniewaz uniemozliwiaja one podejscie
znane z przypadku euklidesowego; otrzymane obiekty sa w ogdlnosci nielokalne i otrzymane za pomoca
teorii LP-unormowanych modutéw. Niemniej, w wielu szczegdlnych przypadkach znany jest jej punktowy
opis. Inne przyktady takich struktur mozna znalez¢é w pracach [22, 28].

o [P(T*X): p-modut kostyczny (ang. p-cotangent module). Obiekt ten uogdlnia przestrzen LP(T™*M)
dla rozmaitosci riemannowskiej M, z ta rdéznica, ze sama przestrzen kostyczna T*X nie jest dobrze
zdefiniowana - istnieje wytacznie p-modut kostyczny i w ogdlnosci jest on zdefiniowany nielokalnie oraz
zalezy od p. | - |4: ,dtugos¢” kowektora.

o d: W' (X,d,v) — LP(T*X): operator rézniczki. Jest to operator liniowy oraz ciagty (o normie 1).

o LUTX): g-modut styczny (ang. g-tangent module). Obiekt ten uogdlnia przestrzen LI(TM) i jest
zdefiniowany poprzez dualnos¢ z przestrzenig LP(T*X). Wystepuja podobne trudnosci, tzn. sama przestrzen

styczna T'X nie jest dobrze zdefiniowana. Dodatkowo, pojecie gradientu jest nieco stabsze niz rézniczki
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— gradienty s3 zdefiniowane wytacznie poprzez dualnos¢ i definicja ta nie jest w ogdlnosci jednoznaczna
(tzn. moze istnie¢ wiele gradientéw danej funkgji). | - |: ,dtugo$¢” wektora.

e div: operator dywergencji zdefiniowany na podzbiorze L4(TX) poprzez dualno$¢ z operatorem rézniczki.

o D% (X): przestrzen pdl wektorowych X € L(TX) takich, ze div(X) € L"(X,r) — oznaczenie wprowa-
dzone w pracy [A].

o LP(T*QY), LU(TQ), dive, DE"(2): odpowiedniki poprzednich poje¢ na zbiorze otwartym ograniczonym €2
— pojecia wprowadzone w pracy [B].

e Tq: operator $ladu na odpowiednio regularnym zbiorze otwartym ograniczonym £2. Prowadzi on z
przestrzeni BV (Q2,d,v) na L'(0Q, |Dxql,) i jest liniowy oraz ciagty.

mmmmm  [A] Potok gradientowy p-energii Cheegera

Ta sekcja jest poswiecona opisowi gtéwnych wynikéw pracy [A], tzn. [36]. W pierwszej kolejnosci opisze

wyniki sekcji 3, 6 oraz 7 pracy [A]. Niech ¢ € (1, 00) bedzie takie, ze ]% + % = 1. W celu opisu podrézniczki

funkcjonatu Ch,, zdefiniowanego w (4) wprowadzamy nastepujacy pomocniczy (wielowartosciowy) operator.

Definicja 1. Méwimy, ze (u,v) € A, wtedy i tylko wtedy, gdy u,v € L*(X,v), u € W'P(X,d,v) oraz

istnieje pole wektorowe X € D92(X) takie, ze nastepujace warunki sa spetnione:
—div(X)=v wX;

du(X) = |dul? = X7 v-p.w. wX.

Okazuje sie, ze A, pokrywa sie z podrézniczka funkcjonatu Ch,. Dowdd tego faktu opiera si¢ na metodach
analizy wypuktej, w szczegdlnosci dualizacji, ktérej mozemy uzyé dzieki temu ze struktura rézniczkowa
pochodzaca od Gigliego [29] jest liniowa. Warto zaznaczy¢, ze jest to zupetnie inny dowdd niz dotychczasowo
znane w przypadku euklidesowym, poniewaz opieraty sie one na przyblizaniu funkcji oraz pél wektorowych
za pomoca gtadkich obiektéw; w tym przypadku jest to niemozliwe, poniewaz struktura rézniczkowa
Gigliego (przynajmniej a priori) nie jest zdefiniowana lokalnie i nie jest jasne w jaki sposéb mozna przyblizaé
pole wektorowe z catkowalna dywergencja za pomoca bardziej regularnych pél wektorowych (przy braku

dodatkowych zatozen na (X d, ) nawet wymiar pola wektorowego moze zaleze¢ od punktu).

Twierdzenie 2. Dla kazdego p > 1 mamy A, = OCh,. Ponadto operator A, jest zupetnie akrecyjny (ang.
completely accretive [11]) oraz dziedzina A, jest gestym podzbiorem L*(X,v).

Dla réwnania ciepta, tzn. dla p = 2, taka charakteryzacja zostata pokazana juz przez Gigliego [29] (z innym
dowodem), niemniej dla p # 2 jest ona nowa. Zupetna akrecyjnos¢ operatora dCh,, byta juz znana (np. [4]
dla p = 2 czy [47] dla dowolnego 1 < p < o0), ale technika wprowadzona w naszej pracy jest prostsza dzieki
bezposredniemu uzyciu struktury podrézniczki i dzieki temu dobrze uogélnia sie na inne przypadki, np. te
opisane w tej sekcji oraz w mojej pdzniejszej pracy [35]. Jako konsekwencja twierdzenia 2, naturalne jest

wprowadzenie nastepujacego pojecia rozwigzania potoku gradientowego energii Cheegera Ch,,.
Definicja 3. Na przestrzeni L?(X,v) definiujemy (wielowartosciowy) operator A,,,, w nastepujacy sposéb:

(u,v) € Ay, wtedy i tylko wtedy gdy —v € OCh,(u).
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Z twierdzenia 2 wynika, ze zdefiniowany w abstrakcyjny sposéb problem Cauchy'ego (6) odpowiada

zagadnieniu Cauchy'ego dla p-Laplasjanu

4y, Ay (u(t)), s L]
gu(t) € Apu(u(t)), te[0,T] @
u(0) = uy,

ktérego rozwigzania s3 zdefiniowane w nastepujacy sposob.

Definicja 4. Niech ug € L*(X,v). Méwimy, ze u jest stabym rozwigzaniem zagadnienia Cauchy'ego (7),
jesli w e C([0,T); L2(X, v)) NW22(0, T; L2(X, v)), u(0, ) = ug, i us(t, ) € Ay ult,-) dla p.w. t € (0,T).
Réwnowaznie, dla p.w. t € (0,T) mamy u(t) € WP(X, d,v) oraz istnieja pola wektorowe X (t) € D%?(X)
takie, ze:

div(X (1)) = w(t,:) wiX;

| X ()9 = du(t)(X(t)) = |du(t)]} v-p.w. wX.

Dwa ostatnie warunki mozna skrotowo okresli¢ w nastepujacy sposdb: réwnanie jest spetnione w stabym
sensie; i dla p.w. t € (0,7) mamy warunek zgodnosci miedzy polem wektorowym X a funkcja u. Z
ogblnej teorii potokéw gradientowych w przestrzeniach Hilberta, przede wszystkim przy uzyciu twierdzeniu

Brezisa-Komury i zupetnej akrecyjnosci operatora dCh,, wynika nastepujacy rezultat.

Twierdzenie 5. Dla kazdego uy € L*(X,v) oraz T > 0 istnieje dokfadnie jedno stabe rozwigzanie u(t)
problemu Cauchy’ego (7). Ponadto dla kazdego r € [1, 0], jesli uy,us to stabe rozwigzania dla danych

poczatkowych uy g, us 0 € L?(X,v) N L" (X, v) odpowiednio, wéwczas

1(ua(t) — w2 ()l < [[(u1,0 — uz,0) *lr-

Dzieki otrzymanej charakteryzacji rozwigzan, przy uzyciu wynikdéw dotyczacych asymptotyki operatorow
jednorodnych w przestrzeniach Hilberta [20], otrzymujemy takze oszacowania tempa zaniku rozwigzan za-
gadnienia Cauchy’ego (7). Ponizej podany jest wytacznie wynik dotyczacy czasu po jakim zanika rozwigzanie;

szczegbtowe oszacowania s3 podane w sekcji 6 pracy [A].

Twierdzenie 6. Zafézmy, ze v(X) < oo i spetniona jest nastepujaca nieréwnosc typu Poincaré
Jw — @Hi?(X,V) <M Chp(w) Vw e Wl’p(Xv d,v)N L2(X7 v),

dla pewnego M > 0, gdzie W oznacza wartos¢ srednia funkcji w € L*(X,v). Niech u(t) bedzie stabym
rozwigzaniem zagadnienia Cauchy'ego (7) dla ug € L?(X,v). Wéwczas:

(i) (Skoriczony czas zaniku) Dla 1 < p < 2, mamy

2=
l|uo — uOH]ﬂ& v)

)

(2= p)A1(Chy)

Tex(up) < gdzie Tex(up) :=inf{T >0: u(t) =wuy Vt>T}.
(ii) (Nieskoriczony czas zaniku) Dla p > 2, mamy Tex(ug) = +00.
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Analogiczny wynik jest prawdziwy w przypadku v(X) = 400 pod warunkiem, ze zachodzi nastepujaca
nierébwno$¢ typu Sobolewa

ol ) < M Chy(w) Vw e LA(X,v).

Podane powyzej ogdlne wyniki dostarczaja nowych informacji réwniez w wielu istotnych szczegdlnych
przypadkach, kiedy tylko mozliwa jest doktadniejsza charakteryzacja modutu stycznego oraz kostycznego.
Dwa takie przypadki to przestrzer euklidesowa (R, dgyc1) wyposazona w miare (dodatniag) Radona, gdzie
nasze wyniki s3 nowe nawet gdy v < L; oraz rozmaitoéci finslerowskie, gdzie znane dotychczas wyniki

dotyczyty wytacznie przypadku p = 2. Szczegdtowy opis jest przedstawiony w sekcji 7 pracy [A].

Drugim celem artykutu [A] jest analiza potoku catkowitego wahania na przestrzeniach metrycznych, tzn.
potoku gradientowego 1-energii Cheegera Ch; (zdefiniowanej w (5)). Ta cze$¢ odpowiada wynikom z sekcji
4 i 5 artykutu [A]. Gtéwnym wynikiem jest charakteryzacja podrézniczki funkcjonatu Chy; w tym celu
wprowadzimy najpierw pojecie sparowania Anzellottiego (wprowadzonego w przypadku euklidesowym w [9])
na przestrzeniach metrycznych. Jest to konieczne, poniewaz aby funkcjonat Chy byt dobrze zdefiniowany
i pbtciagty z dotu, musi by¢ zdefiniowany na przestrzeni funkcji o wahaniu ograniczonym BV (X,d,v), a
nie na przestrzeni Sobolewa W' (X, d, v). Musimy zatem rozszerzy¢ pewne elementy konstrukcji liniowej
struktury rézniczkowej Gigliego na przestrzenie BV, tzn. wprowadzi¢ sparowania Anzellottiego i uzy¢ ich w

celu zastgpienia znanych wzordw na catkowanie przez czesci przez uogdlniony wzér Gaussa-Greena.

Do konca sekgji 4.1 zaktadamy, ze przestrzen (X d) jest zupetna, oérodkowa, wyposazona w miare podwaja-
jaca v (ang. doubling measure), oraz spetnia staba nieréwno$¢ Poincaré typu (1, 1) (ang. weak (1, 1)-Poincaré
inequality). Szczegbtowe definicje tych poje¢ oraz ich konsekwencja s3 opisane m.in. w [12, 44]. Podobnie
jak w klasycznym przypadku [9], sparowanie Anzellottiego miedzy polem wektorowym X € L*°(TX) oraz
funkcja u € BV (X, d, ) jest dobrze zdefiniowane przy zatozeniu, ze nastepujacy faczny warunek dotyczacy
ich regularnosci jest spetniony: dla p € [1,00) mamy

div(X) € IP(X,v), u € BV(X,d,v)n LI(X,v), ; + ; 1. (8)

Innymi stowy, X € D*>*P(X) oraz u € BV (X,d,v) N LY(X,v).

Definicja 7. Zatézmy, ze para (X, u) spetnia warunek (8). Dla funkgji lipschitzowskiej f € Lip(X) o zwartym

nosniku definiujemy

(X, Du), f) = —/Xudiv(fX) dv = —/Xudf(X)dy—/Xufdiv(X)dy.

Mimo ze (X, Du) jest a priori zdefiniowane jako funkcjonat liniowy na funkcjach lipschitzowskich, okazuje

sie ono by¢ miarg Radona, ktéra jest absolutnie ciagta wzgledem |Dul,: dla kazdego zbioru borelowskiego

[ 16D < X [ 1Dul.
A A

Jesli u jest funkcja lipschitzowska, to (X, Du) < v i pokrywa sie ono z dziataniem rézniczki du na X.
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Ponizsze dwa wyniki s3 gtownym celem konstrukcji sparowan Anzellottiego i umozliwiajg badanie réwnan
rézniczkowych czastkowych o liniowym wzroscie w przestrzeniach metrycznych. Sa to odpowiednio wzdr
Gaussa-Greena, ktéry uogdlnia wzér na catkowanie przez czesci zadany przez definicje dywergencji na

przypadek funkgcji o wahaniu ograniczonym, oraz wzér na catkowanie po wtdknach dla sparowania (X, Du).

Twierdzenie 8. Zatézmy, ze para (X, u) spetnia warunek (8). Wéwczas

/Xudiv(X)dV—l—/X(X,Du):O.

Twierdzenie 9. Zafézmy, ze para (X,u) spetnia warunek (8). Oznaczmy E,; = {z € X : u(x) > t}.

Woweczas, dla kazdego zbioru borelowskiego B C X

/B(X,Du) = /_O:O (/B<X’DXEu,t)) dt.

Naszym nastepnym celem jest zbadanie zagadnienia Cauchy'ego dla potoku catkowitego wahania, tzn.
potoku gradientowego 1-energii Cheegera Ch; : L?(X,v) — [0,+00] (zdefiniowanej w (5)). W pracy
[1] Ambrosio oraz Di Marino udowodnili, ze funkcja Ch; jest wypukta oraz pétciagta z dotu wzgledem
zbieznoéci w L?(X, ). Ponizsze wyniki dotycza charakteryzacji podrézniczki Chy, wprowadzaja pojecie
stabego rozwigzania na podstawie tej charakteryzacji, oraz opisuja podstawowe wtasciwosci rozwigzan.

Zaczynamy od nastepujacego pomocniczego (wielowartosciowego) operatora.
Definicja 10. (u,v) € A; wtedy i tylko wtedy, gdy u,v € L*(X,v), u € BV (X,d,v) oraz istnieje pole
wektorowe X € D°2(X) spefniajace | X || < 1 takie, ze nastepujace warunki s3 spetnione:

—div(X)=v wiX;

(X, Du) = |Dul|, jako miary na X.

Twierdzenie 11. Zachodzi A1 = 9Chy. Ponadto operator A; jest zupetnie akrecyjny oraz dziedzina A;

jest gestym podzbiorem L*(X,v).

Dzieki powyzszej charakteryzacji mozliwe jest wprowadzenie nastepujacego pojecia rozwigzania dla potoku

catkowitego wahania w przestrzeniach metrycznych.

Definicja 12. Niech ug € L*(X,v). Méwimy, ze u jest stabym rozwigzaniem zagadnienia Cauchy’ego
dla potoku catkowitego wahania, jesli u € C([0,T]; L*(X,v)) N I/Vlif(O,T; L3(X,v)), mamy u(0, ) = uo,
idla pw. t € (0,T) zachodzi u(t) € BV (X,d,v) oraz istniejag pola wektorowe X (t) € D>%(X) takie, ze
IX(t)||oo < 1 izachodza nastepujace warunki:

div(X(t)) = w(t,) wX;

(X(t), Du(t)) = |Du(t)|, jako miary na X.
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Jak poprzednio, dzieki twierdzeniu Brezisa-Komury i twierdzeniu 11 natychmiast otrzymujemy nastepujacy
wynik o istnieniu i jednoznacznosci rozwigzan. Zasada poréwnawcza wynika z zupetnej akrecyjnosci operatora

0Ch1, a nieréwno$¢ (9) z faktu, ze 9Ch; jest homogeniczny z wyktadnikiem réwnym zeru.

Twierdzenie 13. Dla kazdego uy € L*(X,v) i T > 0 istnieje doktadnie jedno stabe rozwigzanie u(t)
problemu Cauchy'ego dla potoku catkowitego wahania z danymi poczatkowymiu(0) = ug. Ponadto zachodzi
nastepujaca zasada poréwnawcza: dla kazdego r € [1,00], jesli uy,uy to stabe rozwigzania dla danych

poczatkowych uy g, us 0 € L?(X,v) N L"(X,v) odpowiednio, wéwczas

1(ua(t) — w2 ()"l < [[(u1,0 = uz,0) *lr-

Zachodzi takze nastepujace oszacowanie

| ute

U 174 .
< HO’L;(X’) dla kazdego t > 0. (9)

L2(Xv)

Powyzszy wynik jest sp6jny z tymi z pracy Ambrosio i Di Marino [1], ale nasz wynik jest bardziej szczegdtowy i
dostarcza wiecej informacji o rozwigzaniu dzieki charakteryzacji podrézniczki catkowitego wahania. Podobnie
jak w przypadku p > 1 otrzymujemy takze wyniki dotyczace asymptotyki stabych rozwigzan, np. czasu

zaniku (podany ponizej) badz tempa zaniku rozwigzania.

Twierdzenie 14. Zatézmy, ze v(X) < oo i spetniona jest nastepujaca nieréwnosc typu Poincaré
lw — || r2x,) < M Chy(w) YVw e BV(X,d,v)NL*(X,v)

dla pewnego M > 0. Niech u(t) bedzie stabym rozwigzaniem zagadnienia Cauchy'ego dla potoku catkowitego

wahania dla ug € L*(X,v). Wéwczas

lluo — Woll 2(x )
A1(Chy) ’

Tex(up) < gdzie  Tex(up) :=inf{T >0: u(t)=nuy Yt >T}.

Analogiczny wynik jest prawdziwy w przypadku v(X) = +oo pod warunkiem, ze zachodzi nastepujaca
nieréwnos¢ typu Sobolewa
w2,y < M Chi(w) Yw e L*(X,v).

mmmmmm  [B| Wz6r Gaussa-Greena w przestrzeniach metrycznych

W tej sekcji opisujemy gtéwne wyniki pracy [B], tzn. [37]. Gtéwnym celem w tym artykule byto rozszerzenie
konstrukcji uogdlnionych sparowan Anzellottiego wprowadzonej w poprzedniej pracy na przypadek zbioru
ograniczonego 2 C X o wystarczajaco regularnym brzegu i udowodnienie odpowiedniego wzoru Gaussa-
Greena, ktéry we wtasciwy sposob uwzglednia efekty wynikajace z obecnosci brzegu dziedziny. W tym celu
rozszerzamy konstrukcje struktury rézniczkowej Gigliego na przypadek wystarczajaco regularnych zbioréw
otwartych. Poniewaz wymaga ona zupetnos$ci przestrzeni, wpierw wprowadzamy strukture rézniczkowa na
Q, a nastepnie za pomoca odpowiednich rozszerzer funkcji Sobolewa badZz BV z € na jej domkniecie

identyfikujemy odpowiednie obiekty na €2 i €.
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Do konca sekcji 4.1 zaktadamy dodatkowo, ze 2 C X jest zbiorem otwartym ograniczonym o ograniczonym

obwodzie, v(9€2) = 0, €2 spetnia staba nieréwnos¢ Poincaré typu (1, 1), funkcje z przestrzeni BV (2, d, v)

posiadaja $lady i rozszerzenia [55], oraz ze (2 jest regularna (ang. regular domain) [19, 56], tzn. |[DXq|,(X) =
v(Q\Q)

limsup, .o = dla Q; = {z € Q : dist(x,Q°) > t}. Na potrzeby tego tekstu okreslamy powyzsze

zatozenia skrétowo piszac ze ) jest wystarczajaco regularna.

Pierwszym krokiem jest udowodnienie wzoru Gaussa-Greena dla funkgji lipschitzowskich w przestrzeniach
metrycznych podobnego do wzoréw znanych z [19] i [56]. Rdznica jest taka, ze tutaj mamy X € L*°(TQ)
zamiast X € L*°(TX). Z tego powodu, musimy takze uzy¢ innej definicji dywergencji, tzn. divy zamiast div
(ktéra ma nieco inna klase funkcji testowych). Poniewaz obiekty w L (T(2) nie s3 (a priori) zdefiniowane
lokalnie, ale wytacznie poprzez dualno$¢ i rozszerzenia, nie jest oczywiste w jaki sposéb rozszerzy¢ je do

L>®°(TX). Przez to, nie mozemy uzy¢ wyniku z [19] i pokazujemy ponizsze twierdzenie bezposrednio.

Twierdzenie 15. Zatézmy, ze X € L>(TNQ) spetnia divo(X) € L'(Q,v). Wéwczas istnieje funkcja
(X -vq)” € L>™(09, |DXql,) taka, ze

[ faivo(0dv+ [ arx)dv =~ [ F(X-v0)” dIDXal,
Q Q o0

dla kazdej f € Lip(Q). Ponadto zachodzi nastepujace oszacowanie:

I(X - v0) " [l 00, 10Xg),) < (1 X oo

Funkcja (X - vq)~ skonstruowana w dowodzie twierdzenia 15 to wewnetrzny Slad czesci normalnej (ang.
interior normal trace) pola wektorowego X na 0. W literaturze dotyczacej przypadku euklidesowego na
ogbt uzywa sie zewnetrznego wektora normalnego w konstrukgcji $ladu — czego chcemy uniknaé tutaj aby
konstrukcja (X - vq)~ zalezata wyfacznie od geometrii €2, a nie od geometrii X \ Q@ — przez co wyniki

otrzymane w tej (i kolejnej) sekcji réznia sie znakiem w cztonie na 92 od znanych wynikéw euklidesowych.

Sparowania Anzellottiego na obszarach ograniczonych definiujemy w podobny sposéb jak poprzednio,
zastepujac dywergencje div poprzez divy. Scidlej, zaktadajac ze X € L®(TQ), u € BV (Q,d, v) oraz ze

zachodzi taczny warunek regularnosciowy na u i X

dive(X) € IP(Q,v), we BV(Qd,v) N LAQv), ~+ =1, (10)
b q

dla p € [1,00), ponizsze sparowanie jest dobrze zdefiniowane.

Definicja 16. Zatézmy, ze para (X, u) spetnia warunek (10). Dla funkgji lipschitzowskiej f € Lip(2)

o zwartym nosniku definiujemy

(X, Du), f) ::—/Qudivo(fX)dl/:—/Qudf(X)dV—/Qufdivo(X)dl/.

Ponownie, sparowanie (X, Du) jest miarg Radona oraz (X, Du) < |Du|,. Ponadto, wzér Gaussa-Greena

przedstawiony w twierdzeniu 15 uogdlnia sie na przypadek funkcji BV (w miejsce lipschitzowskich).
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Twierdzenie 17. Zatézmy, ze para (X, u) spefnia warunek (10). Wowczas

/udivo(X)du+/(X,Du) _ 7/ Tou (X - va)~ d|Dy, |v-
Q Q o0N

Naszym nastepnym celem jest uzycie powyzszych narzedzi w celu analizy zagadnienia najmniejszego gradientu
w przestrzeniach metrycznych; skrétowy opis tego zagadnienia w przypadku euklidesowym jest przedstawiony
na poczatku sekcji 4. Jest to modelowy przyktad zagadnienia wariacyjnego dla funkcjonatéw o liniowym
wzroscie; poniewaz wiele narzedzi dostepnych w przypadku euklidesowym nie miato swoich metrycznych
odpowiednikéw, analiza zagadnienia najmniejszego gradientu znaczaco przyczynita sie do rozwoju teorii
funkcji BV w przestrzeniach metrycznych, np. konstrukcji operatora $ladu [52, 55], reguty Leibniza [42],
i obwodu wewnetrznego (ang. inner perimeter) [51]. Dzieki uzyciu wzoru Gaussa-Greena otrzymujemy lokalng

charakteryzacje rozwigzah tego zagadnienia, uogdlniajac wynik z pracy [57] w przypadku euklidesowym.

Definicja 18. Mdéwimy, ze uw € BV (Q,d, v) jest funkcja najmniejszego gradientu w Q, jesli

/’DU‘V</‘DU‘V
Q Q

dla wszystkich v € BV (Q, d,v) takich, ze Tqu = Tqv.

Zagadnienie najmniejszego gradientu, tj. zagadnienie Dirichleta dla funkcji najmniejszego gradientu, byto
rozwazane w przypadku metrycznym po raz pierwszy w pracy [42]. W przypadku metrycznym mozliwe s3

nieréwnowazne definicje; w pracy [42] jest to definicja typu (B), tzn.
min {\Du|y(Q) . weBV(X,d,v), u=fna X\Q} (B)
dla f € BV(X,d,v). Inna mozliwo$¢, nazywana definicja typu (T), zostata wprowadzona w pracy [51]:
min{Du|V(Q) + /6Q To(u) — f|(z) dP+(Q7a:)} (T)

dla f € LY(09Q, P (£,-)). W tej definicji, Py (,-) oznacza wewnetrzny obwéd zbioru 2 (jest to miara
na X, ktéra w przypadku euklidesowym odpowiada H™¥~1|5q). W przypadku euklidesowym, gdy © jest
dziedzing z brzegiem lipschitzowskim, powyzsze definicje pokrywaja sie; w przypadku metrycznym wymaga to
dodatkowych zatozen na (X, d, v) oraz Q. Definicja (B) jest prostsza i wymaga stabszych zatozen dotyczacych

przestrzeni, natomiast definicja (T) bierze pod uwage wytacznie strukture przestrzeni wewnatrz .

Ponizej przedstawiamy réwnowazna do (T) lokalna charakteryzacje rozwigzan otrzymang poprzez strukture
rézniczkowa Gigliego oraz nowo otrzymane sparowanie Anzellottiego (X, Du). Dla danych brzegowych

f e LY (09, |Dx, ), definiujemy funkcjonat T : L' (9, ) — [0, +00] jako

|Dul,(Q) +/ To(u) — f|d|DXal, dlaue BV(Q,d,v):
o0

“+00 dlau ¢ BV(Q,d,v).
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Pokazujemy, ze dla regularnych dziedzin obwody |Dxq|, i Py pokrywaja sie, zatem u rozwigzuje zagadnienie
najmniejszego gradientu w sensie (T) dla danych brzegowych f wtedy i tylko wtedy gdy u minimalizuje
funkcjonat 7y, co jest réwnowazne

0 € 07¢(u),

tzn. réwnaniu Eulera-Lagrange’a dla mimimalizacji 7;. Istnienie funkcji minimalizujacych 7y wynika z

metody bezposredniej rachunku wariacyjnego; ich charakteryzacja jest zawarta w nastepujacym wyniku.

Twierdzenie 19. Niech f € L' (09, |Dx,,|v)- Dlaw € BV (Q,d,v), nastepujace warunki s3 réwnowazne:
(i) 0 € IT(w);
(ii) Istnieje pole wektorowe X € Di°(2) takie, ze || X ||oo < 1 i nastepujace warunki sa spetnione:

—divp(X) =0 wQ;

(X, Du) = |Dul|, jako miary;
(X -vq)” € sign(Tou — f) |Dx,,|v — p-w. na 9.

Powyzej sign oznacza wielowartoéciowy znak, tzn. jest to podrézniczka funkcji modut: sign(x) = 0|x|.
Otrzymalismy takze wynik dotyczacy relacji miedzy funkcjami najmniejszego gradientu a powierzchniami
minimalnymi. W przypadku euklidesowym, w pracy [14] udowodniono, ze brzegi nadpoziomic funkcji najmniej-
szego gradientu (globalnie) minimalizuja powierzchnig, natomiast w [70] pokazano ze przeciwna implikacja

rowniez zachodzi. Pokazujemy, ze ta réwnowazno$¢ zachodzi w obie strony rowniez w przypadku metrycznym.
mmmmm (] Potok catkowitego wahania na zbiorach ograniczonych

Ponizsza sekcja jest poswiecona opisowi gtéwnych wynikéw pracy [C], tzn. [38]. Dotycza one potoku catko-
witego wahania na zbiorach ograniczonych w przestrzeniach metrycznych; badamy zagadnienia z warunkami
brzegowymi Neumanna lub Dirichleta. Uzywajac metod wypracowanych w poprzedniej sekcji, mozemy
wprowadzi¢ pojecie stabego rozwigzania. W zwiazku z tym, przez cafa niniejsza sekcje pracujemy przy tych

samych zatozeniach co w sekcji 4.1[B].

Zagadnienie Neumanna dla potoku catkowitego wahania

u(t, z) = div (%) w (0,7) x £
Qu(t,z) =0 na (0,7) x 0Q; (11)

u(0, ) = up(z) w Q

dla danych poczatkowych ug € L?(Q,v) rozumiemy jako potok gradientowy w L2(€,v) funkcjonatu
TV : L*(Q,v) — [0, +00o] zadanego przez

/ \Dul, dlaue BV(Q,d,v) N LXQ, v);
Q
TV (u) =

+o0 dlauw e L2(Q,v)\ BV(Q,d,v).
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Funkcjonat TV, jest wypukty i pétciagty z dotu wzgledem zbieznosci w L2(£2,v), wiec z twierdzenia

Brezisa-Komury wynika istnienie jedynego silnego rozwigzania abstrakcyjnego zagadnienia Cauchy'ego

w(t) + 0TV (u(t)) 20 dlate|0,T;

u(0) = wp.

W celu charakteryzacji podrézniczki 7'V definiujemy nastepujacy pomocniczy (wielowartosciowy) operator.

Definicja 20. (u,v) € Ay wtedy i tylko wtedy, gdy u,v € L*(Q,v), u € BV (,d,v) oraz istnieje pole

wektorowe X € Dy° 2(Q) spefniajace || X ||so < 1 takie, ze nastepujace warunki sa spefnione:
—divp(X)=v w;

(X, Du) = |Dul|, jako miary;
(X -vq)” =0 |Dx,|v — p-w. na 0%

Prawdziwa jest takze nastepujaca réwnowazno$é: (u,v) € Ax wtedy i tylko wtedy, gdy u,v € L2(Q2,v),
u € BV (Q,d, v) oraz istnieje pole wektorowe X € DB’O’Q(Q) spetniajace || X ||oo < 1 takie, ze —divy(X) = v
w Q oraz dla kazdego w € BV (Q,d,v) N L?(,v)

/Qv(w—u)dv</Q(X,Dw)—/Q]Du\V. (12)

Pdzniej uzyjemy ostabionej wersji warunku 12 w celu wprowadzenia rozwigzan entropijnych (ang. entropy

solutions) dla danych poczatkowych w L'(£2,v).

Pierwszym celem pracy [38] jest pokazanie, ze Axs = 07 Vs, i zbadanie konsekwencji tego faktu. Naszym
gtéwnym narzedziem ponownie s3 metody dualnosciowe w analizie wypuktej. Poniewaz struktura rézniczkowa
Gigliego jest liniowa oraz dziedzina §) jest wystarczajaco regularna (dzieki czemu operator $ladu istnieje, jest
liniowy i ciggty), uzywajac podobnej strategii jak w dowodzie twierdzenia 11 otrzymujemy, ze Ay = 07 Vy,
D(Ayr) jest gestym podzbiorem L%(Q, v), oraz Ay jest zupetnie akrecyjny. Dzieki temu mozemy wprowadzi¢

nastepujace pojecia rozwigzania zagadnienia (11).

Definicja 21. Niech uy € L*(Q,v). Méwimy, ze u jest stabym rozwigzaniem zagadnienia Neumanna
(11), jesli uw € C([0,T); L2(Q,v)) N W20, T; L2(Q,v)), u(0,-) = ug, i dla pw. t € (0,T) zachodzi
u(t) € BV (,d,v) oraz istnieja pola wektorowe X (t) € DSO’Q(Q) takie, ze || X (t)||co < 1 i zachodza
nastepujace warunki:

divo(X(t)) = w(t,-) wQ;
(X (t), Du(t)) = |Du(t)], jako miary;
(X(t)-va)” =0 |Dx,, v — p-w. na 9.

Dzieki charakteryzacji Ay = 07T Vs, z twierdzenia Brezisa-Komury wynika nastepujacy wynik (zasada

poréwnawcza (13) wynika z zupetnej akrecyjnosci operatora A ).
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Twierdzenie 22. Dla kazdego ug € L*(,v) oraz T > 0 istnieje doktadnie jedno stabe rozwiazanie u(t)
zagadnienia Neumanna (11). Ponadto dla kazdego q € [1, 00|, jesli ui,us to stabe rozwigzania dla danych

poczatkowych uy g, us 0 € L?(Q,v) N LI(Q, v) odpowiednio, wéwczas

Cun (2) = u2() " llg < ll(u1,0 = u2,0)" g (13)

Otrzymujemy takze oszacowania asymptotyczne analogiczne do twierdzenia 14. Powyzsza konstrukcja
rozwiazah uogélnia sie na przypadek danych poczatkowych ug € L'(€,v), co prowadzi do rozwigzan
entropijnych (ang. entropy solutions) wprowadzonych w [10] (a w kontekscie liniowego wzrostu w [8]).
W tym przypadku, dopuszczamy mozliwos¢ ze rozwigzania beda miaty nieskoinczona energie (tj. catkowite
wahanie miary |Dul,) i wymagamy jedynie zeby zachodzita stabsza nierédwno$¢ wariacyjna typu (12).

Oznaczmy

s jesli |s| < k;
Ti(s) = { Jesli sl <

k- sign(s) jesli |s| > k.
Nastepnie definiujemy nastepujacy (wielowartoéciowy) operator w L1(£2,v).
Definicja 23. (u,v) € By wtedy i tylko wtedy, gdy u,v € L'(Q,v), Tx(u) € BV (,d,v) dla kazdego

k > 0, oraz istnieje pole wektorowe X € Dy () takie, ze || X ||lso < 1, —divo(X) = v w Q oraz

/Q(w—Tk(u))vdu < /Q(X, Dw) —/Q\DTk(u)],,

dla kazdego w € BV (Q,d,v) N L>*(Q,v) ik > 0.

Operator By jest zupetnie akrecyjny w L'(€, ), maksymalny w sensie inkluzji i 0-jednorodny. Ponadto
By N (L*(Q,v) x LX(Q,v)) = Ay, (14)

dzieki czemu D(Byy) jest gestym podzbiorem L!(£2,v). Ponadto, uzyskujemy nastepujaca réwnowazna
charakteryzacje operatora Byr: dla u, v € LY(Q,v), (u,v) € By wtedy i tylko wtedy gdy Ty, (u) € BV (Q,d,v)
dla kazdego k > 0 oraz istnieje pole wektorowe X & Dgo’l(Q) spetniajace || X||o < 1 takie, ze

—divp(X) =v  w

(X, DTy(u)) = | DTk (u)|, jako miary V& > 0;
(X -vq)” =0 |Dx |y — p-w. na 9Q.
Dzieki tej charakteryzacji mozemy zdefiniowaé rozwigzania entropijne w nastepujacy sposéb.

Definicja 24. Niech ug € L*(Q,v). Méwimy, ze u(t) jest rozwigzaniem entropijnym zagadnienia Neumanna
(11), jesli w € C([0,T); LY(Q,v)) N I/Vli)’cl(O,T; LY(Q,v)), mamy u(0,-) = ug oraz dla pw. t € (0,T)
zachodzi Tiu(t) € BV (Q,d,v) dla kazdego k > 0 oraz istnieja pola wektorowe X (t) € Dgo’l(Q) takie, ze

IX (t)||oo < 1 i nastepujace warunki sa spetnione:
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divo(X (1)) = ue(t,:) w;
(X (t), DTiu(t)) = |DTiu(t)|, jako miary Yk > 0;
(X(t)-vq)” =0 |Dx,,lv — p-w. na 0Q.
Dzieki maksymalno$ci w sensie inkluzji oraz zupetnej akrecyjnosci Bar otrzymujemy nastepujacy wynik.

Twierdzenie 25. Dla kazdego ug € L'(Q,v) oraz T > 0 istnieje doktadnie jedno rozwigzanie entropijne
u(t) zagadnienia Neumanna (11). Ponadto dla kazdego r € [1, 00|, jesli uy,us to rozwigzania entropijne dla

danych poczatkowych g, u20 € L"(Q,v) odpowiednio, wéwczas

1 (ua(t) — w2 ()"l < [[(u1,0 — uz,0) *lr-

Ponadto, dzieki 0-jednorodnosci operatora Byr, mamy

Analogiczna konstrukcja dziata takze dla zagadnienia Cauchy'ego na catej przestrzeni pod warunkiem,

du(t)

HUOHLl(Q v)
< ——— V7
dt h

dla kazdego t > 0.
L1(Qw)

ze jej miara v(X) jest skoriczona. Ponadto, dzigki wtasnosci (14) dla danych poczatkowych w L?(Q,v)

rozwigzania entropijne pokrywaja sie¢ ze stabymi rozwigzaniami.

Powyzsze podejscie dziata takze dla potoku catkowitego wahania z warunkami brzegowymi typu Dirichleta
(gdzie dodatkowe trudnosci wynikaja z pojawienia sie dodatkowych cztonéw na brzegu dziedziny). Formalnie,
rozwazamy wéwczas nastepujace réwnanie paraboliczne
t,x) = div ( fodbo) 0,7) x O;
u(t, z) = div Duia) W (0,7) x

u(t,z) = f(x) na (0,7) x 0% (15)

(0, z) = up(x) w Q

dla ug € L%(Q,v) oraz f € L*(09, |Dx,,|v)- Rozumiemy je jako potok gradientowy w L?(Q, v) wypukfego
i péiciagtego z dotu funkcjonatu 7V : L%(Q,v) — [0, +oc] zadanego przez

/ \Du|y—|—/ To(u) — fldDXal, dlau € BV(Q,d,v) N LA(Q,v);
TVy(u) =4 7° o8
+00 dla w e L3(Q,v)\ BV(Q,d,v).

Otrzymujemy analogiczne pojecie rozwigzania dla zagadnienia Dirichleta (15), jego istnienie i jednoznaczno$¢,
zupetna akrecyjnos¢ powigzanego operatora (co pociaga za soba zasade poréwnawczg), oraz oszacowania
asymptotyczne w przypadku f = 0. Ponadto pokazujemy, ze nasze pojecie stabego rozwiazania jest
zgodne z rozwigzaniami wariacyjnymi (ang. variational solution), por. [13] lub [53] dla powiazanej idei

pseudorozwigzania (ang. pseudosolution) wprowadzonymi dla potoku catkowitego wahania w [18].
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mmmmm 4 2. (Geometryczne spojrzenie na dwuwymiarowe zagadnienie najmniejszego gradientu

Ta sekcja jest poswiecona analizie zagadnienia najmniejszego gradientu

Inin{/Q |Du|: we BV(Q), ulgg= f} (16)

w dwdch wymiarach, ze szczegdlnym uzwglednieniem geometrii obszaru oraz przy uzyciu metod optymalnego
transportu oraz geometrycznej teorii miary (w odrdznieniu od podejécia przedstawionego w sekcji 4.1,
w szczegdlnosci 4.1[B], ktére byto bardziej abstrakcyjne i uzywato technik analizy funkcjonalnej). Pierwszy
poruszany temat dotyczy relacji miedzy zagadnieniem najmniejszego gradientu a zagadnieniem optymalnego
transportu. Najwcze$niejszy wynik tego typu pochodzi z pracy [40], gdzie Gérny, Rybka i Sabra pokazali,
ze na wypuktych dziedzinach w dwéch wymiarach zagadnienie najmniejszego gradientu jest réwnowazne

zagadnieniu Beckmanna

min{/\w| . weE M(Q,RQ), divw = g}, (17)
Q

gdzie g = O, f to pochodna f w kierunku stycznym (patrz takze [25]). Formalnie réwnowazno$¢ ta jest zadana
poprzez w = R_gDu, gdzie R, to obrét o kat o wzgledem poczatku uktadu wspétrzednych. Ponadto, na

zbiorach wypuktych zagadnienie Beckmanna jest réwnowazne zagadnieniu Monge'a-Kantorowicza [67, 72]
min { /ﬁ . lz—yldy: ye MT(QxQ), (IL)xy=g" and (I,) 7y = 9}7 (18)
X

gdzie g7 i g~ to odpowiednio dodatnia i ujemna czeéé miary g. W tym przypadku miary Zrédtowa
g i docelowa g~ s3 skoncentrowane na brzegu dziedziny. Zwigzek miedzy tymi trzema zagadnieniami
(16), (17) i (18) zostat po raz pierwszy wykorzystany w pracy [25] do uzyskania nastepujacego wyniku:
jedli dziedzina €2 jest jednostajnie wypukta, to dla p < 2 regularnoéé danych brzegowych typu W1P(9Q)
implikuje, ze (jedyne) rozwiazanie lezy w WP(Q). Sercem dowodu jest obserwacja, ze regularnoé¢ WP
danych brzegowych w (16) odpowiada regularnosci LP danych brzegowych w (18), oraz regularnos¢ W1
rozwigzania zagadnienia (16) odpowiada regularnosci LP gestosci transportu o~ (ang. transport density)
powiazanej z planem transportowym ~. tzn. miedzy rozwigzaniami (16), (17) i (18) odpowiednio zachodzi
|Du| = |w| = |o|. Wystarczy zatem zbada¢ regularnos¢ gestosci transportu o, do czego mozemy uzy¢
znacznie bogatszego zestawu narzedzi. Sekcje 4.2[D,E] s3 poswiecone rozbudowaniu tej réwnowaznosci i jej
wykorzystaniu w celu odpowiedzi na pytania dotyczace regularnosci, struktury, oraz stabilnosci rozwigzan

zagadnienia najmniejszego gradientu i jego anizotropowego wariantu

min {/Q ¢(x,Du) : we BV(Q), ulgg= f} 5

gdzie anizotropia ¢ : Q x RY — R jest taka, ze dla kazdego x € ) funkcja ¢(x,-) jest norma réwnowazna
normie euklidesowej (jednostajnie wzgledem x). Najbardziej istotne przyktady z punktu widzenia zastosowan
to gdy ¢ jest ustalong normga oraz gdy ¢(x, Du) = a(x)|Du|. Ponadto szczegbtowo uzasadniamy hipoteze, ze
poziomice rozwigzan zagadnienia najmniejszego gradientu (16) maja interpretacje promieni transportowych

w zagadnieniu Monge'a-Kantorowicza (18).
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Drugi poruszany temat dotyczy przestrzeni Sladéw funkcji najmniejszego gradientu (ang. least gradient

functions), tzn. funkcji u € BV (Q2) spetniajacych

/|Du|< / Dol
(9] JQ

dla wszystkich v € BV () takich, ze u|go = v|sn. Rébwnowaznie, pytamy dla jakich danych brzegowych
f € L'(09) istnieje rozwigzanie zagadnienia najmniejszego gradientu (16), ktére spetnia warunek brzegowy
punktowo w sensie Sladu. Nawet w najprostszym przypadku, kiedy dziedzina €2 jest dwuwymiarowym dyskiem,
jest to problem otwarty. Znane wyniki méwia, ze przestrzen $ladéw funkcji najmniejszego gradientu zawiera
funkcje ciagte [70] oraz funkcje o wahaniu ograniczonym [30], ale nie zawiera L°°(09) [69], a nawet nie jest
przestrzenia liniowa [48]. To sugeruje, ze istnienie rozwigzah nie jest bezposrednio powiazane z regularno$cia
danych brzegowych oraz, ograniczajac mozliwe dane brzegowe do funkcji charakterystycznych zbioréw na
brzegu, jest ono silnie zwigzane z geometrig tychze zbioréw. W sekgcji 4.2[F] pokazujemy, ze jest to prawda.
Doktadniej, jesli zmienimy geometrie przestrzeni poprzez wprowadzenie anizotropii ¢, to przestrzen sladéw
(anizotropowych) funkcji najmniejszego gradientu istotnie zmienia sie wraz z norma anizotropowa. Dowdd
tego faktu opiera sie na konstrukcji odpowiedniego zbioru na 952, ktéry jest homeomorficzny ze zbiorem Can-
tora (podobnie jak w znanych kontrprzyktadach do istnienia rozwigzahn w przypadku euklidesowym [30, 69]),
oraz na wiasnosci geometrycznej zaleznej od ¢ ktéra jest spetniona dla doktadnie jednej z tych anizotropii.
Jako efekt uboczny tego dowodu otrzymujemy, ze istnienie rozwigzan nie jest bezposrednio powigzane z
regularnoscia danych brzegowych. Ten fenomen jest $cisle zwigzany z faktem, ze minimalizowany funkcjonat

ma liniowy wzrost, i nie wystepuje w podobnych zagadnieniach dla wzrostu potegowego w przypadku p > 1.

Podobnie jak w sekgcji 4.1, ponizej przedstawiam leksykon najwazniejszych poje¢ i oznaczeh w skrdéconej
wersji, za$ do doktadnych sformutfowan odsytam do sekgji ,Preliminaries” w pracach [D], [E] i [F].

e : zbiér otwarty ograniczony w R? z lipschitzowskim brzegiem;

¢: anizotropia, tzn. funkcja ¢ : © x RN — R taka, ze dla kazdego = € Q funkcja ¢(z,-) jest norma

rébwnowazng normie euklidesowej (jednostajnie wzgledem x);

(z, Du): sparowanie Anzellottiego uogdlniajace z - Vu na mniej regularne pola wektorowe i funkcje. Dla

u € BV(Q) N LI(Q) oraz z € L=(Q,RY), jedli div(z) € LP(Q) dla 1% + % =1, definiujemy

((z, Du), @) :—/Quz-Vgodx—/ngodiv(z)dm.

Woéwczas (z, Du) jest miarg Radona oraz (z, Du) < |Dul (patrz takze sekcje 4.1[A,B]).
2]: élad w kierunku normalnym pola wektorowego z € L>°(Q, RY) z catkowalna dywergencja.
Q

[z, v
Dla z € C1(Q), mamy [z,1Y] = z - v, za$ dla mniej regularnych z jest ono zadane poprzez catkowanie

przez czesci (réwnowaznie: usrednianie z - ! po odpowiednich stozkach w otoczeniu 92).

: optymalny plan transportowy. Jest to miara dodatnia na € x Q. Powigzana z nia jest gestoé¢

transportu o, miara dodatnia na 2, zadana dla dowolnego zbioru borelowskiego A C € wzorem
o) = [ H(lay] 0 A) dr ()
QxQ
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mmmmm (D] Metody optymalnego transportu w zagadnieniu najmniejszego gradientu

W nastepnej kolejnosci opiszemy gtéwne wyniki pracy [D], tzn. [32]. Pierwszy z nich stanowi uzupetnienie
wynikéw dotyczacy réwnowazno$ci miedzy zagadnieniem najmniejszego gradientu (16) a zagadnieniem
optymalnego transportu (18), tzn. rozszerza te rédwnowazno$ci na ich zagadnienia dualne. Doktadniej,

badamy zwigzek miedzy zagadnieniem maksymalizacyjnym (19) wprowadzonym w [60]
max{/ [z,yﬂ]gdHI:ZGZ}, (19)
o0
gdzie g € BV (012) oraz
z- {z € LR div(z) =0, [zl <1 pw. w Q}
a zagadnieniem maksymalizacyjnym

max{ [od(st— ) s o € Lin @)} (20)

ktérego rozwigzania sa znane jako potencjaty Kantorowicza [67, 72]. Uzywamy tutaj oznaczen jak w
pracy [32], tzn. dane brzegowe w zagadnieniu najmniejszego gradienty s3 oznaczone literg g; mamy f = 0.g,
gdzie 0, oznacza pochodna w kierunku stycznym; wreszcie f* € M(9S) oznaczaja dodatnia i ujemna
cze$¢ miary f. Uzywajac klasycznych technik analizy wypuktej tatwo otrzymac istnienie rozwigzan obu
zagadnien — dla (19) zostato to pokazane w [60], zas dla (20) przyktadowo w [67, 72]. Mamy wéwczas

nastepujaca réwnowazno$¢ miedzy zagadnieniami (19) a (20).

Twierdzenie 26. Zaftézmy, ze Q) C R? jest wypukty. Wéwczas, zagadnienia (19) oraz (20) sa réwnowazne
W nastepujacym sensie:

(1) Zachodzi max (19) = max (20),

(2) Jesli ¢ € Lip,(Q) jest rozwigzaniem zagadnienia (20), to istnieje z € L*°(€%; R?) takie, ze z = Rz V¢
w ) i jest ono rozwigzaniem zagadnienia (19);

(3) Jesli z € L>=(Q;R?) jest rozwigzaniem zagadnienia (19), to istnieje ¢ € Lip, () takie, ze z = RzV¢

w Q) i jest ono rozwigzaniem zagadnienia (20).

Rozwiazania zagadnien (19) i (20) w ogdlnosci nie s3 jednoznaczne. W zwigzku z tym wazne jest, ze
dowolne rozwigzanie zagadnienia (20) determinuje ksztatt ukfadu promieni transportowych dla wszystkich
rozwiazan zagadnienia Monge'a-Kantorowicza. Podobnie, dowolne rozwigzanie zagadnienia (19) determinuje
ksztatt uktadu poziomic wszystkich rozwigzan zagadnienia najmniejszego gradientu w nastepujacym sensie:
pole wektorowe z = —z spetnia rébwnanie Eulera-Lagrange’a dla zagadnienia najmniejszego gradientu

wprowadzone w [57], w szczegblnosci jest bezdywergentne oraz
(z, Du) = |Dul jako miary w Q.
Zatem, jesli ¢ to potencjat Kantorowicza, to z = R_ngf). Uzasadnia to nieformalng obserwacje spotykana
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w literaturze, ze poziomice rozwigzah zagadnienia najmniejszego gradientu odpowiadaja promieniom

transportowym w odpowiadajagcym mu zagadnieniu optymalnego transportu.

Kolejne wyniki w pracy [32] dotycza regularnosci rozwiazan zagadnienia najmniejszego gradientu w przypadku,
gdy dane brzegowe s3 mniej regularne niz dotychczas spotykane w literaturze [25, 70]. Ponizej przytaczamy
tylko jeden wynik, w przypadku gdy zbidr Q jest SciSle wypukty oraz dane brzegowe lezg w SBV (0%);
woéwczas, kazde rozwigzanie lezy w SBV (2). W tym przypadku, dane brzegowe maja ograniczone wahania,
ale nie musza by¢ ciagte, zatem rozwiazania istnieja [30], ale nie musza by¢ jednoznaczne. W odpowiadajacym
mu zagadnieniu Monge'a-Kantorowicza optymalny plan transportowy moze nie by¢ jednoznaczny i nie musi
istnie¢ optymalne odwzorowanie transportowe (tzn. optymalny plan transportowy nie musi by¢ indukowany

przez funkcje T : O — 0N taka, ze Ty f* = f7). Niemniej, ponizszy wynik dotyczy kazdego rozwiazania.

Twierdzenie 27. Zafézmy, ze Q) C R? jest scisle wypukty. Niech g € SBV (09). Wéwczas, jesliu € BV (2)
to rozwigzanie zagadnienia (16) dla danych brzegowych g, to u € SBV ().

Podobna analiza jak w dowodzie twierdzenia 27 pozwala na zbadanie lokalnej regularnosci rozwigzan.
Wyniki te otrzymujemy w nastepujacy sposéb: wpierw pokazujemy oszacowania regularnosciowe na gestosé
transportu o, badz badamy jej strukture, a nastepnie wykorzystujemy réwnowaznos¢ miedzy zagadnieniem
optymalnego transportu a zagadnieniem najmniejszego gradientu w celu , przettumaczenia ich” na wyniki
regularnosciowe w tym przypadku. Otrzymujemy m.in., ze rozwigzanie zagadnienia najmniejszego gradientu
jest lipschtzowskie w otoczeniu generycznego punktu, oraz ze lipschitzowskos$¢ danych brzegowych implikuje
lokalna lipschitzowsko$¢ rozwigzania. Oba te wyniki s3 optymalne, na co wskazuja klasyczne przyktady

z pracy [70].

W [32] badali$my takze stabilno$¢ rozwigzan zagadnienia najmniejszego gradientu, tzn. zbadaliSmy, czy
niewielkie zaburzenia danych brzegowych przektadaja sie na niewielkie zaburzenia rozwigzania (i w jakich
topologiach). Dzieki zastosowaniu metod transportowych mozliwe jest uzyskanie kilku ogélnych wynikéw.
Jest to o tyle znaczace, ze strategia dowodzenia istnienia rozwigzan polegajaca na przyblizaniu danych
brzegowych i uzyciu twierdzenia Mirandy [58] o tym, ze granica funkcji najmniejszego gradientu w L .(€2)
jest funkcja najmniejszego gradientu, jest skutecznie uzywana w literaturze w wielu przypadkach [30, 31, 40],
natomiast dotychczasowe wyniki tego typu zaktadaty szczegdlng postaé ciggu przyblizen, dostosowana
do aktualnie badanej wersji zagadnienia najmniejszego gradientu. W pracy [32] przedstawiono pierwsze
wyniki dotyczace stabilnosci rozwigzan, ktére nie wymagaja konkretnej postaci ciagu przyblizen. S3 one
optymalne w tym sensie, ze ostabienie zatozen regularnosciowych na ciag g,, badz zastapienie Scistej topologii

zbieznoécia w L'(92) sprawia, ze ponizsze twierdzenie jest nieprawdziwe.

Twierdzenie 28. Zatézmy, ze Q C R? jest scisle wypukty. Niech g, g, € BV (0R)) oraz g, — g scisle w
BV (09). Zatézmy, ze u,, € BV () to rozwigzania zagadnienia (16) dla danych brzegowych g,,. Wowczas
istnieje uw € BV (), rozwigzanie zagadnienia (16), takie ze (po ewentualnym przejsciu do podciagu) mamy

Uy, — u Scisle w BV (Q).

Koniecznos¢ uzycia Scistej zbieznosci wynika z faktu, ze operator Sladu nie jest ciggty wzgledem zbieznosci

w LY(Q), i w ogélnosci zbieznoé¢ g, — g w L' (9Q) nie pociaga za soba zbieznoéci rozwiazan (16) dla g,.
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Na tej obserwacji opiera sie kontrprzyktad pokazujacy nieistnienie rozwigzan dla pewnych ograniczonych
danych brzegowych podany w [69]. Poniewaz jednak uzywamy metod transportowych, dane brzegowe musza
leze¢ w BV (012), i w szczegdlnosci kontrprzyktad podany w [69] sie nie stosuje. Kluczowym elementem
dowodu jest nastepujace oszacowanie na energie rozwigzania (z optymalna staty) dostepne w przypadku,
gdy dane brzegowe maja wahanie ograniczone:

diam(92)

Du|(Q2) <
Dul() < 2

[Dg| (%),

gdzie u € BV (Q) to rozwiazanie (16) dla danych brzegowych g € BV (09).

Podobny wynik o stabilnosci rozwigzan otrzymujemy takze w przypadku, gdy przyblizamy (w metryce
Hausdorffa) wypukta dziedzine €2 za pomoca zstepujacego ciagu Scisle wypuktych zbioréw (2, — taki ciag
przyblizen to podstawa techniki dowodzenia istnienia rozwiazan na zbiorach wypuktych [40, 66]. Pokazemy,
ze wbwczas ciag rozwigzan przyblizonych zagadnien najmniejszego gradientu zbiega (po ograniczeniu do
) do rozwigzania oryginalnego problemu. Ponownie, jest to pierwszy wynik tego typu ktéry nie wymaga

konkretnej postaci ciggu przyblizen 2, i pozwala on na dowolne dane brzegowe g € BV (012).

WoprowadZmy nastepujace oznaczenia: dla wypuktej dziedziny Q oraz $cisle wypuktej dziedziny ' takiej,
ze Q C Y, oznaczamy przez 7 : Q) — 9 (jednoznaczny) rzut ortogonalny na (domkniety i wypukty)
zbiér Q. Poniewaz Q) C €', obraz tego odwzorowania jest réwny 0. Ponadto, dzieki $cistej wypuktoéci ',
dla z,y € 9% oraz dowolnych punktéw 2’ € 7~1(z) i v’ € 7~ 1(y) odcinki [x,2'] i [y,y'] moga mieé punkt
wspdlny wytacznie gdy x = y. Dla Scistego reprezentanta funkcji g € BV (992), definiujemy ¢’ € BV (9€Y')

za pomoca wzoru

Zatézmy, ze €, jest ciagiem zstepujacym zbioréw $cisle wypuktych oraz disty (9, 92) — 0, tzn. odlegtosé
Hausdorffa miedzy 2,, a 2 zbiega do zera. Wéwczas, przez m, : 02, — 02 oznaczamy rzut na domkniety
wypukty zbiér Q i oznaczamy g, (z) = g(m,(z)) dla dowolnego = € 9S,. Skoro g € BV (9R2), oczywiscie
mamy g, € BV (0,); otrzymujemy m.in. nastepujacy wynik.

Twierdzenie 29. Zafézmy, ze Q2 C R? jest scisle wypukta oraz niech g € BV (052), 2, oraz g, beda
skonstruowane jak wyzej. Wéwczas, jesli u,, € BV () to rozwigzania zagadnienia (16) na Q,, dla danych
brzegowych g,,, to na podciagu mamy u,|q — u scisle w BV (Q2). Ponadto, u to rozwigzanie zagadnienia (16)

na ) dla danych brzegowych g.

Oczywiscie w razie potrzeby mozna potaczy¢ twierdzenia 28 i 29 w celu skonstruowania ciaggu przyblizen
o silniejszej regularnosci niz g o m,,. Ponadto, jako wniosek z twierdzenia 29 uzyskujemy czeSciowe wyniki
dotyczace istnienia rozwigzan w przypadku, gdy dziedzina €2 jest wypukta, ale nie jest Scisle wypukta.
W tym przypadku juz w pracy [70] wskazano kontrprzyktad dla ciagtych danych brzegowych. W literaturze
spotyka sie rézne warunki dopuszczalnosci [40, 66] na dane brzegowe w przypadku gdy €2 jest wielokatem
— dzieki twierdzeniu 29 mozliwe jest uogdlnienie niektérych z tych wynikéw na przypadek dowolnego

zbioru wypuktego.
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mmmmm  [E] Riemannowski optymalny transport a zagadnienie najmniejszego gradientu z waga
W ponizszej sekcji opisujemy gtéwne wyniki artykutu [E], tzn. [24]. W tej pracy, napisanej wspdlnie z Samerem

Dweikiem, najpierw opisujemy zwigzek miedzy anizotropowym zagadnieniem najmniejszego gradientu

inf { /Q ¢(x,Du): we BV(Q), ulspo= g} (21)

a anizotropowym zagadnieniem Beckmanna
min{/cﬁl(:v,v) ©ove M(Q,R?), dive = f}, (22)
Q

gdzie ¢ oznacza funkcje ¢ obrécong o % w drugiej zmiennej. Uzywamy tutaj oznaczen jak w pracy [24],
tzn. dane brzegowe w zagadnieniu najmniejszego gradientu s3 ponownie oznaczone literg g oraz oznaczamy
f = 0-g. Kluczowe geometryczne zatozenie dotyczace dziedziny jest takie, ze zbidr € jest Sciggalny. Jest
to istotnie stabsze zatozenie niz w [40] (w przypadku izotropowym), gdzie wymagana byta wypuktosé
dziedziny. UogdIniamy wyniki pracy [40] na dwa sposoby: roszerzajac je na przypadek anizotropowy oraz na
szerszg klase dopuszczalnych dziedzin. Ostabienie zatozenia wypuktosci jest szczegdlnie wazne w przypadku
anizotropowym, gdzie istotna bedzie wypukto$¢ dziedziny wzgledem odpowiedniej struktury riemannowskiej,

co niekoniecznie jest zwigzane z euklidesowa wypuktoscia.

Sercem argumentu o réwnowazno$ci zagadnien (21) i (22) jest lemat pokazujacy, ze jesli €2 jest zbiorem
éciagalnym, to kazde pole wektorowe v € M (€2, R?) spetniajace div(v) = 0 w sensie dystrybucyjnym oraz
[v[(9€2) = 0 ma potencjat skalarny, tzn. istnieje u € BV () takie, ze v = R_z Du. W szczegdlnosci, jesli
[v,1}] = f oraz u|pq = g, wéwczas zachodzi f = 0,g. Gtéwny wynik dotyczacy réwnowaznosci zagadnien
(21) i (22) jest przedstawiony ponizej; jego zatozenie na € jest optymalne w tym sensie, ze jesli dziedzina

nie jest $ciggalna, nie jest on prawdziwy nawet w przypadku euklidesowym.

Twierdzenie 30. Zatézmy, ze Q) jest zbiorem Sciggalnym. Wowczas, zagadnienia (21) i (22) sa réwnowazne
W nastepujacym sensie:
(1) Zachodzi inf (21) = min (22);
(2) Jesliu € BV () jest rozwigzaniem zagadnienia (21), to istnieje v € M(Q,R?) takie, zev = R_z Du
i jest ono rozwigzaniem zagadnienia (22);
(3) Jesliv € M(Q,R?) jest rozwigzaniem zagadnienia (22) spetniajacym |v|(092) = 0, to istnieje u € BV ()

takie, ze v = R_z Du i jest ono rozwigzaniem zagadnienia (21).

Odnotujmy, ze notacja dotyczaca kierunku obrotu w pracy [E] jest odwrotna do notacji w powyzszym wyniku
(oraz w pracy [D]; w catej te] sekcji stosujemy oznaczenia z pracy [D]). Niech k& € C'!(IR?) bedzie funkcja

dodatnia. Ponizej przedstawiamy zwigzek miedzy zagadnieniem najmniejszego gradientu z waga [46, 73]

mf{/ﬂk(x)ypm . we BV(Q), ulso :g} (23)
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a zagadnieniem Monge'a-Kantorowicza wzgledem metryki riemannowskiej indukowanej przez k, tzn.
: ! ! . 2
di (2, y) = mln{/o K@) (@) de € Lip(0,1], R2), 4(0) =z oraz (1) = y}

Zatézmy, ze Q) to geodezyjnie wypukta (ang. geodesically convex) dziedzina w R?, tzn. dla kazdej pary
x,y € () istnieje dokfadnie jedna geodezyjna ~ faczaca te punkty i jest ona zawarta w Q. Niech fT i f~
beda dwoma miarami dodatnimi Radona na € takimi, ze f*(Q) = f~ (). Wéwczas, rozwazmy nastepujace

zagadnienie Monge'a-Kantorowicza:

min{/ﬂxﬂdk(w,y) dA(z,y): A e M@ % Q), (IL)gA = f* oraz (IL,)4A = f—}, (24)

ktére jest relaksacja zagadnienie Monge'a z kosztem zadanym przez metryke riemannowska [26]

min{/ﬂdk(z,T(:c))dﬁ(m) L Tuft = f‘}. (25)

W pracy [E] udowadniamy, ze réwnowazno$¢ miedzy zagadnieniem najmniejszego gradientu a zagadnieniem
Monge'a-Kantorowicza uogélnia sie na przypadek riemannowski. Kluczowa obserwacja w tej analizie jest
fakt, ze dwa rézne promienie transportowe nie moga sie przecina¢ we wnetrzu ktéregokolwiek z nich
(dzieki regularnoéci C*! metryki riemannowskiej). Réwnowaznoéé miedzy ich zagadnieniami dualnymi
przedstawiona w sekcji 4.2[D] réwniez si¢ uogdlnia na przypadek riemannowski. Doktadniej, zagadnienie

Monge'a-Kantorowicza (24) ma nastepujace dualne sformutowanie [67, 72]

sup{ [wat = £7) 5 Jola) - 6()| < delay), Vg € sz} (26)

ktére dla g € BV (09) jest réwnowazne dualnemu sformutowaniu dla zagadnienia najmniejszego gradientu

z waga (23) przedstawionemu w pracy [60]
sup{/ [z,yQ]gdH1 1 Z € LOO(Q,R2), divz =0, |z(x)| < k(x) dla p.w. x € Q}, (27)
o0

gdzie Z = {z € L®(;R?) : div(z) =0, |z(x)| < k(z) p.w. w Q}, tzn. zachodzi nastepujacy rezultat.

Twierdzenie 31. Zatézmy, ze Q) jest geodezyjnie wypukta. Wowczas, zagadnienia (26) oraz (27) sa
réwnowazne w nastepujacym sensie:

(1) Zachodzi sup (26) = sup (27);

(2) Jeslivp € Lip(Q) jest rozwigzaniem zagadnienia (26), to istnieje z € L>°(Q),R?) takie, ze z = RzVi
w ) i jest ono rozwigzaniem zagadnienia (27);

(3) Jesli z € L>°(Q, R?) jest rozwigzaniem zagadnienia (27), to istnieje 1 € Lip(Q) takie, ze z = RzVi

w ) i jest ono rozwigzaniem zagadnienia (26).

Odnotujmy, ze oba zagadnienia maja rozwiazania, patrz [60] dla zagadnienia (27) oraz [67, 72] dla zagadnienia
(26), zatem powyzszy wynik ma nastepujaca interpretacje: ukfad poziomic w zagadnieniu najmniejszego

gradientu z waga, ktéry jest kodowany przez rozwigzanie zagadnienia dualnego (27), odpowiada strukturze
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promieni transportowych kodowanych przez potencjaty Kantorowicza w zagadnieniu (26). W ogdlnosci nie

spodziewamy sie aby rozwigzania tych probleméw byty jednoznaczne.

Gtéwnym celem pracy [E] jest uzyskanie regularno$ci rozwiazan dla zagadnienia najmniejszego gradientu z
waga. Warto podkredli¢, ze jedyny znany wczedniej wynik dotyczy ciggtosci rozwiazah dla ciagtych danych
brzegowych [73]. W tym celu wykorzystamy otrzymang powyzej réwnowaznos$¢ z riemannowskim zagadnie-
niem optymalnego transportu. Na poczatek odnotujmy, ze przy zatozeniu ze (2 jest scisle geodezyjnie wypukta
(ang. strictly geodesically convex), tzn. jest geodezyjnie wypukfa i kazda krzywa geodezyjna w ) przecina
0f2 co najwyzej na swych koncach, otrzymujemy istnienie i jednoznaczno$¢ optymalnego odzworowania
transportowego 7', tzn. rozwigzania (25), przy zatozeniu ze miara zrédtowa f7 jest bezatomowa. Wynik ten

odpowiada istnieniu rozwigzan zagadnienia najmniejszego gradientu z waga dla ciagtych danych brzegowych.

Dla zagadnienia optymalnego transportu, klasycznym narzedziem do opisu struktury i regularnosci optymal-
nego planu transportowego A jest gestosc transportu (ang. transport density) [67], dodatnia miara oa na
Q ktéra reprezentuje intensywnoé¢ transportu na réznych podzbiorach Q. W przypadku riemannowskim

definiujemy ja poprzez dualnos¢ z funkcjami ciggtymi, tzn. dla ¢ € C(f2) jest ona zadana wzorem

1
(a0 i= [ [ 6010y (0) Ky () Py (0] e dA (e, ),

gdzie 7, , to geodezyjna faczaca = z y. Miara o jest dobrze zdefiniowana gdy () jest geodezyjnie wypukfa.

W celu uzyskania wynikéw dotyczacych regularnosci rozwigzan zagadnienia najmniejszego gradientu z
waga, pokazujemy oszacowania w LP gestoéci transportu oy pomiedzy f+ a f~ przy zatozeniu, ze Q jest
geodezyijnie $ciéle wypukta oraz miara zrédtowa [ lezy w LP(0)). Wéwczas, gestosé transportu o jest
dobrze zdefiniowana i jednoznaczna. Dowdd opiera sie na przyblizeniu miary docelowej f~ za pomoca
skonczonej sumy delt Diraca, znalezieniu w tym przypadku jawnego wzoru na gesto$¢ transportu, oszacowania
jej normy w LP i pokazanie, ze oszacowanie to jest zachowane w granicy. Przy nieco silniejszym zatozeniu
geometrycznym na €, ktére uogdlnia na przypadek riemannowski jednostajng wypuktosé (geodezyjna
jednostajna wypuktos¢), pokazujemy kilka wynikéw dotyczacych regularnosci i struktury oa. Nastepnie,
dzieki réwnowaznosci riemannowskiego zagadnienia optymalnego transportu z zagadnieniem najmniejszego
gradientu z waga, otrzymujemy odpowiadajace im wyniki dotyczace regularnosci zagadnienia (3). Ponizej
przedstawiamy podsumowanie wynikéw regularnosciowych dla zagadnienia najmniejszego gradientu z waga

z pracy [24]; w sprawie odpowiednich sformutowan dla gestosci transportu odsytamy do [24].

Twierdzenie 32. Zatézmy, ze ) jest geodezyjnie scisle wypukty. Wéwczas, dla kazdych danych brzegowych
g € BV (02) zagadnienie najmniejszego gradientu z waga (3) ma rozwigzanie uw € BV (2). Ponadto:

(a) Jesli g € BV (0Q2) N C(0N), to rozwigzanie jest jednoznaczne;

(b) Jesli g € WH1(0Q), tou € WhH(Q);

(c) Jesli g € SBV(0R), tou € SBV(Q).
Jesli natomiast ) jest geodezyjnie jednostajnie wypukta, to mamy dodatkowo:

(d) Jesli g € WLP(0R) dlap € [1,2], tou € WHP(Q);

(e) Jesli g € CH*(0R) dla o € (0,1], tou € WHP(Q) dlap =2/(1 — «).
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mmmmm  [[] Przestrzen $ladéw anizotropowych funkcji najmniejszego gradientu
Ta sekcja jest poswiecona opisowi gtéwnych wynikéw pracy [F], tzn. [33]. Zasadniczym celem tej pracy byto
zbadanie nastepujacego zjawiska. Dla uproszczenia, niech 2 bedzie dwuwymiarowym dyskiem. Wéwczas, z

pracy [31] wynika, ze dla dowolnej normy ¢ anizotropowe zagadnienie najmniejszego gradientu
inf{/ 6(x,Du): ue BV(Q), ulon = f} (28)
Q

ma rozwiazanie w sensie $ladu dla kazdego f € L'(09), ktére jest ciagte H'-p.w. Z drugiej strony,
kontrprzyktad podany w [69] pokazuje, ze nawet w przypadku izotropowym istnieja dane brzegowe w
L>(09) dla ktérych nie ma rozwiazan (jest to funkcja charakterystyczna odpowiednio dobranego zbioru
typu Cantora). W zwiazku z tym zadajemy nastepujace pytanie: czy przestrzen sladéw funkcji ¢-najmniejszego
gradientu, tzn. zbiér danych brzegowych dla ktérych zagadnienie (28) ma rozwiazanie, jest zalezna od

anizotropii?

Odpowiedz na to pytanie jest twierdzaca nawet w opisanym wyzej modelowym przypadku. Mimo ze znane
wyniki dotyczace istnienia rozwigzan nie zaleza od ¢, sama przestrzen $ladéw funkcji ¢-najmniejszego
gradientu zmienia sie wraz z anizotropowg norma. Doktadniej, pokazujemy, ze dla dostatecznie regularnych
¢1 oraz ¢ ich przestrzenie Sladéw sie pokrywaja wtedy i tylko wtedy gdy ¢1 = cgo. Argument opiera sie na
nastepujacej obserwacji: w przypadku gdy dane brzegowe sa funkcjg charakterystyczng pewnego zbioru, jesli
istnieje cho¢ jedno rozwigzanie, to istnieje tez rozwigzanie bedace funkcja charakterystyczna. Dzigki temu
mozemy zredukowa¢ zagadnienie wariacyjne do odpowiedniego problemu geometrycznego. Konstrukgcja funkgji
lezacych w doktadnie jednej przestrzeni Sladéw dla ¢1 i ¢p2 moze byé skrétowo opisana w nastepujacy sposéb.
Znajdujemy odpowiedni zbiér na 92 o dodatniej jednowymiarowej mierze Hausdorffa, homeomorficzny
ze zbiorem Cantora, z parametrami konstrukcji dobranymi tak aby pewna funkcja pomocnicza hy (ktérej
definicja z [33] jest pominieta w tym podsumowaniu) spetniata odpowiednia nieréwnos$¢ na kazdym etapie

konstrukgji.

Ponizej przedstawiona jest bardzo uproszczona wersja konstrukcji zbioru Fi, o zadanych wtasnosciach,
zaé petna konstrukcja jest przedstawiona w [33]. Niech Q = B(0,1) C R2. Rozwazmy standardowe
przyblizenie zbioru Cantora Fi, C OS2 za pomocg zbioréw domknietych F;,, C 9€) ktére s3 suma 2™ tukdw
na 0. Dla kazdego zbioru F,, oznaczamy krafce tych fukéw za pomoca rodziny katow ;. . m,_ 1),
gdzie (mq,...,my_1) € {0,1}(»"1_ W zaleznosci od wyboru parametréw Qmy,....mn_y)s ZbIOr graniczny
F,, moze mieé zerowa badZ dodatniag miare Hausdorffa 7!. Nastepnie wprowadzamy funkcje pomocnicza
hg : {0,1}™ — R, ktdra opisuje minimalizacje obwodu wsréd podzbioréw 2, ktérych brzeg na 0 jest réwny

F,,. Rozwazamy dwa przypadki opisane za pomoca tej funkcji pomocniczej: albo
dla kazdego n € N oraz (my, ...,m,_1) € {0,1}"1) mamy hg(mi,....;mp_1) > 0; (29)

albo

dla kazdego n € N oraz (my, ...,m,_1) € {0,1}"~1 mamy hg(mi,....,mp_1) = 0. (30)
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Pokazujemy, ze obie mozliwosci s3 mozliwe do zrealizowania w zaproponowanej konstrukcji. Ponizej
przedstawiony jest jej koncowy efekt w zaleznosci od rozwazanego przypadku. Od teraz, zaktadamy ze ¢

jest Scisle wypukta (tzn. jej kula jednostkowa jest Scisle wypukta).

Twierdzenie 33. Zachodza nastepujace stwierdzenia:

(i) Zatézmy, ze zachodzi warunek (29). Wéwczas, dla kazdego n € N istnieje doktadnie jedno rozwiazanie
u, € BV (Q) zagadnienia (28) dla danych brzegowych f, = xr,. Jest ono postaci u, = xg,, gdzie
L2(E,) — 0 gdy n — oco. Ponadto, o ile H'(Fy,) > 0, zagadnienie (28) dla danych brzegowych f = xr._
nie ma rozwigzan.

(i) Zatézmy, ze zachodzi warunek (30). Wéwczas H'(Fx) > 0 oraz dla kazdego n € N istnieje (niekoniecznie
jedyne) rozwigzanie u,, = x g; zagadnienia (28) dla danych brzegowych f, = xr,, gdzie L2(E) > ¢ > 0.

Ponadto, zagadnienie (28) dla danych brzegowych f = xp,, ma rozwiazanie.

Ten wynik, w potaczeniu z konstrukcja odpowiedniej rodziny katow {a(m,, . m,_,)}nee ktéra spetnia
warunek (29) dla ¢, oraz warunek (30) dla ¢, pokazuje ze przestrzen $ladéw funkcji ¢-najmniejszego

gradientu zalezy od anizotropii.

Twierdzenie 34. Niech ¢| oraz ¢ beda dwoma scisle wypuktymi normami klasy C? (poza poczatkiem
uktadu wspétrzednych). Jesli ¢1 oraz ¢2 nie s3 proporcjonalne, to istnieje funkcja f € L*°(0S)) taka, ze

istnieje rozwigzanie zagadnienia (28) dla ¢1, ale nie istnieje rozwigzanie zagadnienia (28) dla ¢o.

Innymi stowy, przestrzenie $ladéw anizotropowych funkcji najmniejszego gradientu dla dostatecznie regular-
nych ¢1 i ¢o pokrywaja sie wtedy i tylko wtedy gdy ¢1 = c¢o dla pewnej ¢ > 0. Ten fenomen jest Scisle
zwigzany z faktem ze minimalizowany funkcjonat ma liniowy wzrost i nie pojawia sie on np. w anizotropowym
réwnaniu p-Laplace’a, gdzie istnienie rozwigzan zalezy wytacznie od regularnosci danych brzegowych. W na-
szym przypadku nie jest to prawda, poniewaz funkcje, ktére leza w doktadnie jednej przestrzeni sladéw, sa
otrzymane za pomoca réznych wariantéw tej samej konstrukcji. W pracy [F] twierdzenie 34 jest uzupetnione
przez dyskusje na temat nieécisle wypuktych norm oraz stabszy wynik dla norm ktére nie sa klasy C?.
Doktadniej, dla $cisle wypuktej normy ¢1 mozemy znalezé norme ¢o dowolnie blisko ¢1 w normie supremum

(ograniczonej do sfery jednostkowej) w taki sposéb, ze przestrzenie $ladéw dla ¢; i ¢2 sie nie pokrywaja.

e 5 Aktywnos$¢ naukowa
mmmmm 5 1. Granty

1. Kierownik projektu w grancie ESP 88 ESPRIT-Programm, Austriacki Fundusz Nauki, tytut: ,Inhomogeneous-
growth problems including a linear-growth term”, 2022-2025.

2. Kierownik projektu w grancie 2017/27/N/ST1/02418 (PRELUDIUM), Narodowe Centrum Nauki, Poland,
title: ,Anisotropic least gradient problem”, 2018-2022.

3. Wykonawca w miedzynarodowym grancie OeAD-WTZ CZ 01/2021 (cze$¢ austriacka: 15149), tytut:
»Scales and Shapes in Continuum Thermomechanics”, 2021-2025.

4. Wykonawca w miedzynarodowym grancie DFG-FWF FR 4083/3-1/14354 (cze$¢ austriacka: 14354),
tytut: ,Variational Modeling of Molecular Geometries”, 2020-2022.

Wojciech Goérny - autoreferat 29/40


https://www.fwf.ac.at/forschungsradar/10.55776/ESP88
https://projekty.ncn.gov.pl/index.php?projekt_id=392778
https://www.univie.ac.at/appliedmath/public/scales_and_shapes_in_continuum_thermomechanics/
https://www.fwf.ac.at/en/research-radar/10.55776/I5149
https://www.univie.ac.at/appliedmath/public/molecular_geometries/
https://www.fwf.ac.at/en/research-radar/10.55776/I4354

5.

Wykonawca w grancie SFB 65 (project part 11), Austriacki Fundusz Nauki, tytut: ,, Taming complexity in

partial differential equations”, 2020.

mmmmm 5 2 Prezentacje na konferencjach

W mojej dotychczasowe] karierze naukowej wygtositem 16 zaproszonych referatéw na konferencjach na-

ukowych, 5 innych wystapien na konferencjach naukowych, oraz wygtositem 16 referatéw seminaryjnych.

Ponizej przedstawiam liste 10 najwazniejszych wystapien.

1.

10.

Characterisation of weak solutions to gradient flows of general linear growth functionals na konferencji

.Degenerate and Singular PDEs", Vienna, 24-28 lutego 2025.

. Evolution equations on two overlapping random walk structures na konferencji ,Recent Progress in

PDEs", Rome, 20-21 lutego 2025.

Optimal transport techniques in geometric problems na konferencji ,VIII Symposium on Nonlinear
Analysis”, Torun, 17-21 czerwca 2024.

Duality methods for gradient flows of linear growth functionals na konferencji ,, 10th International Congress
on Industrial and Applied Mathematics” (ICIAM 2023), minisympozjum ,Frontiers of gradient flows:
well-posedness, asymptotics, singular limits”, Tokyo, 20-25 sierpnia 2023.

A new notion of solutions to gradient flows in metric measure spaces na konferencji ,Nonuniformly elliptic

problems”, Centrum Banacha, Warszawa, 5-9 wrzeénia 2022.

. Weak solutions to gradient flows in metric measure spaces na konferencji ,,92nd Annual Meeting of

the International Association of Applied Mathematics and Mechanics” (GAMM Annual Meeting 2022),
minisympozjum ,,Evolution equations with gradient flow structure”, Aachen, 15-19 sierpnia 2022.
Weak solutions to the total variation flow in metric measure spaces na konferencji ,XXVII Congress of
differential equations and applications / XVI Congress of applied mathematics” (XXVII CEDYA/XVII
CMA), minisympozjum ,New trends on the 1-Laplacian”, Zaragoza, 18-22 lipca 2022.

Geometric aspects of the 1-Laplacian na konferencji ,XIlI Forum of Partial Differential Equations”,
Centrum Banacha, Bedlewo, 19-25 wrze$nia 2021.

The least gradient problem with respect to a non-smooth or non-strictly convex norm na konferencji ,,9th
International Congress on Industrial and Applied Mathematics” (ICIAM 2019), minisympozjum ,A broad
view of the least gradient problems”, Valencia, 15-19 lipca 20109.

Hélder regularity of anisotropic least gradient functions na konferencji ,Variational Problems in Optical

Engineering and Free Material Design”, Centrum Banacha, Warszawa, 7-9 czerwca 2018.

mmmmm 5 3 Staze naukowe

1.

10-dniowy staz na Universitat de Valéncia (Departamento de Andlisis Matematico), 05.2022, na zaproszenie
prof. José M. Mazéna.

4-tygodniowy staz w Scuola Normale Superiore di Pisa, 01-02.2020, na zaproszenie prof. Luigi Ambrosio.

. 5-tygodniowy staz na Universitat de Valencia (Departamento de Andlisis Matemdtico), 04-05.2019, na

zaproszenie prof. José M. Mazédna.
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s (. Osiggniecia dydaktyczne, organizacyjne oraz popularyzacyjne

mmmmm  (.1. Osiggniecia dydaktyczne

1

. Cykl wyktadéw pt. ,Functions of bounded variation and their applications” dla Vienna School of Mathe-
matics (szkofa doktorska), 5 wyktadéw, rok akademicki 2023/24.

Cwiczenia do nastepujacych wyktadéw na Uniwersytecie Wiedenskim:

2
3

. Wstep do Matematyki (2023/24);
. Réwnania Rézniczkowe Czastkowe (2021/22).

Cwiczenia do nastepujacych wyktadéw na Uniwersytecie Warszawskim:

4
5

~N O

. Analiza | (2018/19);

. Réwnania Rézniczkowe Zwyczajne (2017/18);
. Teoria Miary (2017/18);

. Teoria Miary (2016/17).

Ksztafcenie kadry naukowej:

8
9

. Wypromowane licencjaty: 2.

. Opieka nad doktorantami: W styczniu 2024 skontaktowat sie ze mng Alexandros Matsoukas, wéwczas
i obecnie doktorant w National Technical University of Athens (promotor: Nikos Yannakakis). Nasze pierw-
sze rozmowy dotyczyty mojego cyklu wyktadéw dla doktorantéw (punkt 1 w tej kategorii). W lutym 2024
zaproponowatem mu wspotprace, ktéra nastepnie w czerwcu 2024 zostata rozszerzona o dr Michata
tasice (Instytut Matematyki PAN). A. Matsoukas nie jest formalnie moim doktorantem, natomiast nasza
wspdtpraca trwa juz ponad rok i nasza relacja w pewnym zakresie przypomina relacje promotor-doktorant.
Celem wspoétpracy jest doktadne opisanie catkowitego wahania wzgledem struktury o niejednorodnym
wzroscie. Efektem naszej pracy jest preprint [34], za$ kolejna praca jest w przygotowaniu. Beda one
stanowi¢ fragment rozprawy doktorskiej A. Matsoukasa, ktéra dotyczy zagadnief wariacyjnych i réwnan
rézniczkowych czastkowych, w ktérych wystepuje zaréwno liniowy wzrost jak i niejednorodny wzrost.

Planowo powinna ona zosta¢ ztozona w tym roku akademickim.

mmmmm (.2 Osiggniecia organizacyjne

1. Cztonek komitetu organizacyjnego konferencji ,Variational Problems in Optical Engineering and Free

Material Design”, Centrum Banacha, Instytut Matematyki PAN, Warszawa, 6-9 czerwca 2018.

2. Cztonek komitetu organizacyjnego konferencji ,,Pushing Frontiers of Analysis and PDE'’s, the Legacy of

Marek Burnat”, Wydziat Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego, Warszawa,
6-7 maja 2016.

mmmmm (. 3. Osiggniecia popularyzacyjne

1. Kilka cykli wyktadéw dla Krajowego Funduszu na rzecz Dzieci: z geometrii klasycznej, geometrii rzutowe;

oraz teorii grup skonczonych (2012-2014).

2. Pomoc w organizacji obozéw naukowych Krajowego Funduszu na rzecz Dzieci (2011-2014).
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3. Pomoc w organizacji Olimpiady Matematycznej (2016, 2018).
4. Zajecia dodatkowe z geometrii klasycznej dla XIV Liceum Ogdlnoksztatcacym im. Stanistawa Staszica

w Warszawie (2017).

= /. |nne istotne informacje
mmmmm 7 1. Otrzymane nagrody i wyrdznienia

Nagroda im. Kazimierza Kuratowskiego, 2021.

Nagroda Polskiego Towarzystwa Matematycznego dla mtodych matematykéw, 2020.
Wyréznienie w konkursie o nagrode im. Juliusza Schaudera dla mtodych matematykéw, 2022.
Wyréznienie w konkursie o Miedzynarodowa Nagrode im. Stefana Banacha, 2021.

Drugie wyréznienie w konkursie o nagrode im. Juliusza Schaudera dla mtodych matematykéw, 2020.

o o k& w o=

Pierwsze miejsce w konkursie , Krok w przysztos¢” (najlepsza praca studencka z matematyki, organizowany

przez Fundacje mBanku), 2016.

mmmmm 7.2 Monografia ,Functions of Least Gradient”

W roku 2024 opublikowana zostata monografia [39] (w wykazie osiagnie¢, sekcja I1.8: A) dotyczaca funkgji
najmniejszego gradientu napisana wspdlnie z prof. José M. Mazénem z Universitat de Valencia. Jest to
pierwsza ksigzka zawierajaca catosciowe ujecie zagadnienia najmniejszego gradientu. Jej gtéwnym celem byto
uporzadkowanie istniejacej teorii oraz przedstawienie jej w jednolity sposéb uzywajac nowoczesnego jezyka.
Pierwsze prace dotyczace funkcji najmniejszego gradientu pochodza z lat 60. Szereg prac dotyczacych ich
zastosowania w metodach numerycznych pochodzi z lat 80., a samo sformutowanie zagadnienia najmniejszego
gradientu pochodzi z lat 90., natomiast wiekszo$¢ nowoczesnej teorii (w tym nasze prace) powstata po roku
2010. Skutkiem tego, znane wyniki uzywaja wielu (niekoniecznie réwnowaznych) definicji rozwigzan oraz
innego jezyka do ich opisu. W monografii [39] przedstawiliémy rys historyczny i podstawy teorii w jednolity

sposdb oraz ujednolicilismy koncepcje rozwigzania (w przedmowie i rozdziale 1).

Pozostate rozdziaty dotycza wspdtczesnych wynikéw, w wiekszosci autorstwa badz wspoétautorstwa co
najmniej jednego z nas. Rozdziaty 2, 3 i 4 dotycza koncepcji stabego rozwiazania, definiowanego przy
uzyciu sparowan Anzellottiego podobnie jak w sekcji 4.1; dalsze rozdziaty dotycza silniejszej koncepcji
rozwigzania, ktéra minimalizuje catkowite wahania dla zadanych danych brzegowych ktére s3 przyjmowane
w sensie $ladu. Rozdziat 5 dotyczy istnienia rozwigzan dla dostatecznie regularnych danych brzegowych oraz
odpowiednich warunkéw geometrycznych na dziedzine, a rozdziaty 6 i 7 dotycza jednoznacznosci, struktury
i regularnosci rozwigzah. W rozdziale 8 rozwazamy przypadek ostabionych zatozeh dotyczacych geometrii
dziedziny. W rozdziatach 9 i 10 jest przedstawiona réwnowazno$¢ miedzy zagadnieniem najmniejszego
gradientu a zagadnieniem optymalnego transportu i jej konsekwencje (sa to wyniki wczesdniejsze niz te
przedstawione w sekcji 4.2[E]). Rozdziat 11 dotyczy nielokalnego zagadnienia najmniejszego gradientu i jego
powigzania ze standardowym sformutowaniem. Wreszcie rozdziat 12 dotyczy znanych wynikéw z przypadku

metrycznego (wczesniejszych niz te przedstawione w sekcji 4.1[B]).
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Monografia [39] zostata zaplanowana w taki sposéb, aby mogta stuzy¢ jako pomoc naukowa nie tylko dla
matematykéw majacych doswiadczenie w podobnych dziedzinach, ale takze dla doktorantéw i innych badaczy
na poczatku swojej Sciezki kariery naukowej. Aby byta ona bardziej przystepna, wszystkie wyniki s3 napisane
przy uzyciu jednolitych definicji i jednolitego jezyka. Ponadto, zidentyfikowalismy i poprawiliémy istniejgce
btedy badz niedoktadnosci w literaturze. Dodali§my wiele przyktadéw, uprosciliSmy niektére dowody oraz
znalezlismy kilka natychmiastowych uogélnien znanych wynikéw. Na koncu monografii znajduje sie takze
pie¢ dodatkéw ufatwiajacych korzystanie z ksigzki, ktére dotycza funkcji o wahaniu ograniczonym, geome-
trycznej teorii miary, analizy wypuktej, optymalnego transportu oraz analizy w przestrzeniach metrycznych.
Dodatkowo, na konicu kazdego rozdziatu znajduje sie osobna sekcja, w ktérej omawiamy inne powigzane
wyniki znane w literaturze, omawiamy mozliwe kierunki rozwoju oraz stawiamy problemy otwarte majace

zwigzek z tematami poruszanymi w danym rozdziale.

mmmmm 7.3 Rozprawa doktorska

Celem mojej rozprawy doktorskiej (por. sekcja 2) byto zbadanie wptywu geometrii obszaru na istnienie,

jednoznaczno$¢ i regularno$é rozwigzah w anizotropowym zagadnieniu najmniejszego gradientu, tzn.
inf{/ ¢(z,Du): we BV(Q), ulgg= f}
Q

dla dziedziny lipschitzowskiej  C RY, danych brzegowych f € L'(9Q), oraz funkcji zadajacej anizotropie
¢ : QxRN — [0,4+00). Wymagamy, aby é(z,-) byta norma w drugiej zmiennej oraz aby zachodzito
jednostajne oszacowanie

cl¢] < o(x,6) < Cl¢] Vx € Q.

Aby unikna¢ niepotrzebnego rozrostu bibliografii, ponizej [WX] oznacza prace o numerze X z wykazu
osiagnieé; w tej notacji, moja rozprawa doktorska odpowiada pracom [W3], [W4], [W5], [W7] oraz [W10].
W pracy doktorskiej poruszane byty przede wszystkim nastepujace trzy rézne typy zagadnien.

W pierwszym przypadku funkcja ¢ zadajaca anizotropie jest norma. Wéwczas pokazujemy istnienie rozwigzan
anizotropowego zagadnienia najmniejszego gradientu w przypadku, gdy obszar €2 jest $cisle wypukty oraz
dane brzegowe f € L'(09) s3 ciagte prawie wszedzie (wzgledem miary Hausdorffa kowymiaru jeden).
Szczegblnie interesuje nas przypadek, gdy ¢ nie jest scisle wypukta; wtedy brak zaleznosci ¢ od potozenia
gra szczegblna role. W dwéch wymiarach otrzymujemy takze wyniki regularnosciowe dla danych brzegowych
ciggtych oraz hdlderowsko ciagtych odpowiadajace wynikom znanym z przypadku izotropowego (z catkowicie
nowym dowodem jako ze znany euklidesowy argument nie dziata). Okazuje sie, ze wspomniane wyzej wyniki

nie zalezg od regularnosci ¢ i ich dowody s3 Scisle geometryczne.

Drugi przypadek dotyczy sytuacji, gdy ¢ jest wystarczajaco regularna, tak ze dostepne sg narzedzia
réwnan rézniczkowych czastkowych. Doktadniej, lokalnie we wspétrzednych mozliwe jest zapisanie poziomic
rozwigzania jako rozwigzan pewnego eliptycznego réwnania rézniczkowego i skorzystanie z zasady maksimum
badz zasady poréwnawczej. Przyktadowo, ¢ moze zaleze takze od potozenia, jednak zaktadamy wysoka

regularnos¢ oraz jednostajna wypuktos¢ ¢. Woéwczas, w celu uzyskania wynikéw podobnych do wspomnianych
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w poprzednim akapicie zamiast argumentéw Scisle geometrycznych uzywamy m.in. zasady poréwnawczej dla
anizotropowych powierzchni minimalnych. Ponadto, w przypadku izotropowym, kiedy mamy dostepng m.in.
zasade maksimum dla powierzchni minimalnych, otrzymujemy takze lokalng ograniczono$¢ rozwigzan oraz
pokazujemy, ze dla ustalonych danych brzegowych rozwigzania niekoniecznie s3 jednoznaczne, ale wszystkie

rozwigzania maja identyczng strukture poziomic.

Wyniki opisane w poprzednich akapitach silnie zalezg od geometrii dziedziny 2. Wiekszo$¢ z nich, nawet w
przypadku izotropowym, wymaga ograniczono$ci oraz Scistej wypuktosci (badz jednostajnej wypuktosci) ;
w przypadku anizotropowym stosowane s3 analogiczne zatozenia. Trzeci przypadek rozwazany w rozprawie
doktorskiej dotyczy sytuacji, gdy dziedzina €2 nie spetnia tych standardowych zatozen. Dla uproszczenia,
ograniczamy sie do przypadku izotropowego i jedynie w kilku miejscach komentujemy przypadek anizotropowy.
Rozwazamy dwie sytuacje: kiedy €2 jest zbiorem $cisle wypuktym, ale nieograniczonym; oraz kiedy €2 jest
pierscieniem na ptaszczyznie (w szczegdlnosci nie jest wypukta i ma niespdjny brzeg), co umozliwia stosowanie

metod pochodzacych z zagadnienia optymalnego transportu.

mmmmm 7 4. Pozostate publikacje

Ponizej pokrétce opisze gtéwne kierunki badan poruszane w artykutach naukowych niebedacych czesdcia
rozprawy doktorskiej ani cyklu prac przedstawionego w sekcji 4. Ponownie, aby uniknaé niepotrzebnego
rozrostu bibliografii, ponizej [WX] oznacza prace o numerze X z wykazu osiggnie¢. Dla przypomnienia, moja
rozprawa doktorska odpowiada pracom [W3], [W4], [W5], [WT7] oraz [W10], za$ cykl prac przedstawiony
w sekgji 4 to artykuty [W11-W16].

Dwie publikacje powstaty jeszcze przed doktoratem — s3 to prace [W1] oraz [W2] (tzn. [40] oraz [30]
odpowiednio). Dotycza one dwuwymiarowego zagadnienia najmniejszego gradientu. W pracy [W1] pokazana
jest rbwnowaznos$¢ miedzy zagadnieniem najmniejszego gradientu a zagadnieniem Beckmanna, ktéra jest
podstawa do zastosowania metod transportowych w zagadnieniu najmniejszego gradientu oraz dwa warianty
tego zagadnienia: gdy dane brzegowe s3 zadane jedynie na kawatku brzegu dziedziny; oraz kiedy dziedzina
nie jest $cisle wypukta przy pewnych warunkach dopuszczalnosci na dane brzegowe. Praca [W2] zawiera
pierwszy w literaturze wynik dotyczacy istnienia rozwigzan dla nieciagtych danych brzegowych (w tym
przypadku: klasy BV na brzegu dziedziny) oraz wyniki dotyczace struktury rozwigzan. Kwestie istnienia
rozwigzan dla nieciggtych danych brzegowych, struktury rozwigzan, oraz danych brzegowych na fragmencie

brzegu sa dalej badane w pracy [W18] w przypadku wielowymiarowym.

Drugi poruszany temat dotyczy analizy na przestrzeniach metrycznych ze szczegdlnym uzwglednieniem
zagadnien nielokalnych i odpowiada pracom [W6], [W8], oraz [W9]. Praca [W6] dotyczy nielokalnego
wariantu zagadnienia najmniejszego gradientu. Opisane w niej wyniki s3 sformutowane w duzej ogdlnosci,
dla przestrzeni metrycznych wyposazonych w btadzenie losowe, i obejmuja m.in. przypadki zagadnien na
kratach, grafach nieskierowanych, oraz dla interakcji zadanej przez symetryczne jadro catkowe w przestrzeni
euklidesowe]. Praca ta dotyczy charakteryzacji rozwigzan, ich podstawowych wtasnosci, oraz identyfikacji
minimalnych zatozen na przestrzen i btadzenie losowe dla istnienia rozwigzan. Ten temat jest kontynuowany

w pracy [W9], gdzie badane jest przejscie graniczne z zagadnienia nielokalnego do zagadnienia lokalnego
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dla pewnej klasy btadzen losowych. Wreszcie w pracy [W8] udowodniona jest charakteryzacja przestrzeni
Sobolewa na przestrzeniach metrycznych za pomoca rodziny nielokalnych funkcjonatéw analogicznych do tych
wprowadzonych w przetomowej pracy Bourgaina, Brezisa i Mironescu ,,Another look at Sobolev spaces” [15];
jest to pierwszy tego typu wynik w przestrzeniach metrycznych z wskazaniem doktadnej statej. Wprowadzona

w tej pracy technika stata sie standardem w literaturze dotyczacej tego typu zagadnien.

Trzeci kierunek badan dotyczy zagadnienia podwdjnej banki (ang. double bubble problem), tzn. minimalizacji
tacznej powierzchni banki mydlanej o zadanych objetosciach dwdch czedci. Jest to klasyczny problem
rachunku wariacyjnego i poswiecone s3 mu prace [W17] i [W19]. Praca [W17] stanowi pierwsze w literaturze
sformutowanie dyskretnej wersji tego zagadnienia na kracie Z?. Badamy strukture rozwiazarh oraz pokazujemy,
ze podobnie jak w przypadku zagadnienia izoperymetrycznego, w przypadku réwnych objetosci rozwigzania
spetniaja zasade N3/4 (ang. N3/4-Iaw), tzn. moc réznicy symetrycznej dwéch rozwigzan tego zagadnienia dla
N atoméw (po ewentualnym zastosowaniu pewnej izometrii) jest rzedu N3/4. W pracy [W19] badamy model
kontinuum tego zagadnienia w granicy gdy liczba atoméw dazy do nieskonczonosci dla ustalonego stosunku
objetoéci, co odpowiada liczeniu powierzchni wzgledem metryki £. Otrzymaliémy klasyfikacje wszystkich
rozwigzan tego zagadnienia w petnej ogdlnosci dla zbioréw o skonczonym obwodzie oraz dla réznych

poziomdw interakcji miedzy zbiorami.

Czwarty temat jest kontynuacja badan przedstawionych w cyklu prac [W11-W16] bedacych podstawa wniosku
habilitacyjnego i jest on przedmiotem artykutéw [W20], [W21] oraz [W22]. Dotycza one charakteryzacji
rozwigzan dla potokéw gradientowych w przestrzeniach Hilberta w nastepujacych dwdch sytuacjach. W pracy
[W20] badamy potoki gradientowe w przestrzeni euklidesowej dla bardzo szerokiej klasy funkcjonatéw
z liniowym wzrostem, zaktadajac jedynie liniowy wzrost oraz ciggto$¢ funkcji recesji modelujacej zachowanie
w nieskonczono$ci. Praca [W21] kontynuuje cykl prac dotyczacych zagadnien ewolucyjnych w przestrzeniach
metrycznych i rozszerza wyniki znane z pracy [36] dotyczace p-Laplasjanu na szeroka klase funkcjonatéw
z niejednorodnym wzrostem, natomiast praca [W22] poswiecona jest analizie analogicznego zagadnienia

w przypadku nielokalnym, tzn. dla przestrzeni metrycznych wyposazonych w btadzenie losowe.
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